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Abstract - Two methods are presented that use information from a large population
of commercial animals, which have not been genotyped for genetic markers, to

calculate marker assisted estimates of breeding value (MA-EBV) for nucleus animals,
where the commercial animals are descendants of the marker genotyped nucleus
animals. The first method reduced the number of mixed model equations per
commercial animal to one, instead of one plus twice the number of marked quantitative
trait loci in conventional MA-EBV equations. Without this reduction, the time taken
to solve the mixed model equations including markers could be very large especially if
the number of commercial animals and the number of markers is large. The solutions
of the reduced set of equations were exact and did not require more iterations than
the conventional set of equations. A second method was developed for the situation
where the records of the commercial animals were not directly available to the
nucleus breeding programme but conventional non-MA-EBVs and their accuracies
were available for nucleus animals from a large scale (e.g. national) breeding value
evaluation, which uses nucleus and commercial information. Using these non-MA-
EBV, the MA-EBV of the nucleus animals were approximated. In an example, the
approximated MA-EBV were very close to the exact MA-EBV. &copy; Inra/Elsevier, Paris
marker assisted selection / breeding value estimation / quantitative trait loci /
DNA markers

Résumé - Évaluation génétique assistée par marqueurs quand l’information sur
les marqueurs est rare. On présente deux méthodes d’utilisation de l’information
provenant d’une grande population d’animaux commerciaux, non typés pour des
marqueurs, en vue de l’évaluation génétique d’animaux typés dans les noyaux de
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sélection qui sont à l’origine des populations commerciales. La première méthode
limite à une seule équation du modèle mixte pour chaque animal commercial au lieu de
une plus deux fois, le nombre de loci marqués, quand on utilise les équations classiques
du BLUP assisté par marqueurs. Ceci permet de réduire substantiellement le temps
de calcul quand le nombre d’animaux commerciaux et le nombre de marqueurs sont
grands. Les solutions de ce système réduit sont exactes et ne demandent pas plus
d’itérations que le système classique d’équations. La seconde méthode est proposée
quand les données des animaux commerciaux ne sont pas directement accessibles
aux sélectionneurs du noyau de sélection alors que leurs évaluations classiques (non
assistées par marqueurs) le sont. Ces évaluations tiennent alors compte des données
des animaux du noyau et hors noyau. Dans ce cas, la méthode est approchée. Sur un
exemple, cette approximation a été trouvée très proche de l’évaluation exacte assistée
par marqueurs. &copy; Inra/Elsevier, Paris
sélection assistée par marqueurs / évaluation génétique / loci à caractères
quantitatifs / marqueur à ADN

1. INTRODUCTION

Fernando and Grossman [3] presented a method to calculate the best
linear unbiased predicted-estimates of breeding values (BLUP-EBV) using the
information that DNA markers are linked to a quantitative trait locus ((aTL).
Goddard [4] extended the method to the use of flanking marker information.
Although, these methods are relatively easy to use, the number of equations
rapidly becomes large when there are many animals. Even with only one marked
QTL, there are three equations per animal: two estimating both gametic
effects at the QTL and one for the polygenic effect (the joint effect of the
background genes). Every extra marked QTL increases the number of equations
per animal by two. Moreover, when the flanking markers are close to the
QTL, the probabilities of double cross-overs become small and the equations
close to singular, and thus difficult to solve [13]. Meuwissen and Goddard
[8] avoided these singularity problems by assuming a negligible probability of
double recombinations within the flanking markers.

As genetic markers become more frequently used in comnrercial breeding
programmes, the situation will commonly arise where only a small fraction of
the animals have been genotyped. The phenotypes of non-genotyped animals
may, however, be vital to the calculation of the effects of marked QTL as,
for instance, in a granddaughter design where only bulls are genotyped but
only cows are phenotyped. Calculation of two QTL effects for each marker for
many non-genotyped animals is wasteful and may inhibit the implementation
of marker assisted selection. Hoeschele [7] greatly reduced the number of equa-
tions in very general population structures, but this method is complicated
and therefore difficult to apply in practice, mainly because it eliminates as

many equations as possible. A more simple breeding structure such as a geno-
typed nucleus and non-genotyped commercial population structure can greatly
simplify the elimination of equations. In some situations the organisation con-
trolling the nucleus breeding programme may not have access to the records
on commercial animals but may still need to include this information in the
calculation of marker assisted EBVs (MA-EBVs) on nucleus animals.



The aim of this paper is to present a method that reduces the number of
marker assisted breeding value estimation equations in a population where the
nucleus animals are marker genotyped and the commercial animals are not
genotyped. The reduction mainly eliminates the equations of non-genotyped
animals. Furthermore, an approximate method of calculating MA-EBVs on
nucleus animals is presented, which uses only the conventional non-MA-EBVs
of nucleus animals from a national genetic evaluation to represent the data
from commercial animals.

2. METHODS

2.1. Reducing the number of equations

The population was split into nucleus and commercial animals. Here, the
definition of a commercial animal is: an animal that is not marker genotyped
and has no descendants that are genotyped. The nucleus animals are all
marker genotyped animals plus their ancestors. The method will still work
if a commercial animal is erroneously considered as a nucleus animal, although
the number of equations will not be reduced for such an animal. The method
will fail, however, if a nucleus animal is erroneously considered as a commercial
animal. For simplicity we ignored fixed effect equations, but including them is
straightforward. Similarly, we assumed here only one marked QTL, since the
inclusion of more marked QTL is straightforward. Partitioning the population
into nucleus and commercial animals, the model can be written as:

where yi (y2) is the vector of phenotypic records of nucleus (commercial)
animals; al (a2) is the vector of polygenic effects of nucleus (commercial)
animals; ql is the vector of marked QTL effects of the nucleus animals; q2 (q3)
is the vector of paternally (maternally) derived QTL effects of the commercial
animals; el (e2) is the vector of environmental effects of nucleus (commercial)
animals; Zl is the incidence matrix of polygenic effects of nucleus animals; Z2
is the incidence matrix of QTL effects of the nucleus animals; and Z3 is the
incidence matrix of polygenic effects of the commercial animals. Note that Z3
is also used as the incidence matrix of the paternally and of the maternally
derived QTL effects of the commercial animals, because these effects have the
same incidence matrix as the polygenic effects of the commercial animals. The
Z2 matrix can differ substantially from Zl when the inheritance of QTL effects
is traced from parent to offspring by the markers [8]. In order to solve the
BLUP equations, we need the inverses of the (co)variance matrix of [a’ a’]
and of [q’ q’ q’], which are obtained using the methods of Quaas [10, 11! and
Fernando and Grossman !3!, respectively.

In order to reduce the number of equations of the commercial animals, the
’reduced animal model’ approach of Quaas and Pollak [12] was adopted. This
approach was also used by Cantet and Smith [2] and Bink et al. [1] to absorb



the equations of non-parents in a model with QTL and polygenic effects. We
re-write equation (1) as:

where U2 ! az + qz + q3. For the mixed model equations that follow from
equations (2), we need the inverse of the (co)variance matrix of [a’ q! 1 U/ 2 1.
Following Quaas [10, 11!, we will assume that the animals within the nucleus
and within the commercial are sorted from old to young. Next, we write every
element of [at 1 qf 1 uf 2 in terms of its ’parental’ elements plus an independent
deviation from the ’parental’ elements, where ’parental’ elements denote the
ai, ql or U2 elements of the parents of the current animal:

where P is an indicator matrix of the parents of ai, such that Pij = 0.5 if

animal j is a parent of animal i, and otherwise Pij = 0; Q2! = B2! if QTL, is with
probability Oij a direct copy of QTL,, where QTLJ was one of the two ’parental’
QTL alleles of QTL,, with ’parental’ denoting that QTLj was involved in the
Mendelian sampling process that resulted in QTLI, and for all other i and j:
Qij = 0; Rij = 0.5 if nucleus animal j is a parent of commercial animal i, and
otherwise Ri! = 0; Si! = 0.5 if one of the two QTL of commercial animal i is a
direct copy of the nucleus gamete j with a probability of 0.5 (the probability is
always 0.5 because commercial animals are not marker genotyped), otherwise
Sj = 0; Tij = 0.5 when commercial animal j is a parent of i, otherwise Tij = 0.

The elements of El, E2 and E3 are all independent, unless the markers are not
completely informative, i.e. it is not always possible to trace which marker is
inherited from the sire and which from the dam. In the latter case, the elements
of E2 may be correlated and the method of Wang et al. [14] can be used to set
up (the inverse of) the (co)variance matrix of the QTL effects of the nucleus
animals. The calculation of the (co)variance matrix of the QTL effects of the
nucleus animals becomes even more complex when ancestors of nucleus animals
have missing marker genotypes; however, for this situation, Wang et al. provide
an approximate method to set up the (co)variance matrix of QTL effects. We
will ignore these complications of obtaining the inverse of the (co)variance
matrix of the QTL effects of the nucleus animals here, because the method
that is used to obtain the inverse of this (co)variance matrix does not affect
the setting up of the inverse of the (co)variance matrix of the u2 equations. This
is because the situation of uninformative marker information and ungenotyped
ancestors of genotyped animals did not occur within the group of commercial
animals, since none of the commercial animals were genotyped.

Let the variance of the polygenic effects be denoted by Qa and the variance
of the QTL effect of one gamete be denoted by o, q, 2 then their variances are:



where Dl is a diagonal matrix with Diii equal to Qa, 0.75Qa or 0.5Qa when
no, one or both parents are known of nucleus animal i, respectively; D2 is a

diagonal with D2ii equal to a) or 2Bi!(1 - 0g )a) when gamete i is a founder

gamete or is derived from gamete j with probability Bi! !3!, respectively; and
D3 is a diagonal with D3ii equal to Qu, 0.75Qu or 0.5u!, when no, one or both
parents of commercial animal i are known, respectively, where 0’ = a2 + 2Qq.
Next we solve equation (3) for v’ = [a’ q’ u’] to obtain:

Taking variances on both sides yields,

Finally the inverse of Var(v) is G-1 which is obtained as:

Similar to Quaas (10, 11!, the following rules can be found to set up G-1.
1) For the polygenic effects of the nucleus animals part of G-1: follow Quaas’

rules (multiply by I/or2 to account for the different variances in different parts
of G-1).

2) For the QTL effects of the nucleus animals part of G-1: follow the rules
of Fernando and Grossman [3] (multiply by 1/Q9).

3) For the genetic effects, u2, of commercial animal i:
- if both parents are unknown: add 1/Qu to position (i, i);
- if one parent s is known with QTL alleles al and a2 add to the indicated

positions:



If there are no equations for the QTL alleles al and a2, i.e. s was a commercial

animal, the additions to their positions are cancelled, and the additions simplify
to the original rule of Quaas [10, 11!;

- if both parent s and d of animal i are known with QTL alleles al and a2
of s and alleles a3 and a4 of d, add to the indicated positions:

If there are no equations for the QTL alleles ai, a2, a3 and/or a4 the
additions to their positions are cancelled. When all alleles ai, a2, a3 and/or
a4 have no equations, the additions simplify to the original rule of Quaas
[10, 11].

As can be seen from the above additions, the commercial animals add the
same values as in Quaas’ rules to the elements of their parents, but if the

parents are nucleus animals these values are added to their polygenic and QTL
effects.

After setting up the G-1 matrix, we can set up and solve Henderson’s [6]
mixed model equations:

and Qe is the environmental variance.
These equations will yield exact solutions of the estimates of polygenic (al )

and QTL effects (ql) of the nucleus animals, and of the sum of the polygenic
and QTL effects of the commercial animals (u2) (unless approximations have
to be applied for setting up the (co)variance matrix of the QTL effects of the
nucleus animals owing to missing marker genotypes of ancestors of nucleus
animals). A small example of the calculation of the G-1 matrix is given in
Appendix A.

2.2. The use of conventional EBV to predict MA-EBV

In the case of cattle breeding schemes especially, the commercial animals
may not be owned by the breeding organisation and this organisation may not
have access to the phenotypic information of the commercial animals. However,
BLUP breeding value estimates and their accuracies may be available from a



national breeding value evaluation. We would like to use this information to
improve the accuracy of the marker assisted breeding value estimates in the
nucleus. This problem is similar to that of incorporating AI sire evaluations
into intraherd breeding value predictions by Henderson (5!, and our approach
will therefore also be similar to that of Henderson.

The first step is to absorb the commercial animal equations into the nucleus
equations, which will reveal which information from the commercial animals is
needed. The full mixed model equations are [writing out equations (8) and (5)]
see (8bis) in the following page.

Absorption of the commercial animal equations (uz) yields equation (9),
shown in the following page, where B = D-’ - D3l(I - T)(Z3Z3 + (I -
T/)D3l(I - T)]-l(I - T/)D3l, and b = D3l(I - T)(Z3Z3 + (I - T/)D3l(I-
T)]!Zgy2. Note that equation (9) reduces to the MA-EBV equations of the
nucleus animals without accounting for any information of commercial animals,
if B and b are set to zero. The term R’BR leads to additions to the equations
of the nucleus parents of the commercial animals. Similarly, S’BS leads to
additions to the equations of the QTL that are carried by the nucleus parents
of the commercial animals. Further, R’BS leads to additions to the animal *
QTL block of the equation (9) of the nucleus parents (of commercial animals)
and their QTL effects. The terms R’b and S’b result in additions to the right
hand side of the equations pertaining to the parents of nucleus animals and
their QTL effects, respectively. We will approximate these terms R’BR, S’BS,
R’BS, R’b and S’b using the results from a conventional national evaluation
of breeding values.

The solutions of EBV of nucleus animals of the conventional national
evaluation should equal the solutions from the equations of the nucleus animals
after absorption of the commercial animals. The conventional equations for
nucleus animals after absorption of commercial animals are:

where EBV is a vector of conventional EBV of nucleus animals (known from
national evaluation), M = [Z’Zl + (I - P)’D-’(1 - P)!e u!/u!], which
is the coefficient matrix of the conventional mixed model equations when
only information from nucleus animals is used (note that (I - P)/D1l (I -
P) la§ equals the inverse of the relationship matrix of the nucleus animals).
Note also that the additions R’BR and R’b are the same as those in the
MA-EBV equation (9). Hence, if we obtain approximations for R’BR and
R’b in equation (10) we can approximate equation (9). We know the EBV
and their accuracies, ri, which result from equation (10). Let the matrix
C = (M + R’BR)-1, then the diagonal elements of C are:

where A = (7 e 2/(72 U. Now it is assumed that R’BR can be approximated by a
diagonal matrix A, i.e. we find a diagonal matrix A such that:





where only the diagonal elements of C are known. The diagonal elements of
A, !ii, yield the effective number of records that should be added to a nucleus
animal i, such that the accuracy of its EBV is equal to the accuracy when the
commercial animals were included. A similar effective number of records was
derived by Henderson !5!, but in his situation the animals within the herd did
not contribute significantly to the EBV of the sire. Here, we used the following
iteration scheme to disentangle the information that came from the nucleus
animals, which is represented by the matrix M, and the information that comes
from the commercial animals, which is represented by the matrix A.

Newton’s iteration algorithm was used to calculate the diagonal matrix
A such that diag((M + 0)-1) = diag(C), where diag(X) denotes a vector
containing the diagonal elements of the matrix X. Let the vector 6 = diag(A).
The iteration scheme estimates b by:

step 1: a first approximation A[O] or, equivalently, 6[o] is obtained from:

step 2: improve 6 by Newton-Raphson iteration:

where [p] denotes the pth iteration; and H is a matrix of derivatives
of diag((M + D)-’) with respect to b, which can be shown to equal
- (M + A)-’ * (M + A)-’, where * denotes element by element multiplica-
tion.

Given the approximated mixed model coefficient matrix of the nucleus
animals after absorption of the commercial animals, M + A, an approximation
of the right hand side of equation (10), is obtained from:

where ARHS is an approximation of the term R’b in equation (10). Since,
EBV and Ziyl are known, ARHS can be calculated from the above equation.

Next we will calculate the absorbed coefficient matrix of the marker assisted
mixed model equation (9), and their right hand side. From the previous section
we concluded that we could approximate R’BRI by Dii, where Ri is the ith
column of R. The vector Ri indicates which commercial animal is an offspring
of nucleus animal i by containing a 1/2 if the commercial animal is an offspring
of i or a 0 otherwise. If al is one of the QTL alleles of nucleus animal i, the alth
column of S, Sal, contains a 1/2 if the commercial animal is an offspring of
animal i. If every nucleus animal has two unique QTL alleles, as in the model
of Fernando and Grossman !3!, it follows that Ri = Sal = Sa2, with al and a2
denoting the QTL alleles of animal i. Hence:

and, similarly,



where ax denotes al or a2. Thus, the addition D.ti to the diagonal of the
polygenic equation of the nucleus animal i should also be added to the off-

diagonal of the polygenic equation i and QTL allele equation al and a2; to the

diagonal of both QTL equations al and a2; and to the off-diagonal elements of
al and a2. And the term ARHSI should be added to the right hand side of
the equation of animal i, and of the QTL equations al and a2. In conclusion,
to account for the information of commercial animals, for every nucleus animal
i we add to the coefficient matrix of the MA equations of the nucleus animals
that ignores information of commercial animals:

where al and a2 denote the equations for the QTL effects of animal i; and we
add to the right hand side of these nucleus equations for every nucleus animal i:

Thus, the additions (11) and (12) result in an approximation of the marker
assisted nucleus equations (9) using only the EBV and accuracies to account
for the information of commercial animals.

The equality of Ri to Sa£ requires that the QTL allele a!. is only present
in one animal i. However, in the model of Meuwissen and Goddard !8!, QTL
alleles might be traced from parent to offspring with certainty, because flanking
markers were used and double recombinations were ignored. In this model
different animals may carry the same QTL allele a!, and Sax = Ei,7 Ax Ri,
where the summation is over all animals i that carry QTL allele ax. This
complication of Sax being the sum of several Ri terms does not affect the
additions in equations (11) and (12) which are due to terms that are linear
in Sax, because the correct additions are still performed as all the animals
contributing to Sax are evaluated. However, the additions to the QTL allele
* QTL allele block of equation (11), are due to second order terms of Sax,
which implies that more off diagonal terms of the absorption matrix B have
to be added. We will ignore these extra off diagonal terms of B, which are due
to the second order terms of Sa,!, and perform the additions as described in
equation (12), which adds another level of approximation to this method.

In the above, the fixed effect structure of the nucleus animal data was
ignored, but can be accounted for by absorbing the fixed effect equations
into the equations of the nucleus animals, i.e. the matrix M would be the
conventional mixed model coefficient matrix after absorption of fixed effects.
Alternatively, if absorption of fixed effects is computationally too demanding,
the following steps can be undertaken to account for fixed effects:

step 1: approximate O.Li as in the forementioned Newton algorithm, except
that



(M + ![1’]) -1 is replaced by the animal * animal block of:

where X is the design matrix of the fixed effect structure of the nucleus data;
step 2: if the fixed effect solutions are not available from the national breeding

value evaluation, solve for the fixed effect solutions, /3, using:

step 3: calculate ARHS using:

The above methods that account for fixed effects assume that different fixed
effects are estimated in the nucleus than in the commercial animals, which will
be the case in most situations. A brief example of the use of non-MA-EBV in
the estimation of MA-EBV of nucleus animals is given in Appendix A.

2.3. Simulation

A data set was simulated to test whether the reduced number of marker as-
sisted mixed model equations indeed yielded the same solutions as the original
full set of equations, to compare the number of iterations needed to solve the
reduced set of equations and the original equations (which might be more diag-
onally dominant), and to test the approximate absorption of all equations for
commercial animals. The data set resulted from five generations of simulation
of a nucleus and a female commercial population, where the nucleus animals are
selected on conventional BLUP-EBV, and the unselected commercial females
are mated to the selected sires of the nucleus. The parameters of the simulated
data set are presented in table I. MA-EBVs were calculated in a manner similar
to that of Meuwissen and Goddard [8] in which it is assumed that if markers
cannot trace the inheritance of QTL alleles from parent to offspring, then the
QTL allele inherited is treated as equally likely to be either of the two alleles in
the parent (the possibility that a segregation analysis of the marker data might
improve this prediction, was ignored). The probability that the markers could
not trace the inheritance of the QTL was assumed to be 0.1, which occurred in
158 instances in the nucleus. In these instances a new QTL effect was postu-
lated and estimated. Including the 400 founder QTL effects (= 2 * 200 founder
nucleus animals), the number of QTL effects of nucleus animals was 558. The
commercial animals were not marker genotyped and so no QTL effects could be
traced. If no equations were eliminated, this would result in 10 000 (= 2 * 5 000
commercial animals) commercial QTL effects.

The equations were solved by Gauss-Seidel iteration. The convergence
criterion was:



where SS is the sum of squares of the deviations of the left hand side from the

right hand side of the equations; SST is the sum of squares of the solutions. The
number of iterations needed to reach this convergence criterion is a (imperfect)
measure of how easily the equations could be solved. This measure is not perfect
because the solution vectors of both methods are not the same, and SS may be
small while the solution vector is still far from the exact solution.



3. RESULTS

Table II shows the results of the EBV calculations. Without any reduction in
the number of equations, the total number of equations is: 16 558 (6 000 animal
and 10 558 QTL effects). When the QTL equations of the commercial animals
were eliminated, the number of equations was reduced by 10 000. In practice,
this figure will often be much larger, because the commercial population will be
much larger than in the simulation. Furthermore, the number of iterations that
was needed to reach the convergence criterion, was smaller with the reduced
set of equations. This suggests that the reduced set of equations was not any
harder to solve than the original large set of equations. The solutions to both
sets of equations were virtually identical (result not shown), except that the
reduced set did not yield estimates of individual QTL effects of commercial
animals. If the estimates of the QTL effects of the commercial animals were
required, they could be obtained by back solving (see Appendix B). Table III
shows the results of the approximate method using conventional EBV of nucleus
animals to estimate the MA-EBV of the nucleus animals. When we want to

predict the total breeding value of the animals, ui, the use of conventional EBV
of nucleus animals, instead of the phenotypes of commercial animals, leads to
very accurate predictions of MA-EBV in the simulated data set. The predictions
of the individual QTL effects, qi, were also accurate, i.e. the correlation and

regression is close to 1. In this approximate method the number of equations
was only 1 558.

4. DISCUSSION

4.1. Reduction in the number of equations

A simple method was presented that reduced the number of equations
of non-marker genotyped commercial animals from three to one, where the
latter equation estimates the total breeding value (polygenic plus QTL) of the
commercial animals. The reduction in the number of equations was large when
the number of commercial animals was large, and the reduced set of equations
was not any harder to solve (table 11).



An alternative to this method is the use of a reduced animal model [1, 2!,
which would eliminate equations for commercial animals only if they are

not parents. Thus the method presented eliminates more equations than the
reduced animal model approach but less than Hoeschele (7!. The importance
of using the data on commercial animals when calculating MA-EBVs for the
nucleus animals is illustrated by the case of a granddaughter design where
all phenotypic data come from the commercial granddaughters. The method
proposed could be used in a national genetic evaluation where the number of
additional equations would be proportional to the size of the nucleus.

Extension of the method to more marked QTL is straightforward. Let the
parental QTL alleles of the first marked QTL be denoted by ai, az (a3, a4),
and those of the second marked QTL by bl, b2 (b3, b4), where the elements
between the brackets are needed when a second nucleus parent is known. Now
extra rows and columns for bl, b2 (b3, b4) are augmented to the additions in
equations (6) and (7), where the values in the augmented rows and columns
are the same as those in the rows and columns of ai, a2 (a3, a4). Also, the
off diagonal elements between aj and bh are the same as those between al
and a2 for all j and k. Hence, with n marked QTL, the number of equations
of commercial animals reduces from 2n, + 1 to just one. In many marker
assisted selection schemes, there may also be many nucleus animals that are
not genotyped, namely the old ancestors of the nucleus that were born before
marker genotyping started. Some cryo-conserved semen of old sires may still
be available for genotyping, but many old ancestors will remain non-marker
genotyped. In situations, where the old ancestors result in a computationally
unmanageable number of equations, the approach of Hoeschele [7] eliminates all
QTL equations of non-genotyped ancestors that are not on a genetic pathway
between two marker genotyped animals. Although more difficult to apply, this
method can result in a substantial reduction in the number of QTL equations of
non-genotyped ancestors. In the present simulated data set, all nucleus animals
were genotyped and a further reduction in the number of equations was not
obtained by using the approach of Hoeschele (7!.

The rules presented for setting up the G-1 matrix, did not account for the
inbreeding of the animals. If inbreeding is not negligible, Quaas’ [10, 11! rules
can be used to account for inbreeding in the nucleus animal * nucleus animal
part of the G-1 matrix, which results in reducing the elements of the D1 matrix

by a fraction equal to the average inbreeding coefficient of the parents. Also,
Wang’s [14] method accounts for inbreeding, where the inbreeding coefficient
is calculated at the QTL given the marker information. In the equations of the
commercial animals, the average inbreeding coefficients can be accounted for by
reducing the o,2 term in additions (6) and (7) by a fraction equal to the average
inbreeding coefficients of the parents. The latter will be slightly biased because
the average inbreeding coefficient of the parents will be different at the QTL.
This bias can be corrected by using a weighted average inbreeding coefficient,
where the conventional inbreeding coefficient averaged over the parents, the
inbreeding at the QTL of the sire, and that at the QTL of the dam, are weighed
in proportion to their variances, i.e. or 2,a2and QQ, respectively.



4.2. Use of conventional EBV to predict MA-EBV

A method was developed that uses the information of conventional EBV of
nucleus animals and their accuracies instead of the data on commercial animals
to increase the accuracy of MA-EBV of nucleus animals. In the simulated
data set, the approximate MA-EBV, which used conventional EBVs, were
very close to the original MA-EBV based on the full set of equations which
used the phenotypic records from the commercial animals. The method was
also tested in a granddaughter design !15!, where a genotyped grand sire has
genotyped sons which have conventional EBVs based on daughter records. In
this situation, the prediction of the QTL effects of the sons and the grand
sires was identical to when the original records of the daughters had been
used (result not shown). This method could be used by a breeding organisation
controlling the nucleus breeding programme without including any information
on commercial animals. The method can be compared to the use of daughter
yield deviations to represent data on the (commercial) daughters of a nucleus
bull. However, this method uses all commercial descendents of a nuclear animal
(via its conventional EBV) and avoids double counting of the information from
descendents in the nucleus. The method could be extended for QTL detection
studies based on REML estimation of the variance due to a QTL, bracketed
by the markers.

The approximate method to incorporate EBVs from the commercial animals
into the nucleus MA-EBV is similar to the use of foreign EBV in the national
evaluation of a country. Except that the foreign EBV calculation does (almost)
not use local information, such that the foreign EBV yield independent extra
information. Hence, the accuracy of the foreign EBV can be directly converted
into an effective number of records (or daughters) that is added to the diagonals
of the coefficient matrix, and into deregressed proofs, i.e. extra records (or
daughters) are invented that contain the information of the foreign EBV.
Here, the situation was more complicated because the conventional EBV of the
nucleus animal already contained the information of the commercial animals,
which made it more difficult to determine the extra information.

The calculation of the MA-EBV using conventional EBV of commercial
animals relies strongly on the accuracy of the conventional EBV. In the present
simulation study, the accuracies were calculated by inversion of the conventional
mixed model matrix, i.e. exact accuracies were used. In the case of a national
evaluation of EBV, the number of equations is too large for direct inversion and
the accuracies have been approximated. These approximations are often good
(e.g. !9!). However, poor approximations of the accuracies of the conventional
EBV will probably reduce the accuracies of the MA-EBV substantially. In any
case, the method presented here seems to make as much use as possible of
the conventional EBV of national evaluations to improve the accuracies of the
MA-EBV of the nucleus animals.
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APPENDIX A

An example illustrating the calculation of the inverse of the genetic
covariance matrix, G, for the reduced set of equations

The pedigree and marker genotypes of five animals are given in table AI. The
marker genotype of animal 5 is unknown, and this animal has no descendants
with known marker genotypes. Hence, given the definition in the main text,
animal 5 is a commercial animal, and its QTL allele equations will be absorbed.
Let the polygenic and QTL allelic variance be equal to one, i.e. Qa = Q9 = 1,
and a = ol2+ 2a) = 3. The first step is to set up the inverse of the polygenic-
nucleus animal part of the genetic covariance matrix, G-1, where the nucleus
animals are 1, 2, 3 and 4. This part of the G-1 matrix is obtained by using
Quaas’ rules [10, 11!:



The second step is to set up the QTL effects part of the G-1 matrix. For

simplicity, we will assume here that the recombination rate between the marker
and the QTL is zero. (This situation is similar to the situation where flanking
markers are used to trace the QTL alleles, and the double recombination rate
is assumed negligible.) Because the recombination rate is zero, the inheritance
of the QTL alleles is identical to that of the marker alleles, i.e. there are four

QTL alleles ql, q2, q3 and q4, and the presence of marker allele Ax also indicates

the presence of QTL allele q!, where x = 1, 2, 3 or 4. The QTL allele part of
the G-1 matrix is calculated using the rules of Fernando and Grossman [3] or
Wang et al. !14!, and yields an identity matrix here because the QTL alleles
ql, q2, q3 and q4 are all founder alleles. After this step, the polygenic and QTL
allele part of the nucleus animals of the G-1 matrix is:

The third step is to add the equations for the commercial animals to nucleus
animal equations using additions (6) or (7) of the main text. Here, only animal
5 is a commercial animal and it has both parents known (namely animals 3 and
4) such that addition (7) applies. Note that 1/Qu is 1/3, such that the complete
G-’ matrix for the reduced set of equations is:



Use of conventional EBV to predict MA-EBV

Let us consider again the example of table AI, and make use of the conven-
tional non-MA-EBV that are calculated for all animals, but are only available
on the nucleus animals 1-4 together with their accuracies. These EBVs and
their accuracies are calculated assuming an error variance of Qe = 3. The first
step is to obtain a first approximation of the extra information due to the
commercial animals by calculating b[ol = diag(C-1) - diag(M), where the ith
diagonal element of C-’ is !/(1 - r?), with A = U2/0,2 = 1; and M is the
coefficient matrix of the conventional animal model equations for the nucleus
animals:

Hence, 6[o] = diag(C-1)-diag(M) _ [-0.6326 -0.6326 -0.2222 -0.2222]’.
In step 2 we first set up the H - matrix of derivatives of diag((M + !) -1 )

with respect to 6:

where 0!!! = a diagonal matrix with the elements of 6!0! on the diagonals. Next
we calculate:

The update of 6 is now obtained from:

After three more updates of 6 by equations (A2) and (A3) the values of 6
converged to [0.03 0.03 0.36 0.36!’, which are equal to the A, in addition (11).

Next we set up the marker assisted mixed model equations of the nucleus
animals, without accounting for the commercial animals, upon which the ad-
ditions (11) will be performed. The inverse of the genetic (co)variance matrix



of these equations is obtained from (Al), such that the coefficient matrix of
these equations is:

where Zl is the design matrix of polygenic effects, i.e. a (4 * 4) identity matrix;
Z2 is the design matrix of the QTL effects, i.e. Z2 = [1 1 0 0; 0 0 1 1; 1 0 1 0;
0101]; and the factor 3 is due to Qe = 3. Using the estimates of 6 or,

equivalently, Aii, we next perform the additions in equation (11) to obtain
the coefficient matrix of the mixed model equations that does account for the
information of commercial animal 5:

Next, the polygenic * polygenic part of these equations, i.e. the (1:4, 1:4)
block, should be multiplied by the non-MAS-EBV (see table AI) to obtain the
new right hand side. This new right hand side deviates from the original hand
side, i.e. Z!y, by ARHS = [0.03 -4.03 0 4.36]’. This ARHS is used to perform
additions (12) to obtain the right hand side of the MA-mixed model equations
of the nucleus animals:

The solutions from the coefficient matrix (A4) and the right hand side (A5)
are [0.887 - 0.887 0.177 0.823 - 0.759 1.20 - 0.20 - 0.241]’, which are the
estimates of the polygenic and QTL effects of the nucleus animals 1-4, using
the information of the commercial animal 5.



APPENDIX B

Back-solving for the QTL effects of the commercial animals in the
reduced set of equations

The reduced set of equations yields estimates of v’ = [a! ql u2! (see text).
Given the estimate V, we can solve for the Mendelian sampling components:
s = Vv, where V and E are defined in equation (4). The equations of the
commercial animals yield no information to separate the Mendelian sampling
components of the u2 effects, E3, into the components due to QTL effects and
due to polygenes. Hence, the splitting of these components is proportional to
their variance components, i.e.

where e31 and e32 are the Mendelian sampling components of a2 and q2 effects
of the commercial animals, with q2 denoting the QTL effects sorted such that
the paternal QTL effect of an animal is always followed by its maternal QTL
effect. Next the estimates of a2 and q2 are obtained by solving:

where S* (T*) is matrix with element (i, j) equal to half, if nucleus (commercial)
QTL, is a ’parental’ QTL of commercial QTLi, and zero otherwise; al and ql
are known from the MA-EBV evaluation of the reduced set of equations; the
elements of a2 and q2, which are needed in the right hand side of the above
equations, have been calculated before they are needed when the animals are
sorted from old to young within these vectors.
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