
Original article

Bayesian analysis of genetic change due
to selection using Gibbs sampling

DA Sorensen CS Wang J Jensen D Gianola

1 National Institute of Animal Science, Research Center Foulum,
PB 39, DK8830 Tjele, Denmark;

2 
Department of Meat and Animal Science, University of Wisconsin-Madison,

Madison, WI53706-128.!, USA

(Received 7 June 1993; accepted 10 February 1994)

Summary - A method of analysing response to selection using a Bayesian perspective is
presented. The following measures of response to selection were analysed: 1) total response
in terms of the difference in additive genetic means between last and first generations;
2) the slope (through the origin) of the regression of mean additive genetic value on
generation; 3) the linear regression slope of mean additive genetic value on generation.
Inferences are based on marginal posterior distributions of the above-defined measures
of genetic response, and uncertainties about fixed effects and variance components are
taken into account. The marginal posterior distributions were estimated using the Gibbs
sampler. Two simulated data sets with heritability levels 0.2 and 0.5 having 5 cycles of
selection were used to illustrate the method. Two analyses were carried out for each data
set, with partial data (generations 0-2) and with the whole data. The Bayesian analysis
differed from a traditional analysis based on best linear unbiased predictors (BLUP) with
an animal model, when the amount of information in the data was small. Inferences
about selection response were similar with both methods at high heritability values and
using all the data for the analysis. The Bayesian approach correctly assessed the degree of
uncertainty associated with insufficient information in the data. A Bayesian analysis using
2 different sets of prior distributions for the variance components showed that inferences
differed only when the relative amount of information contributed by the data was small.
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Résumé - Analyse bayésienne de la réponse génétique à la sélection à l’aide de

l’échantillonnage de Gibbs. Cet article présente une méthode d’analyse des expériences
de sélection dans une perspective bayésienne. Les mesures suivantes des réponses à la
sélection ont été analysées: i) la réponse totale, soit la différence des valeurs génétiques
additives moyennes entre la dernière et la première génération; ii) la pente (passant par
l’origine) de la régression de la valeur génétique additive moyenne en fonction de la

génération; iii) la pente de la régression linéaire de la valeur génétique additive moyenne
en fonction de la génération. Les inférences sont basées sur les distributions marginales a
posteriori des mesures de la réponse génétique défanies ci-dessus, avec prise en compte des



incertitudes sur les effets fixés et les composantes de variance. Les distributions marginales
a posteriori ont été estimées à l’aide de l’échantillonnage de Gibbs. Deux ensembles de
données simulées avec des héritabilités de 0,2 et 0,5 et 5 cycles de sélection ont été utilisés
pour illustrer la méthode. Deux analyses ont été faites sur chaque ensemble de données,
avec des données incomplètes (génération 0-!! et avec les données complètes. L’analyse
bayésienne différait de l’analyse traditionnelle, basée sur le BL UP avec un modèle animal,
quand la quantité d’information utilisée était réduite. Les inférences sur la réponse à
lt sélection étaient similaires avec les 2 méthodes quand l’héritabilité était élevée et que
toutes les données étaient prises en compte dans l’analyse. L’approche bayésienne évaluait
correctement le degré d’incertitude lié à une information insuffisante dans les données.
Une analyse bayésienne avec 2 distributions a priori des composantes de variance a montre
que les inférences ne difj&dquo;éraient que si la part d’information fournie par les données était
faible.
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INTRODUCTION

Many selection programs in farm animals rely on best linear unbiased predictors
(BLUP) using Henderson’s (1973) mixed-model equations as a computing device,
in order to predict breeding values and rank candidates for selection. With the
increasing computing power available and with the development of efficient algo-
rithms for writing the inverse of the additive relationship matrix (Henderson, 1976;
(auaas, 1976), ’animal’ models have been gradually replacing the originally used sire
models. The appeal of ’animal’ models is that, given the model, use is made of the
information provided by all known additive genetic relationships among individuals.
This is important to obtain more precise predictors and to account for the effects
of certain forms of selection on prediction and estimation of genetic parameters.
A natural application of ’animal’ models has been prediction of the genetic means

of cohorts, for example, groups of individuals born in a given time interval such
as a year or a generation. These predicted genetic means are typically computed
as the average of the BLUP of the genetic values of the appropriate individuals.
From these, genetic change can be expressed as, for example, the regression of
the mean predicted additive genetic value on time or on appropriate cumulative
selection differentials (Blair and Pollak, 1984). In common with selection index,
it is assumed in BLUP that the variances of the random effects or ratios thereof
are known, so the predictions of breeding values and genetic means depend on
such ratios. This, in turn, causes a dependency of the estimators of genetic change
derived from ’animal’ models on the ratios of the variances of the random effects
used as ’priors’ for solving the mixed-model equations. This point was first noted
by Thompson (1986), who showed in simple settings, that an estimator of realized
heritability given by the ratio between the BLUP of total response and the total
selection differential leads to estimates that are highly dependent on the value of
heritability used as ’prior’ in the BLUP analysis. In view of this, it is reasonable



to expect that the statistical properties of the BLUP estimator of response will
depend on the method with which the ’prior’ heritability is estimated.

In the absence of selection, Kackar and Harville (1981) showed that when
the estimators of variance in the mixed-model equations are obtained with even
estimators that are translation invariant and functions of the data, unbiased

predictors of the breeding value are obtained. No other properties are known and
these would be difficult to derive because of the nonlinearity of the predictor. In
selected populations, frequentist properties of predictors of breeding value based
on estimated variances have not been derived analytically using classical statistical
theory. Further, there are no results from classical theory indicating which estimator
of heritability ought to be used, even though the restricted maximum likelihood
(REML) estimator is an intuitively appealing candidate. This is so because the
likelihood function is the same with or without selection, provided that certain
conditions are met (Gianola et at, 1989; Im et at, 1989; Fernando and Gianola, 1990).
However, frequentist properties of likelihood-based methods under selection have
not been unambiguously characterized. For example, it is not known whether the
maximum likelihood estimator is always consistent under selection. Some properties
of BLUP-like estimators of response computed by replacing unknown variances by
likelihood-type estimates were examined by Sorensen and Kennedy (1986) using
computer simulation, and the methodology has been applied recently to analyse
designed selection experiments (Meyer and Hill, 1991). Unfortunately, sampling
distributions of estimators of response are difficult to derive analytically and one
must resort to approximate results, whose validity is difficult to assess. In summary,
the problem of exact inferences about genetic change when variances are unknown
has not been solved via classical statistical methods.

However, this problem has a conceptually simple solution when framed in a
Bayesian setting, as suggested by Sorensen and Johansson (1992), drawing from
results in Gianola et at (1986) and Fernando and Gianola (1990). The starting point
is that if the history of the selection process is contained in the data employed
in the analysis, then the posterior distribution has the same mathematical form
with or without selection (Gianola and Fernando, 1986). Inferences about breeding
values (or functions thereof, such as selection response) are made using the marginal
posterior distribution of the vector of breeding values or from the marginal posterior
distribution of selection response. All other unknown parameters, such as ’fixed
effects’ and variance components or heritability, are viewed as nuisance parameters
and must be integrated out of the joint posterior distribution (Gianola et at, 1986).
The mean of the posterior distribution of additive genetic values can be viewed as a
weighted average of BLUP predictions where the weighting function is the marginal
posterior density of heritability.

Estimating selection response by giving all weight to an REML estimate of her-
itability has been given theoretical justification by Gianola et at (1986). When the
information in an experiment about heritability is large enough, the marginal pos-
terior distribution of this parameter should be nearly symmetric; the modal value of
the marginal posterior distribution of heritability is then a good approximation to
its expected value. In this case, the posterior distribution of selection response can
be approximated by replacing the unknown heritability by the mode of its marginal



posterior distribution. However, this approximation may be poor if the experiment
has little informational content on heritability.
A full implementation of the Bayesian approach to inferences about selection

response relies on having the means of carrying out the necessary integrations of
joint posterior densities with respect to the nuisance parameters. A Monte-Carlo
procedure to carry out these integrations numerically known as Gibbs sampling is
now available (Geman and Geman, 1984; Gelfand and Smith, 1990). The procedure
has been implemented in an animal breeding context by Wang et al (1993a; 1994a,b)
in a study of variance component inferences using simulated sire models, and in
analyses of litter size in pigs. Application of the Bayesian approach to the analysis
of selection experiments yields the marginal posterior distribution of response to
selection, from which inferences about it can be made, irrespective of whether
variances are unknown. In this paper, we describe Bayesian inference about selection
response using animal models where the marginalizations are achieved by means of
Gibbs sampling.

MATERIALS AND METHODS

Gibbs sampling

The Gibbs sampler is a technique for generating random vectors from a joint
distribution by successively sampling from conditional distributions of all random
variables involved in the model. A component of the above vector is a random

sample from the appropriate marginal distribution. This numerical technique was
introduced in the context of image processing by Geman and Geman (1984) and
since then has received much attention in the recent statistical literature (Gelfand
and Smith, 1990; Gelfand et al, 1990; Gelfand et al, 1992; Casella and George,
1992). To illustrate the procedure, let us suppose there are 3 random variables, X,
Y and Z, with joint density p(x, y, z); we are interested in obtaining the marginal
distributions of X, Y and Z, with densities p(x), p(y) and p(z), respectively.
In many cases, the necessary integrations are difficult or impossible to perform
algebraically and the Gibbs sampler provides a means of sampling from such a
marginal distribution. Our interest is typically in the marginal distributions and
the Gibbs sampler proceeds as follows. Let (xo, yo, zo) represent an arbitrary set of
starting values for the 3 random variables of interest. The first sample is:

where p(xly = yo, Z = zo) is the conditional distribution of X given Y = yo and
Z = zo. The second sample is:

where x, is updated from the first sampling. The third sample is:

where yl is the realized value of Y obtained in the second sampling. This constitutes
the first iteration of the Gibbs sampling. The process of sampling and updating is



repeated k times, where k is known as the length of the Gibbs sequence. As k -> oo,
the points of the kth iteration (Xk, Yk, Zk) constitute 1 sample point from p(x, y, z)
when viewed jointly, or from p(x), p(y) and p(z) when viewed marginally. In order
to obtain m samples, Gelfand and Smith (1990) suggest generating m independent
’Gibbs sequences’ from m arbitrary starting values and using the final value at the
kth iterate from each sequence as the sample values. This method of Gibbs sampling
is known as a multiple-start sampling scheme, or multiple chains. Alternatively, a
single long Gibbs sequence (initialized therefore once only) can be generated and
every dth observation is extracted (eg, Geyer 1992) with the total number of samples
saved being m. Animal breeding applications of the short- and long-chain methods
are given by Wang et al (1993, 1994a,b).

Having obtained the m samples from the marginal distributions, possibly corre-
lated, features of the marginal distribution of interest can be obtained appealing to
the ergodic theorem (Geyer, 1992; Smith and Roberts, 1993):

where xi(i = 1, ... , m) are the samples from the marginal distribution of x, u’ is any
feature of the marginal distribution, eg, mean, variance or, in general, any feature
of a function of x, and g(.) is an appropriate operator. For example, if u is the mean
of the marginal distribution, g(!) is the identity operator and a consistent estimator
of the variance of the marginal distribution is

(Geyer, 1992). Note that Sm is a Monte-Carlo estimate of u, and the error of this
estimator can be made arbitrarily small by increasing m. Another way of obtaining
features of a marginal distribution is first to estimate the density using [11, and
then compute summary statistics (features) of that distribution from the estimated
density.

There are at least 2 ways to estimate a density from the Gibbs samples. One is to
use random samples (xi) to estimate p(x). We consider the normal kernel estimator
(eg, Silverman, 1986).

where p(x) is the estimated density at x, and h is a fixed constant (called the
window width) given by the user. The window width determines the smoothness of
the estimated curve.

Another way of estimating a density is based on averaging conditional densities
(Gelfand and Smith, 1990). From the following standard result:



and given knowledge of the full conditional distribution, an estimate of p(x) is
obtained from:

«

where t/i,2:i;...,t/!,2:nt are the realized values of final Y, Z samples from each
Gibbs sequence. Each pair y2, zi constitutes 1 sample, and there are m such pairs.
Notice that the xi are not used to estimate p(x). Estimation of the density of a
function of the original variables is accomplished either by applying [2] directly to
the samples of the function, or by applying the theory of transformation of random
variables in an appropriate conditional density, and then using !3!. In this case, the
Gibbs sampling scheme does not need to be rerun, provided the needed samples are
saved.

Model

In the present paper we consider a univariate mixed model with 2 variance

components for ease of exposition. Extensions to more general mixed models are
given by Wang et al (1993b; 1994) and by Jensen et al (1994). The model is:

where y is the data vector of order n by 1; X is a known incidence matrix of order n
by p; Z is a known incidence matrix of order n by q; b is a p by 1 vector of uniquely
defined ’fixed effects’ (so that X has full column rank); a is a q by 1 ’random’
vector representing individual additive genetic values of animals and e is a vector
of random residuals of order n by 1.

The conditional distribution that pertains to the realization of y is assumed to
be:

where H is a known n by n matrix, which here will be assumed to be the identity
matrix, and aj (a scalar) is the unknown variance of the random residuals.
We assume a genetic model in which genes act additively within and between

loci, and that there is effectively an infinite number of loci. Under this infinitesimal
model, and assuming further initial Hardy-Weinberg and linkage equilibrium, the
distribution of additive genetic values conditional on the additive genetic covariance
is multivariate normal:

In [6], A is the known q by q matrix of additive genetic relationships among
animals, and Qa (a scalar) is the unknown additive genetic variance in the conceptual
base population, before selection took place.

The vector b will be assumed to have a proper prior uniform distribution:

p(b) oc constant,

where bmin and bmax are, respectively, the minimum and maximum values which
b can take, a priori. Further, a and b are assumed to be independent, a priori.



To complete the description of the model, the prior distributions of the variance
components need to be specified. In order to study the effect of different priors on
inferences about heritability and response to selection, 2 sets of prior distributions
will be assumed. Firstly, u2 and aj will be assumed to follow independent proper
prior uniform distributions of the form:

p(u?) oc constant,

where a2maX and afl!!! are the maximum values which, according to prior know-
ledge, a! and !2 can take. In the rest of the paper, all densities which are functionsof b, Qa, and ae will implicity take the value zero if the bounds in 7 and [8] are
exceeded.

Secondly, Qa and <7! will be assumed to follow a priori scaled inverted chi-square
distributions:

where vi and Sf are parameters of the distribution. Note that a uniform prior can
be obtained from [9] by setting vi = -2 and S2 = 0.

Posterior distribution of selection response

Let a represent the vector of parameters associated with the model. Bayes theorem
provides a means of deriving the posterior distributions of a conditional on the
data:

The first term in the numerator of the right-hand side of [10] is the conditional den-
sity of the data given the parameters, and the second is the prior joint distribution
of the parameters in the model. The denominator in [10] is a normalizing con-
stant (marginal distribution of the data) that does not depend on a. Applying !10!,
and assuming the set of priors [9] for the variance components, the joint posterior
distribution of the parameters is:



The joint posterior under a model assuming the proper set of prior uniform
distributions [8] for the variance components is simply obtained by setting vi = -2

and SZ = 0 (i = e, a) in !12!. To make the notation less burdensome, we drop from
now onwards the conditioning on v and S.

Inferences about response to selection can be made working with a function of
the marginal posterior distribution of a. The latter is obtained integrating [12] over
the remaining parameters:

where E = (o, a 2,a e 2) and the expectation is taken over the joint posterior distribution
of the vector of ’fixed effects’ and variance components. This density cannot be
written in a closed form. In finite samples, the posterior distribution of a should be
neither normal nor symmetric.

Response to selection is defined as a linear function of the vector of additive

genetic values:

where K is an appropriately defined transformation matrix and R can be a
vector (or a scalar) whose elements could be the mean additive genetic values
of each generation, or contrasts between these means, or alternatively, regression
coefficients representing linear and quadratic changes of genetic means with respect
to some measure of time, such as generations. By virtue of the central limit theorem,
the posterior distribution of R should be approximately normal, even if [13] is not.

Full conditional posterior distributions (the Gibbs sampler)

In order to implement the Gibbs sampling scheme, the full conditional posterior
densities of all the parameters in the model must be obtained. These distributions
are, in principle, obtained dividing [12] by the appropriate posterior density function
or the equivalent, regarding all parameters in [12] other than the one of interest as
known. For the fixed and random effects though, it is easier to proceed as follows.



Using results from Lindley and Smith (1972), the conditional distribution of 0
given all other parameters is multivariate normal:

where

and 0 satisfies:

which are the mixed-model equations of Henderson (1973).

and using standard multivariate normal theory, it can be shown for any such

partition that:

where 01 is given by:

Expressions [19] and [20] can be computed in matrix or scalar form. Let bi be
a scalar corresponding to the ith element in the vector of ’fixed effects’, b_i. be b
without its ith element, xi be the ith column vector in X, and X_.L be that part of
matrix X with xi excluded. Using [19] we find that the full conditional distribution
of bi given all other parameters is normal.

where bi satisfies:

For the ’random effects’, again using [19] and letting a-i be a without its ith

element, we find that the full conditional distribution of the scalar ai given all the
other parameters is also normal:

where zi is the ith column of Z, cii = (Var(ai!a_,,))-1 Qa is the element in the ith
row and column of A-1, and ai satisfies:

In [24], ci,_i is the row of A-’ corresponding to the ith individual with the ith
element excluded.



The full conditional distribution of each of the variance components is readily
obtained by dividing [12] by p(b, a, !-ily), where E-i is E with !2 excluded. Since
this last distribution does not depend on a2, this becomes (Wang et al, 1994a):

which has the form of an inverted chi-square distribution, with parameters:

When the prior distribution for the variance components is assumed to be

uniform, the full conditional distributions have the same form as in [25], except
that, in [26] and subsequent formulae, vi = -2 and S2 = 0 (i = e, a).

Generation of random samples from marginal posterior distributions
using Gibbs sampling

In this section we describe how random samples can be generated indirectly from
the joint distribution [12] by sampling from the conditional distributions !21!, [23]
and !25!. The Gibbs sampler works as follows:

(i) set arbitrary initial values for b, a and E;
(ii) sample from !21!, and update bi, i = 1, ... , p;
(iii) sample from [23] and update ai, i = 1, ... , q;
(iv) sample from [25] and update aa;
(v) sample from [25] and update !e;
(vi) repeat (ii) to (v) k (length of chain) times.

As k - oo, this creates a Markov chain with an equilibrium distribution having
[12] as density. If along the single path k, m samples are extracted at intervals of
length d, the algorithm is called a single-long-chain algorithm. If, on the other hand,
m independent chains are implemented, each of length k, and the kth iteration is
saved as a sample, then this is known as the short-chain algorithm.

If the Gibbs sampler reached convergence, for the m samples (b, a, E) 1, ... ,
(b, a, E)&dquo;, we have:

where - means distributed with marginal posterior density p(.ly). In any particular
sample, we notice that the elements of the vectors b and a, bi and ai, say, are samples



of the univariate marginal distributions p(bi!y) and p(aily). In order to estimate
marginal posterior densities of the variance components, in addition to the above
quantities the following sums of squares must be stored for each of the m samples:

For estimation of selection response, the quantities to be stored depend on the
structure of K in (14!.

Density estimation

As indicated previously, a marginal density can be estimated, for example, using the
normal density kernel estimator [2] with the m Gibbs samples from the relevant
marginal distribution, or by averaging over conditional densities (equation [3]).
Density estimation by the former method is straightforward, by applying (2!. Here,
we outline density estimation using (3!.

The formulae for variance components and functions thereof were given by Wang
et al (1993, 1994b). For each of the 2 variance components, the conditional density
estimators are:

and for the error variance component:

The estimated values of the density are obtained by fixing Qa and Qe at a number
of points and then evaluating [27] and [28] at each point over the m samples. Notice
that the realized values of Qa and Qe obtained in the Gibbs sampler are not used
to estimate the marginal posterior densities in [27] and [28].

To estimate the marginal posterior density of heritability h2 = a£ /(a£ +!e), the
point of departure is the full conditional distribution of a£ . This distribution has !e
as a conditioning variable, and therefore Qe is treated as a constant. Since the inverse
transformation is a! = <T!/(1 - h2), and the Jacobian of the transformation fromQa to h2 is J = Qe/(1 - h2) , then from [27] we obtain:



The estimation of the marginal posterior density of each additive genetic value
follows the same principles:

where, for the jth sample:

Equally spaced points in the effective range of ai are chosen, and for each point
an estimate of its density is obtained by inserting, for each of the m Gibbs samples,
the realized values for o,2, b, a-i, and k in [30] and [31]. These quantities, together
with ai, need to be stored in order to obtain an estimate of the marginal posterior
density of the ith additive genetic value. This process is repeated for each of the
equally spaced points.

Estimation of the marginal posterior density of response depends on the way
it is expressed. In general R in [14] can be a scalar (the genetic mean of a given
generation, or response per time unit) or it can be a vector, whose elements could
describe, for example, linear and higher order terms of changes of additive genetic
values with time or unit of selection pressure applied. We first derive a general
expression for estimation of the marginal posterior density of R and then look at
some special cases to illustrate the procedure.

Assume that R contains s elements and we wish to estimate p(Riy) as:

In order to implement (32!, the full conditional distribution on the right-hand side
is needed. This distribution is obtained applying the theory of transformations to
p(ailb, a- j, E, y), where ai is a vector of additive genetic values of order s, and a_i
is the vector of all additive genetic values with ai deleted, such that a = (ai, a_i)’.



The s additive genetic values in ai must be chosen so that the matrix of the
transformation from ai to R is non-singular. We can then write [14] as:

so that we have expressed R in a part which is a function of ai and another one
which is not. The matrix Ki is non-singular of order s by s, and from [33], the
inverse transformation is

Since the Jacobian of the transformation from ai to R is det(K! 1), letting
Vi = Var(ai!b, a_i, E, y), and using standard theory, we obtain the result that
the conditional posterior distribution of response is normal:

where, using [19] and !20!, it can be shown that:

and

In [35] and [36], Ci is the s by s block of the inverse of the additive genetic
relationship matrix whose rows and columns correspond to the elements in ai, and
CZ!_2 is the s by (q &mdash; s) block associating the elements of ai with those of a-i. With

[34] available, the marginal posterior distribution of R can be obtained from !32!.
As a simple illustration, consider the estimation of the marginal posterior density

of total response to selection, defined as the difference in average additive genetic
values between the last generation ( f ) and the first one:

where afj and a1j are additive genetic values of individuals in the final and first
generations, and n and n1 are the number of additive genetic values in the final
and first generation, respectively. We will arbitrarily choose af1 and carry out a
linear transformation from p(afllb, a- 11,!, y) to p(Rlb, a- 11,!, y). We write [37]
in the form of !33):

so that in the notation of [33], we have:



and the marginal posterior density is estimated as follows:

As a second illustration we consider the case where response is expressed as the
linear regression (through the origin) of additive genetic values on time units. Thus
R is a scalar. We assume as before that there are f time units, and the response
expressed in the form of [33] and [38] is:

is their number. A little manipulation shows that:

EXAMPLES

To illustrate, the methodology was used to analyse 2 simulated data sets. Genotypes
were sampled using a Gaussian additive genetic model. The phenotypic variance
was always 10, and base population heritability was 0.2 and 0.5 in data sets 1
and 2, respectively. A phenotypic record was obtained by summing a fixed effect



(30 fixed effects in the complete data set, but these values are of no importance
here), an additive genetic effect and a residual term. Both additive genetic and
residual effects were assumed to follow normal distributions with null means and
variances based on the 2 heritability levels. In the generation of Mendelian sampling
effects, parental inbreeding was taken into account.

Five cycles of single trait selection based on a BLUP animal model were practised.
Each generation resulted from the mating of 8 males and 20 females, and each
female produced 3 offspring with records and 2 additional female offspring without
records which were also considered as female replacements. Males were selected
across generations (the best 8 each cycle) and females, which bred only once,
were selected from the highest scoring predicted breeding values available each
generation. The total number of animals at the end of the program was 968, of
which 720 had records. The total number of sires and dams in each data set was 42
and 241. Details of the simulation including a description of the generation of fixed
effects and additive genetic values can be found in Sorensen (1988).
Two analyses were carried out for each data set: an analysis based on all records;

and one using data from generations 0-2 only. The rationale for this is that it is
not uncommon in the literature to find reports of selection experiments in progress.
Hence, we can illustrate in this manner how inferences are modified as additional
information is collected.

For each analysis, marginal posterior densities for the additive genetic variance
a , residual variance (Qe), phenotypic variance (aP) and heritability (h2) were
estimated. In addition, marginal posterior densities of 2 expressions for selection
response were estimated. These were: 1) difference between final and initial average
additive genetic values or total response (TR); and 2) linear regression through
the origin of the linear regression of additive genetic values on generation. Unless
otherwise stated, the analyses reported below were performed assuming that
variance components follow a priori independent uniform distributions as shown in
(8!. The upper bounds of the additive and environmental variances (a 2 2
were arbitrarily chosen to be 10 and 20, respectively.

The Gibbs sampler was implemented using a single chain of total length
1 205 000, with a warm-up (initial iterations discarded) of length 5 000, and a sub-
sampling interval between samples of d = 10. Thus, a total of m = 120 000 samples
were saved. Calculations were programmed in Fortran in double precision. Random
numbers were generated using IMSL subroutines (IMSL Inc, 1989).

Plots of the estimated marginal posterior densities of Qa, Qe, h2, TR and 6
were obtained with both the average of conditionals and with the normal kernel

density estimator; those for a!, t50 and 61 were generated using the normal kernel
density estimator only, for technical reasons. The window used for the normal
kernel estimator was the range of the effective domain of the parameter, divided
by 75. The effective domain covered 99.9% of the density mass. Each of the plots
was generated by dividing the effective domain of that variable into 100 evenly
spaced intervals. Summary statistics of distributions, such as the mean, median
and variance were computed by Simpson’s integration rules, by further dividing
the effective domain into 1 000 evenly spaced intervals using cubic-spline techniques
(IMSL Inc, 1989). Modes were located through grid search. For illustration and not
as a means of a definite comparison between methods, a standard classical analysis



was carried out. First, REML estimates of variance components were obtained.
These REML estimates were then used in lieu of the true values in Henderson’s
mixed-model equations to obtain estimates of additive genetic values. Finally,
estimated genetic responses to selection were computed based on appropriate
averages of the estimated additive genetic values. Results of this classical analysis
are reported later under the heading ST in figures 5-8. The estimated marginal
posterior densities of the variance components and of heritability are shown in
figures 1 and 2 for the analysis based on partial (PART) and whole (WHOLE)
data, respectively, when base population heritability was 0.2. Corresponding plots
for base heritability 0.5 are given in figures 3 and 4.



For the data simulated with h2 = 0.2, the posterior distributions reflected
considerable uncertainty about the values of the parameters. As expected, the
variances of the posterior distributions were smaller in WHOLE (fig 2) than in
PART (fig 1). In particular, the PART analysis of U2 and h2 showed highly
skewed distributions; the mean, the mode and the median differed from each
other. The REML estimates in the PART analysis for the additive genetic variance
and heritability were very close to zero. Asymptotic confidence intervals were not
computed, but they would probably include a region outside the parameter space.
The Bayesian analysis indicated with considerable probability that both parameters
are non-zero. When WHOLE was considered (fig 2), the degree of uncertainty



was reduced, but point estimates in the Bayesian analysis of genetic variance and
of heritability were different from those in the REML estimates. For example,
the posterior mean, mode and median of heritability were 0.13, 0.08 and 0.12,
respectively, in comparison with the REML estimate of 0.07. The lack of symmetry
of the posterior distribution of Qa and h2 clearly suggests that the simulated
selection experiment does not have a high degree of resolution concerning inferences
about genetic parameters. This point would not be as forcefully illustrated in

a standard REML analysis, where, at best, one would get joint approximate
asymptotic confidence intervals for the parameters of interest.



In the case of h2 = 0.5 (fig 3 and 4), it should be noted that the distributions
were less skewed than for h2 = 0.2, although still skewed for PART (fig 3). Both
the Bayesian and the REML analyses suggested a moderate to high heritability,
but the fact that the posterior distribution of heritability for PART (fig 3) was
very skewed indicates that more data should be collected for accurate inferences
about heritability. The WHOLE analysis (fig 4) yielded nearly symmetric posterior
distributions of heritability with smaller variance, centered at 0.55 (the REML
estimate was 0.543). It should be noted that the residual variance was poorly
estimated in PART (fig 3), but the Bayesian analysis clearly depicted the extent
of uncertainty about this parameter. This also illustrates the fact that a variance
component smaller in value relative to others in the model is harder to estimate,



contrary to the common belief in animal breeding that residual variance is always
well estimated.

The assessment of response to selection for the population simulated with h2 =
0.2 is given in figures 5 and 6 for the PART and WHOLE data analyses, respectively.
The true response in the simulated data at a given generation, computed as the
average of true genetic values within the generaton in question, was TR = 0.643
units and TR = 1.783 units, for PART and WHOLE. The regressions of true
response on generation were 0.321 and 0.343, for PART and WHOLE, respectively.
The hypothesis of no response to selection cannot be rejected in the PART analysis
(fig 5). The classical approach gave an estimated response of zero. However, the
Bayesian analysis documents the extent of uncertainty, and assigns considerable
posterior probability to the proposition that selection may be effective; the posterior
probability of response (eg, Ql > 0 or TR = t2 - to > 0) was much larger than
that of the complement. The strength of additional evidence brought up in the
whole analysis (fig 6) supports the hypothesis that selection was effective. For
example, the difference in genetic mean between generation 0 and 5 was centered
around 1.852, though the variance of the posterior distribution was as large as
1.075. The classical analysis gave an estimated value of ST = 1.296 units, but no
exact measure of variation can be associated to this estimate. Approximate results
could be obtained, for example, using Monte-Carlo simulations, but this was not
attempted in the present work.

In the simulation with h2 = 0.5, the true response in the simulated data,
computed as the average of true genetic values from the relevant generations,
was TR = 3.258 units and TR = 7.148 units for the PART and WHOLE
data sets, respectively. The associated regressions on generation were 1.629 and
1.436, respectively. The Bayesian and classical analyses indicated response to
selection beyond reasonable doubt (fig 7 and 8). Note, however, that the posterior
distribution of TR = t2 - to in PART was skewed (fig 7). In figure 8, all the

posterior distributions were nearly symmetric, and the classical and Bayesian
analyses were essentially in agreement. In spite of this symmetry, considerable
uncertainty remained about the true rate of response to selection. For example,
values of t5 - to ranging from 3 to 11 units have appreciable posterior density
(fig 8). In the light of this, results from a similar experiment where realized genetic
change is, say, 50% higher or lower than our posterior mean of about 6.7 units,
could not be interpreted as yielding conflicting evidence.

In order to study the influence of different priors on inferences about heritability
and response to selection, part of the above analyses using the same data, was
repeated assuming that variance components followed, a priori, the inverse chi-
square distributions (9!. The ’degree of belief’ parameters vi and the a priori value
of the variance components S2, were assessed by the method of moments from
an independently simulated data set with base population heritability of 0.5, and
consisting of 3 cycles of selection. An REML estimate of heritability from this data
was 0.46 with an asymptotic variance of 2.94 x 10-2. The method of moments
as described in Wang et al (1994b), produced the following estimates: va = 11;
ve = 464; Sa = 4.50; Se = 5.19. A reanalysis of the PART and WHOLE replicate
(heritability = 0.5) yielded the results shown in table I. The figures in the table
clearly illustrate how increasing the amount of information in the data modifies





the input contributed by the prior. Thus in the PART dataset, the uniform prior
and the informative prior (which implies a prior value of heritability of 0.46) lead
to clear differences in the expected value of the marginal posterior distribution of
heritability and selection response. However, in the WHOLE data set, inferences
using either prior are very similar. The figures also illustrate how the variance of
marginal posterior distributions is reduced when an informative prior is used.

The examples indicate the power of the Bayesian analysis to reveal uncertainty
in response to selection when the information contained in the data about the



appropriate parameters is small (eg, PART analysis at h2 = 0.2). Other plots, such
as marginal posterior distribution of generation means, for example, are possible
and could illustrate the evolution of the drift variance as the experiment progresses.

DISCUSSION

We have presented a way of analysing response to selection in experimental or non-
experimental settings, from a Bayesian viewpoint. The end-point of the analysis



is the construction of a marginal posterior distribution of a measure of selection
response which, in this study, was defined as a linear function of additive genetic
values. The marginal distribution can be viewed as a weighted average of an
infinite number of conditional distributions, where the weighting function is the

marginal posterior distribution of variances and other parameters, which are not
necessarily of interest. The approach relies heavily on the result (Gianola and
Fernando, 1986) that if the data on which selection was based are included in the
analysis, the Bayesian approach accounts for selection automatically, in the sense



that the joint posterior or any marginal posterior distribution is the same with or
without selection. This is a particular case of what has been known as ’ignorable
selection’ (Little and Rubin, 1987; Im et al, 1989) and it implies that selection
can be ignored if the information of any data-based selection is contained in the

Bayesian model. Furthermore, inferences pertain to parameters, eg, heritability, of
the base population.

As shown with the simulated data, the marginal posterior distributions of vari-
ances and functions thereof are often not symmetric. This fact is taken into account
when computing the marginal posterior distributions of measures of selection re-
sponse. In this way, the uncertainty associated with all nuisance parameters in the
model is taken into account when drawing inferences about response to selection.
This is in marked contrast with the estimation of response that is obtained using
BLUP with an animal model, which assumes the variance ratio known, and gives
100% weight to an estimate of this ratio.

The analysis of the simulated data used uniform distributions for the fixed
effects and variance components. The choice of appropriate prior distributions
is a contentious issue in Bayesian inference, especially when these priors are

supposed to convey vague initial knowledge. Injudicious choice of noninformative
prior distributions can lead to improper posterior distributions, and this may not be
easy to recognize, especially when the analysis is based on numerical methods, as in
the present work. The subject is still a matter of debate and an important concept
is that of reference priors (Bernardo, 1979; Berger and Bernardo, 1992), which
have the property that they contribute with minimum information to the posterior
distribution while the information arising from the likelihood is maximized. In the
single parameter case, reference priors often yield the Jeffreys priors (Jeffreys, 1961).
The uniform prior distributions we have chosen for the fixed effects and the variance
components represent a state of little prior knowlege, but are clearly not invariant
under transformations and must be viewed as simple ad iaoc approximations to the
appropriate reference prior distributions. We have illustrated, however, that when
the amount of information contained in the data is adequate inferences are affected
little by the choice of priors. It is not generally a simple matter to decide when
one is in a setting of adequate information, and it may be therefore revealing to
carry out analyses with different priors to study how inferences are affected (Berger,
1985). If use of different priors leads to very different results, this indicates that the
information in the likelihood is weak and more data ought to be collected in order
to draw firmer conclusions.

The richness of the information that can be extracted using the Bayesian
approach is at the cost of computational demands. The demand is in terms of

computer time rather than in terms of programming complexity. However, an
important limitation of iterative simulation methods is that drawing from the
appropriate posterior density takes place only in the limit, as the number of draws
becomes infinite. It is not easy to check for convergence to the correct distribution,
and there is little developed theory indicating how long the Gibbs chain should be.
The rate of convergence can be exceedingly slow, especially when random variables
are highly correlated, which is the case with animal models. Further, there is often
a possibility that the Gibbs sequence may get ’trapped’ near zero which is an

absorbing state, in which case one must reinitialize the chain (Zeger and Karim,



1991). Gibbs sampling convergence is an area of active research where a number of
partial answers based on pragmatic approaches have been suggested. These include
checking for serial correlations, monitoring the behavior of several series of runs of
the chains starting from a wide range of initial values and checking both within-
and between-series variation (Gelman and Rubin, 1992). Another possibility, given
a Gibbs sample of size m, is to vary the length of the sequence and to overlay plots
of the estimated densities to see if these are distinguishable (Gelfand et al, 1990).
Convergence can probably be accelerated if correlated random variables (such as
additive genetic values in animal models) are blocked together, at the expense of
having to sample from multivariate conditional distributions (Smith and Roberts,
1993). In general though, selection experiments are scarce and expensive, and the
cost of the additional computation needed for carrying out the Bayesian analysis
in often marginal relative to the whole cost.

The great appeal of this method is that it yields a Monte-Carlo estimate of a full
marginal posterior distribution of a parameter of interest, from which probabilities
that the parameter lies between specified values can be easily computed. This
is particularly relevant in the case where the asymptotic normality of posterior
distributions is difficult to justify, which can often be the case in selection experi-
ments. The pictorial representation of marginal posterior distributions, and the
associated possibility of making precise probability statements, provide for a very
rich inferential framework. Errors incurred when estimating a posterior density by
Monte-Carlo methods can be made arbitrarily small by increasing the chain length
in the Gibbs sampling, at least in principle.

The Bayesian analysis can also be useful to study the design of selection exper-
iments. The literature on experimental design relies heavily on assumptions such
as absence of nuisance parameters and knowledge of base population parameters.
Studies about the use of animals models in selection experiments have concentrated
on analysis rather than design issues. This is partly because in a frequentist set-
ting it is difficult to compute the sampling variance of the estimator of response,
especially when variances used as priors have been estimated from the data at
hand. Using the Bayesian approach, a variety of designs could be studied and their
efficiency compared by means of analyses of predictive distributions.
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