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Summary - Mean squares and mean crossproducts between and within sires were

simulated to investigate the bias in genetic R2 (defined as the square of the multiple
correlation between a single trait and (q - 1) other traits calculated from an estimate
of the genetic covariance matrix) from balanced half-sib designs. Approximate prediction
equations for this bias were derived when the population correlation was zero. In that case
the bias is, approximately, inversely proportional to the degrees of freedom for estimating
sire components and the reliabilities of the (implicit) progeny test, and proportional to
(q-1). Using a genetic multiple regression based on a large number of traits and/or a small
number of sires could lead to loss in response to selection relative to using a regression
based on the true population parameters.
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Résumé - Biais de la corrélation génétique multiple (RZ) dans un plan expérimental
avec demi-frères. Des carrés et des co-produits moyens entre pères et intra-père ont été
simulés pour étudier le biais du RZ génétique (défini comme le carré de la corrélation

multiple entre un caractère et (q - 1) autres caractères calculée à partir d’une estimée
de la matrice des covariances génétiques), dans des schémas expérimentau! équilibrés
comprenant des demi-frères. Des équations approximatives de prédiction de ce biais ont été
établies dans le cas d’une corrélation nulle dans la population. Dans le cas, le biais est à

peu près inversement proportionnel aux degrés de liberté d’estimation des composantes
paternelles, à la précision de l’épreuve de descendance (implicite), et proportionnel à
(q - 1). Si on utilise une régression génétique multiple basée sur un grand nombre de
caractères et/ou un petit nombre de pères, on s’expose à une perte de réponse à la sélection
par rapport à l’utilisation d’une régression basée sur les vrais paramètres de la population.

régression génétique / biais / corrélation multiple / REML / schéma demi-frères



INTRODUCTION

In animal breeding, some traits are difficult or impossible to measure on animals
that we want to select. For example, traits may be sex-limited (eg, litter size in

pigs, milk production in dairy cattle), or animals may be too old by the time the
trait is expressed (eg, herdlife in dairy cattle).

One way to predict these traits of interest is by using a regression on traits that
are easier to measure. Such traits may be physiological predictors, genetic markers,
or general traits which are cheaper or easier to measure (eg, type traits in dairy
cattle to predict herdlife). In practice, the regression will most likely be a genetic
regression, ie predicting the estimated breeding value (EBV) of the trait of interest
from EBV of other traits. The use of multiple genetic markers to predict some
quantitative trait is also a form of multiple (genetic) regression.

One parameter which summarizes the precision of the genetic regression is the
multiple genetic correlation p9, or rather its square, p9, which is more convenient to
use. We define R9 as an estimate of p9. However, it is well known that the estimate
(R2) of the squared multiple correlation coefficient (p2) from phenotypic regression
is biased (Fisher, 1924). The aim of this study is to investigate the behaviour of R9 9 2
for balanced half-sib designs. For given population structures, intensity of selection,
and relative economic values, p9 determines the responses to selection (eg, Sales and
Hill, 1976). Hence by investigation of the behaviour of R9 we can also give examples
of the consequences for selection response. 
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METHODS

Throughout we assume multivariate normality of observations.

Phenotypic regression

We have q traits in total, N observations, and predict the kth trait from (q - 1)
other traits. Fisher (1924, 1928) and Wishart (1931) showed that:

where

p2 = square of population multiple correlation,
F = a hypergeometric function,

and

For p2 = 0,



If the population correlation is not zero, approximations to the mean and
variance of R2 are

Genetic regression

Simulation

Between (B) and within (W) sire matrices of mean squares and mean crossproducts
of order q were simulated by sampling from independent Wishart distributions,

where n is the number of progeny per sire, s is the number of sires, dfw = s(n - 1),
and dfb = (s - 1). E is the within-sire residual covariance matrix, and It is the
between-sire (genetic) covariance matrix. An estimate of the sire covariance matrix
(which is one-fourth of the genetic covariance matrix) is

Parameter estimates were forced to be in the parameter space (ie genetic cor-
relations between -1 and 1, and heritabilities between 0 and 1) by attenuating
estimates. First G and W were diagonalised,

The eigenvalues of G, Di, correspond to canonical heritabilities, h2 ci = 4Di/(Di+1).
If canonical heritabilities were < 0 or > 1, between- and within-sire covariance
matrices were attenuated as

If hflj < 0 then It = {dfW + dfb(1 + nDi)}/{dfW + dfb}, and D! = 0 + 6, with 6 a
small positive number (eg, 10-6). If h;i > 1, then -i’ = 3/4!2, and D* = 1/4or
with (j2 = !4dfw/3 + 4dfb(i + nDi)/(n + 3)1/fdfw + dfbl. These modified variances
were derived by assuming h!i = 0 (or h!i = 1) and re-estimating the variances
from the mean squares (analogous to Thompson, 1962). This restriction procedure
is similar to REML algorithms which force the estimates to be in the parameter
space (eg, Calvin, 1993). The main reason for choosing the described restriction
procedure was to reduce the amount of computing.

Without loss of generality, assume that we wish to predict trait 1 from the other
(q&mdash;1) traits (the predictors) using estimates of the genetic and residual covariances
matrices, p2 is defined as



with -q¡ Is = vector of sire covariances between trait 1 and (q - 1) other traits, with
element tJhsi (i = 1, ... , q &mdash; 1)

- q¡ = sire covariance matrix for the (q - 1) predictors, with elements !52!
(i=1,...,q-1; = 1,... , q - 1)

’!/!11 = sire variance of the trait of interest

Similarly, the estimate of p’ is defined as

with gll the estimated sire variance of trait 1, gls the estimated sire covariance of
trait 1 with the other traits, and Gs the estimated sire covariance matrix among
the (q-1) other traits. Both p’ and Rg are independent of whether the (estimated)
sire (co)variances or the (estimated) genetic (co)variances are used.

For each set of parameters, simulation was stopped when the standard error of
the mean R’ was less than 0.005 (corresponding to a standard error of less than
0.5% in the tables).

Prediction

As in Sales and Hill (1976), we use a Taylor series about the true parameters to
approximate the mean of Rg. Rg is a function of u = q(q + 1)/2 parameters,

Assuming E( Gij) = Wij gives,

For the special case of pg = 0 (and 1Jt1s = 0), and assuming that It is diagonal,

with W!! element (1[/-1 hk. If we further assume that all (q-1) predictors have equal
genetic variance, ie v(GS22) = v(GS!!), then E(Rg) ! (q-1)v(Gsxx)/(!xx’tl!m). From
multivariate theory, the variance of the covariance from a Wishart distribution is
known (eg, Anderson, 1958, p 161). If (df)M - Wishart(df, E), then v(M2!) _
(aaaj j +a/, ) /df, with E(Mg ) =Qi!. Hence,



E(!)!(g-l){[!!)+!(W!)]/!}/(!!ii)=(g-l)[l/{(a-l)!!LiR!p}
+{(1 - REL1)(1 - RELp) I / ls(n - i )RELpRELI 11 [6]

with REL! = n/(n + A), A = (4 &mdash; /!.!)//!, and REL!, the ’reliability’ pertaining
to the (q - 1) predictors. (The definition of RELj is a standard expression of the
reliability of a progeny test with n progeny and heritability h§ . ) If s(n-1) is large,
then the simplest approximation to Rg is

These approximations are appealing because of their similarity to !3!. (NB: [6]
and [7] reduce to (q-1)/(s-1) for large n.) Equation [7] indicates that the expected
value of the estimate of p2 is approximately the number of variates used in the
genetic regression divided by the ’effective number of sires’.

In some cases, for example when we deal with genetic markers, the heritabilities
of the (q &mdash; 1) predictors, and their correlations with each other, may be known a
priori. If the covariances among the predictors are zero, and their heritabilities are
equal, then, after some algebra,

Equation [8] suggests an adjusted estimate of pg,

RESULTS

Examples for phenotypic RZ 2

In table I, the exact mean and standard deviation of R2 are given for various
combinations of p2, q and N (using results from Wishart (1931)). As was shown
in the previous section, these values correspond to the limiting case of very large
progeny group sizes in half-sib designs. For most combinations the bias in R2 is
small, although for relatively few observations (N = 10Q and N = 200) and a large
number of traits (q = 10 and q = 20), the bias and standard deviation of R2 can be

large. For example, when p2 = 0 and q = 20, the mean and standard deviation of
R2 ( x 100) for N = 100 are 19.2 and 5.5 respectively (table II). Even for N = 400,
the mean R2 is nearly 0.05.

Examples for R9 when p2 = 0

In table II, simulation results, and their predictions, are shown for various combi-
nations of s, q, and n. The predictions were made according to (6!, using population



parameters. In all cases the heritability of all traits was 0.25. In general, predictions
and simulation results agreed reasonably, although for small n and s, and large q,
the prediction tends to be too low. For example, for s = 100, q = 20 and n = 25,
the average R2 from simulation was 0.93, whereas the prediction was only 0.49.

Predicting herdlife from type traits

Various authors have found associations between type traits and herdlife or survival
in dairy cattle (eg, Rogers et al, 1988; Brotherstone and Hill, 1991; Boldman et al,
1992; Short and Lawlor, 1992). Most analyses were from sire models with many
type traits analysed simultaneously. A typical value for the heritability of functional
herdlife (= HL = herdlife adjusted for milk production) is 0.05. Equation [7] was
applied to the situation where (functional) herdlife is predicted from a range of type



traits, with h2 of herdlife of 0.05 and h2 of type traits of 0.30. Average predicted
Rg ( x 100) for p2 = 0, q = 20 and n = 50, were 61.9, 30.8, 15.4, 7.7 and 3.8 for
s = 100, 200, 400, 800, and 1600, respectively.

In practice the EBV for milk yield may be combined with the EBV for herdlife
(predicted from EBV of type traits) in an overall selection index. The efficiency of
such an index was investigated using results from Short and Lawlor (1992). Their
estimated genetic and phenotypic covariance matrices of HL and 15 type traits
(hence, q = 16) for grade Holsteins were assumed to be the population covariance
matrices. For each simulation, the estimated covariance matrices (with s = 1400
and n = 33) were used to create a selection index combining milk with HL. It
was assumed that the h2 for milk yield was known (h2 = 0.25), and that milk
yield and HL were independent (it is a separate issue what the correlation between
adjusted herdlife and milk yield really is, since the adjustment is usually at the
phenotypic level). Further assumptions were that the selection index was based on
50 progeny for milk yield and type traits, and that relative economic weights of
milk/HL were 2:1 (in genetic standard deviation units). These results are presented
in table III. The (assumed) genetic pg was 0.37, which follows directly from the
results from Short and Lawlor (1992). The average Rg from simulation was 0.81,
with a proportion of 0.58 of the simulated genetic covariance matrices that were
attenuated. The optimum selection index (using population covariance matrices)
resulted in a correlation between index and goal (rIH) of 0.813. The achieved r!
was on average 0.795, and the predicted rIH (assuming the estimated covariance
matrices are the true ones) was 0.82 (table III). Hence, although the genetic Rg 9 2
was severely overestimated, the loss in response was small (0.795/0.813 = 0.978
efficiency). Ignoring type traits altogether gives an rIH of 0.785. Finally, using a
selection index with milk yield and HL itself results in rIH = 0.826.

DISCUSSION

For half-sib population structures, average R2obtained from simulation and from
prediction equations were compared for different number of sires, number of traits,
and number of progeny per sire. In general, there was good agreement, although



with a large number of traits (q) and small number of sires (s), average R2 from
simulation were larger than predicted. The reason for this is 2-fold. First, ligher
order terms from the Taylor series which are not taken into account are likely to be
proportional to q2, so that the prediction would be too low. Second, for combinations
of large q and small n, the probability of non-positive-definite matrices and hence
attenuation is higher (Hill and Thompson, 1978). After attenuation, the assumption
of E(G) = B11 is not valid anymore, and the prediction will be out. For s = 100,
q = 20 and n = 25, including higher order terms in the prediction (terms not
shown) gave a predicted Rg of 0.58.

In table IV simulation results are presented separately for those replicates
whose estimated covariance matrices were attenuated, and for those for which
no attenuation was required (ie G = (B - W)/n). For nearly all combinations
of parameters, the average Rg was nearly 1.0 for when covariance matrices were
attenuated. This can be explained as follows: when the (B - W) is non-positive-
definite, a linear combination of all traits exists with zero genetic variance, and,
therefore, any single trait may be predicted from a linear combination of all other
traits with an accuracy of unity. Consider the bivariate case when the linear
combination llyl + 12y2 has zero variance, Var(llyl + 12Y2) = a + 2cov + b = 0.
Hence, cov = &mdash;(a+b)/2, and r = -(a+b)/2(ab)1!!. The last term is always < -1,
unless a = b. Hence, on the original scale, the correlation between yl and y2 is < -l,
which will be forced to -1, and the resulting R2 will be 1.0. The same principle
holds when for more than 2 traits, ie when y2 itself is a linear combination of more
than 2 traits.

This has implications for inferences drawn from REML estimation, because most
REML algorithms in practice do require estimates to be within the parameter space.
Therefore, one should be very cautious in drawing inferences about functions of
parameter estimates (such as R!) from large estimated covariance matrices.



Because the mean Rg depends on whether covariance matrices are attenuated, a
refinement of the prediction equations is to predict the proportion of estimates for
which this occurs. This was beyond the scope of this study, but Hill and Thompson
(1978, and references therein) addressed that issue.

Meyer and Hill (1983) found large losses in response for s = 100, n = 4(8) and 2
or 4 traits of equal importance when estimated covariance matrices were used in a
selection index. Losses in response were much smaller when ’bending’ was applied
to the between-sire covariance matrix.

Overestimation of the multiple correlation coefficient from a multiple regression
of (estimated) breeding values on genetic marker scores has similarities with
the topic addressed in this study. When estimating associations between genetic
markers and quantitative traits we have to specify what kind of population the
sample is from. Usually association studies are either from populations derived from
crosses between divergent lines (or inbred lines) or within families in completely
outbred populations. When dealing with crosses from different breeds or inbred
lines, the bias in phenotypic R2 applies since linkage disequilibrium will be across
the population. For half-sib designs in outbred populations essentially the bias in
the within-sire Rz is of interest because regressions of phenotypes on markers are
within families. However, these cases are extremes. In practice, we may deal with
a population which was created by hybridization a number of generations ago,
and in that case it would not be unreasonable to look for genetic markers that
explain some of the between-sire variance. A thorough study of the bias in R2 from
using genetic markers, taking into account the discrete nature of marker scores
and linkages between markers and quantitative trait loci was outside the scope
of this study. Sales and Hill (1976) derived losses in response to selection when
including worthless marker traits in a selection index. For marker-assisted selection
in a population created by recent hybridization, re-sampling of data after choosing
an initial set of markers (Lande and Thompson, 1990) should reduce the bias in
R2. However, although the individual marker effects may be estimated without
bias in the subsequent sample (a result of Lande and Thompson’s proposal), their
combined effect, as measured by the R2, may still be biased. This could lead to
a loss in response to selection compared to using the true marker effects because
information from markers will usually be combined with phenotypic information in
a selection index so that an upward bias in the R2 from markers will result in too
much weight given to the marker information.

In general, obtaining unbiased estimates of p2 is intractable, because the mean of
Rg depends on the unknown population parameters in a complex way (ie first and
second derivatives of R2 with respect to estimates of individual variance components
in the Taylor series). In very limited cases, prior information about (co)variances
can be used to adjust R 9 2. For example, if the heritabilities for all traits are known,
and the (q - 1) predictors are known to be uncorrelated, Equation [9] can be used
to adjust R2. Table V shows simulation results using !9!. The adjustment works
well, expect for large q and small s. The reasons for the poor performance of the
adjustment for q = 20 and s = 100 are the same as before, ie higher order terms in
the Taylor series are ignored and the probability of attenuation is higher.

Although the genetic R2 for predicting herdlife may be severely overestimated,
the effect on loss in response to selection seems small. This is because the relative



economic weight for HL was assumed to be half that of milk yield, and because the
heritability of HL was small. For the example of Short and Lawlor (1992), h2 of HL
was only 0.04. Hence, even if we think we can accurately predict HL when in fact
the prediction is inaccurate, response to selection is only reduced slightly because
the prediction of HL gets a low weight in the overall selection index. Still, the loss
in efficiency (2.2% for the example) should be compared to the maximum gain
obtained by including type traits (0.813/0.785 = 3.6% extra gain in the example).
Thus, only about one-third of the maximum achievable gain was obtained. Finally,
it seems undesirable to include traits in the selection index for which the estimated

parameters may be subject to large error.

ACKNOWLEDGMENTS

This work was funded by the Marker-Assisted Selection Consortium of the British

pig industry (Cotswold Pig Development Company Ltd, JSR Farms Ltd, National Pig
Development Company, Newsham Hybrid Pigs Ltd, Pig Improvement Company, and
the Meat and Livestock Commission) and by MAFF, DTI, and the BBSRC. I thank
M Goddard for bringing the topic to my attention when we were in Melbourne (at Carlton
Place?) and for constructive comments. Thanks to R Thompson, C Haley, and B Hill for
discussions and helpful comments. Special thanks to RT for deattenuating my vocabulary.

REFERENCES

Anderson TW (1958) Introduction to Statistical Multivariate Analysis. John Wiley & Sons,
New York, USA

Boldman KG, Freeman AE, Harris BL, Kuck AL (1992) Prediction of sire transmitting
abilities for herd life from transmitting abilities for linear type traits. J Dairy Sci 75,
552-563

Brotherstone S, Hill WG (1991) Dairy herd life in relation to linear type traits and
production. 1. Phenotypic and genetic analyses in pedigree type classified herds. Anim
Prod 53, 279-287

Calvin JA (1993) REML estimation in unbalanced multivariate variance components
models using an EM algorithm. Biometrics 49, 691-701



Fisher RA (1924) The influence of rainfall on the yield of wheat at Rothamsted. Phil Trans
B 213, 89-142

Fisher RA (1928) The general sampling distribution of the multiple correlation coefficient.
Proc R Soc Lond A 121, 654-673

Hill WG, Thompson R (1978) Probabilities of non-positive definite between-group or
genetic covariance matrices. Biometrics 34, 429-439

Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement
of quantitative traits. Genetics 124, 743-756

Meyer K, Hill WG (1983) A note on the effects of sampling errors on the accuracy of
genetic selection indices. J Anim Breed Genet 100, 27-32

Rogers GW, McDaniel BT, Dentine MR, Johnson LP (1988) Relationships among survival
rates, predicted differences for yield, and linear types traits. J Dairy Sci 71, 214-222

Sales J, Hill WG (1976) Effect of sampling errors on efficiency of selection indices. 2. Use
of information on associated traits for improvement of a single important trait. Anim
Prod 23, 1-14

Short TH, Lawlor TJ (1992) Genetic parameters of conformation traits, milk yield, and
herd life in Holsteins. J Dairy Sci 75, 1987-1998

Thompson WA (1962) The problem of negative estimates of variance components. Ann
Math Statist 33, 273-289

Wishart J (1931) The mean and second moment coefficient of the multiple correlation
coefficient, in samples from a normal population. Biometrika 22, 353-361


	INTRODUCTION
	METHODS
	Phenotypic regression
	Genetic regression
	Simulation
	Prediction


	RESULTS
	Examples for phenotypic RZ 2
	Examples for R2g when p2g = 0
	Predicting herdlife from type traits

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

