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Abstract — Estimates of sire design power for QTL mapping experiments obtained
using three different methods of algebraic approximation were analysed by comparing
them with the results of data simulations. Even when the binomial probability that
any number of sires out of the total number of sires are jointly heterozygous at the
marker and the QT loci was taken into consideration, the algebraic approximations
overestimated powers. However, they could be used to rank designs differing in the
number of sires if the total size of the experiment is given. The results were discussed,
focusing on the assumptions made about the number of informative offspring, the
balance between the two offspring sub-groups which receive the same marker allele
from the sire and the distribution of the statistic. Given that a full algebraic approach
would be computationally costly, data simulation can be considered a useful tool in
estimating the power of QTL detection sire designs. (© Inra/Elsevier, Paris

QTL/ power/ simulation/ protocol design

Résumé ~ Calcul de la puissance de détection de QTL dans un modéle « pére ».
Trois méthodes analytiques pour I'estimation de la puissance du protocole fille pour la
détection des QTLs a l’aide d’un marqueur flanquant ont été étudiées en comparaison
avec des résultats obtenus par simulation. Ces estimations sont surestimées, méme
quand est prise en compte la distribution de probabilité du nombre de péres double
hétérozygotes au marqueur et au QTL. Cependant, elles peuvent étre utilisées pour
classer des protocoles de fagon relative, a taille de population totale fixée. Les résultats
sont discutés en référence aux hypotheses sur le nombre de descendants informatifs, la
balance entre les descendants selon ’allele marqueur regu de leur pére, et la nature des
distributions. Compte tenu du coat numérique élevé d’un calcul analytique complet,
les simulations demeurent un outil efficace pour l'estimation de la puissance de ces
protocoles de détection de QTL. © Inra/Elsevier, Paris
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1. INTRODUCTION

The use of genetic markers to locate genes whose polymorphism partly
explains the genetic variability of quantitative traits was proposed by Sax (3]
and further detailed by Neimann-Sgrensen and Robertson [2] and others. The
principle is to identify, in the offspring of an individual, those which received
one or other of the two chromosomal fragments surrounding the marker in
question. If a quantitative locus is located on this fragment, and if the parent
is heterozygous at both the marker and QTL (quantitative trait locus), then
a systematic difference is observed between the two sub-groups of progeny.
With the development of molecular markers based on DNA variations, the
application of these ideas has become feasible on a large scale particularly in
livestock populations, where large families are routinely recorded. The design
of such experiments has been studied in detail by a number of authors, in
particular Soller and Genizi [4] and Weller et al. [6]. In order to optimize
these designs, it is necessary to estimate their power. Focusing on simple
population structures, Soller and Genizi [4], as well as Weller et al. [6],
approached this power estimation considering fully balanced populations, and
using approximate distributions of the test statistic. In these early papers,
markers were studied one by one, and the test statistics applied were simple
ANOVA methods, modelling trait means as linear combinations of sire and
marker within sire effects. In their approximation, these authors worked with
the asymptotic x? or normal approximation of the F statistic, and considered
simply the mean contrast averaging different possibilities for the sire and
offspring genotypes at the QT and marker loci. The power of such designs,
as well as more complex experiments involving two or three generations and
mixing half- and full-sib families, was further studied by van der Beek et al.
[5]. In their paper, these authors considered the mixture of sub-populations, as
characterized by the number of heterozygous sires at the QTL, rather than the
mean.

Alternatively, the estimate of the design power may be obtained by sim-
ulating heterogeneous populations and applying studied test statistics to the
generated sets of data, without any approximation, but at the expense of more
computing time. This approach was followed by Le Roy and Elsen [1] in a study
addressing the relative value of ANOVA and maximum-likelihood methods for
QTL detection.

The aim of this study is to evaluate the validity of approximate sire design
power estimates, by comparing three algebraic methods with simulating data.

2. HYPOTHESES AND COMPARED METHODS

2.1. Hypotheses

Powers were calculated for a single marker analysis. Multiallelic marker loci
(with na = 4 alleles) were studied. Alleles M; were assumed to be distributed
with frequencies in a geometric series (f; = f, fo = af, f3 = a?f,..., with
f =1/(1+a+c?...)). In this situation, the parameter a was obtained, given the
mean heterozygosity of the marker (E(fhm)), solving the equation E(fhm) =
1 — (e 1)?/(Z;a'~1)% This marker was supposed to be totally linked to
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the QTL. The design was organized with np half-sib families comprising no
progenies per sire. mp was the expected number of sires for which a marker
contrast can be computed, i.e. the expected number of heterozygous sires at
the marker locus, and Ip, the expected number of heterozygous sires at both
marker and QT loci. mo was the expected effective family size, i.e. the mean
number of offspring per sire for which the marker allele received from the sire
is identified. This effective family size is linked to the allele frequencies by
the relation: mo = X;;2f; f;(1 — 0.5(f; + f;))/Z:;2fi f;. The first type error «
(accepting a linked QTL when it does not exist) was fixed at 1 %.

2.2. Compared methods

The following three approximations were studied.

1) The approximation used by Weller et al. [6]: in this approximation, only
mean sire and daughter numbers were considered. The power was given by
Pl = P[F(NC(lp), mp, mp(mo —2)) 2 f], where F(NC(lp),mp, mp{mo — 2))
is a non-central F variable with a non-centrality parameter NC(lp) and mp
and mp(mo — 2) degrees of freedom. The threshold f corresponds to the
(1 — a) percentile of the central F' distribution. The NC(Ip) is computed
as: NC(lp) = IpE*(MC)/SE*(MC), where E?(MC) is the square of the
expectation of a marker contrast and SE?(MC) is the square of the standard
error of the marker contrast. If a sire is heterozygous at the QTL, then
E?(MC) = GE?*(1 — r)?, where GE? is the square of the gene effect and r
the recombination rate between the marker locus and the QTL. For a half-sib
family SE is calculated as (4 — h?)/mo where h? is the polygenic heritability
of the trait (within QTL genotype).

2) The approximation followed by van der Beek et al. [5]: in this approxima-
tion, the variability in number of heterozygous sires at the QTL is considered.
The power was given by:

P2= 3" Pr(zp/mp)P[F(NC(zp),mp,mp(mo - 2)) > f]

zp=0

where zp is the number of heterozygous sires at the QTL and Pr(zp/mp) is the
binomial probability that zp out of mp (the expected number of heterozygous
sires at the marker locus) are heterozygous also at the QTL.

3) An approximation where variation at both the sire marker and the QT
loci are considered. The power was given by:

np yp
P3= " Pr(yp/np) > Pr(ap/yp)P[F(NC(zp),yp,yp(mo —2)) > f]
yp=0 zp=0

where yp is the number of heterozygous sires at the marker locus and Pr(yp/np)
is the binomial probability that yp out of np sires are heterozygous at the
marker locus.

4) In order to test the reliability of the three algebraic methods above, the
design power was also estimated by simulating data and applying the standard
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F test. For each power calculation 10000 replicates were used under the null
and the alternative hypotheses. The variance ratio for the classic hierarchical
ANOVA was calculated as:

‘yi(ziMl—zihfz)Q/( 1 )

nip1 M2

i=1
yp
yp
E (i1 + ninz) — 2yp
z =1
yp [niM1 niM2
— 2 = 2
E z (zinik — Zin1)* | + E (zin2k = Zinr2)
=1 k=1 k=1

where Z;ary (resp. Zimor) are the quantitative performances of the jth
daughter of an heterozygous M1M2 sire i, which received marker allele M1
(resp. M2), and n;prq (resp. miare) is their number. The power was estimated
by the ratio between the number of replicates under the alternative hypothesis
whose statistic exceeds a certain threshold and the total number of replicates.
The threshold was the (1 — a) percentile of the 10 000 replicates under the null
hypothesis. Thus, no assumptions about the distribution of the statistic were
made.

3. RESULTS

Table I reports the power estimates of sire designs with a half-sib family
structure for a gene effect (GE) of 0.5 or 1 phenotypic standard deviation (o,,),
for various numbers of sires, for two total experiment sizes (tno equal to 500 or
1000 daughters), for a constant polygenic heritability h? of 0.25 and assuming
a recombination rate (r) of 0. Expected heterozygosities at both loci, marker
and QT, are assumed to be 0.5. Four alleles are segregating at the marker locus
with frequencies 0.664, 0.229, 0.079 and 0.028. Note that the total heritability
(including the variation at the QTL) equals 0.375 if GE = 0.5, 0.75 if GE = 1.0.
It is shown that when the gene effect is one half o}, and the total experiment
size is 500 daughters, the three algebraic methods give similar results and,
considering that the power is low in this situation, these approximations only
slightly overestimated the power as compared to the simulated data. The results
for the same GE but with a total experiment size of 1 000 daughters, confirm
that no significant differences exist between algebraic methods except when
the number of sires is low in which case P1 greatly overestimated the power.
The overestimation of algebraic methods with respect to simulations is more
important here than it is with a total experiment size of 500 daughters.

As regards the GE of 1.0 o,,, when the total experiment size is 500 daughters
algebraic results continued to overestimate power except for P3, when the
number of sires is equal to 2, in which case P1 gives particularly high power
compared to the other algebraic and simulation methods. For a total experiment
size of 1000 daughters, P1 greatly overestimated power for any considered
number of sires, while P2 and P3 give results more similar to simulated data.
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Table I. Powers (P1, P2, P3, P4) and expected effective family sizes (mo) of
experiments with a half-sib family structure for marker and QT loci that both have
0.5 expected heterozygosity, for two total experiment sizes (tno), two gene effect
values (GE) expressed in phenotypic standard deviation units and various numbers
of families (np).

tno GE np mo P1 P2 P3 P4
500 0.5 2 152 0.36 0.36 0.32 0.25
4 76 0.27 0.29 0.28 0.18
6 51 0.21 0.23 0.23 0.14

8 38 0.18 0.19 0.19 0.10
10 30 0.16 0.17 0.17 0.10

12 25 0.14 0.15 0.15 0.08
14 21 0.12 0.13 0.13 0.07
16 19 0.11 0.12 0.12 0.07

18 16 0.10 0.10 0.10 0.06
20 15 0.10 0.10 0.10 0.06

1.0 2 152 0.97 0.51 0.44 0.44
4 76 0.94 0.72 0.66 0.56

6 51 0.90 0.75 0.72 0.54

8 38 0.87 0.75 0.72 0.49

10 30 0.84 0.74 0.72 0.49

12 25 0.80 0.72 0.70 0.43

14 21 0.76 0.70 0.68 0.40

16 19 0.74 0.69 0.67 0.40

18 16 0.70 0.65 0.64 0.37

20 15 0.69 0.65 0.64 0.36

1000 0.5 2 305 0.72 0.49 0.43 0.39
4 152 0.61 0.55 0.51 0.38
6 101 0.54 0.50 0.49 0.32
8 76 0.48 0.47 0.46 0.30

10 61 0.44 0.43 0.42 0.27
12 51 0.40 0.40 0.39 0.26
14 43 0.36 0.37 0.36 0.25
16 38 0.33 0.34 0.34 0.21
18 34 0.31 0.32 0.32 0.20
20 30 0.29 0.30 0.30 0.20
1.0 2 305 1.00 0.51 0.44 0.44

4 152 1.00 0.75 0.69 0.68
6 101 1.00 0.87 0.82 0.74
8 76 1.00 0.91 0.87 0.79
10 61 1.00 0.92 0.90 0.79

12 51 1.00 0.93 0.91 0.81
14 43 0.99 0.93 0.92 0.81
16 38 0.99 0.94 0.92 0.78
18 34 0.99 0.94 0.92 0.77

20 30 0.99 0.94 0.92 0.77

Polygenic h? = 0.25; r = 0.
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Power estimates for a constant total experiment size and number of sires
(1000 and 10, respectively), for two GE values (0.5 and 1 ¢,,) with various
expected frequencies of heterozygosity at the marker locus (E(fhm)) and at
the QTL (F(fhq)) are shown in table I1.

Table II. Powers (P1, P2, P3, P4) of experiments with ten half-sib families and
a total experiment size of 1000 daughters for different expected frequencies of
heterozygosity at the marker (E(fhm)) and QTL (E(fhg)) loci and for two gene
effect values (GE) expressed in phenotypic standard deviation units.

E(fhm) E(fhqg) GE Totalh®> mo Pi P2 P3 P4

0.25 0.10 0.5 0.275 53  0.03 0.04 0.04 0.02
0.20 0.300 0.06 0.07 0.08 0.02
0.30 0.325 0.10 0.11 0.12 0.04
0.40 0.350 0.14 0.14 0.16 0.04
0.50 0.375 0.19 0.18 0.21 0.06
0.10 1.0 0.350 0.14 0.16 0.18 0.06
0.20 0.450 0.36 0.30 0.32 0.11
0.30 0.550 0.58 0.42 0.45 0.17
0.40 0.650 0.75 0.54 0.56 0.21
0.50 0.750 0.86 0.64 0.65 0.26
0.50 0.10 0.5 0.275 61  0.05 0.07 0.07 0.05
0.20 0.300 0.12 0.15 0.15 0.09
0.30 0.325 0.21 0.24 0.24 0.17
0.40 0.350 0.32 0.33 0.33 0.22
0.50 0.375 0.44 0.43 0.42 0.29
0.10 1.0 0.350 0.32 0.33 0.32 0.25
0.20 0.450 0.73 0.56 0.55 0.42
0.30 0.550 0.93 0.73 0.71 0.60
0.40 0.650 0.99 0.85 0.82 0.70
0.50 0.750 1.00 0.92 0.90 0.80
0.75 0.10 0.5 0.275 75 0.08 0.11 0.12 0.13
0.20 0.300 0.23 0.25 0.26 0.27
0.30 0.325 0.42 0.39 0.41 0.41
0.40 0.350 0.60 0.53 0.55 0.56
0.50 0.375 0.74 0.66 0.68 0.67
0.10 1.0 0.350 0.60 0.45 0.46 0.47
0.20 0.450 0.96 0.72 0.73 0.72
0.30 0.550 1.00 0.87 0.87 0.86
0.40 0.650 1.00 0.94 0.95 0.94
0.50 0.750 1.00 0.98 0.98 0.97

Polygenic h% =0.25; 7 = 0.

When GE is equal to 0.5 and E(fhm) is low (0.25-0.5) the differences
between algebraic methods are negligible and there is evidence that the
overestimation of algebraic methods tends to become more important as
E(fhq) increases. Algebraic results are more realistic when E(fhm) is 0.75
which corresponds to equal frequencies (0.25) for the four alleles at the marker
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locus. The same trends can be pointed out for a GE of 1 ¢,. Nevertheless, in
this case P1 tends to estimate higher powers than other algebraic methods and
the differences between simulations and algebraic methods become very large.

4. DISCUSSION/CONCLUSION

These results showed that important differences exist between power calcu-
lated with algebraic approximations and simulating data. Even if the binomial
probability that any number of sires out of the total number of sires are jointly
heterozygous at both the marker and the QT loci is taken into account, as
in the P3 method, algebraic approximation cannot always be used to estimate
the power of different sire designs for QTL detection when the total experiment
size is given. However, even though they overestimate power, P2 and P3 could
be used to rank designs differing in the number of sires when the total size of
the experiment is given. On the contrary, it seems to be inadequate not to in-
clude the binomial probability and to use the expected number of heterozygous
parents also in order to optimize the choice of the number of sires mainly when
the total experiment size is given, the gene effect is large and the expected
frequencies of heterozygotes at the marker and at the QT loci are close to 0.5.

The same conclusions can be drawn from an analysis carried out considering
a diallelic marker locus (unpublished data).

Probably, part of the difference between the algebraic and simulation results
can be attributed to assumptions made about the number of informative
offspring per sire, the balance between the two offspring sub-groups which
receive the same marker allele from the sire, and the distribution of the statistic.

As regards the distribution of the statistic, it should be noted that the use of
x? distribution instead of F' did not significantly change the algebraic estimates
obtained in this work (unpublished data).

All in all, it would be programming and computing costly to consider all
eventualities concerning the offspring sub-group sizes using a full algebraic
approach. Thus, simulating the data can still be considered in these situations
as the most useful tool for estimating the power of QTL detection sire designs.
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