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Abstract - Recently, regression of phenotype on marker genotypes was described for
quantitative trait loci (QTL) mapping in F2 populations and shown to be equivalent to
regression interval mapping (RIM). In this study, regression on markers was extended
to half-sib designs with uncertain marker allele transmission, and properties of QTL
parameters were examined analytically. In this method, offspring phenotypes are first
regressed on the probability of transmission of a given allele from the common parent
at flanking marker loci. Resulting regression coefficients can then be interpreted based
on an assumed genetic model. With presence of a single QTL in the marker interval,
it was shown that expected values of regression coefficients for the flanking markers
contained all information about position and effect of the QTL and were independent
of the probability of marker allele transmission. Through simulation, it was shown
that regression of phenotype on marker allele transmission probabilities is equivalent
to RIM under the same assumed genetic model. Regression on marker genotypes is
computationally less time consuming than QTL interval mapping, as it eliminates
the need to search for the best QTL position across marker intervals. This can form
the basis for more efficient methods of analysis with more complex models, including
threshold or logistic models for the analysis of categorical traits. &copy; Inra/Elsevier,
Paris

genetic marker / QTL mapping / half-sib design

Résumé - Détection de QTLs dans des familles de demi-frères par régression sur
des marqueurs avec transmission allélique incertaine. Récemment, la régression
des phénotypes sur les génotypes pour les marqueurs a été décrite pour la détection
de loci de caractères quantitatifs (QTL) dans des populations F2. Elle a été montrée
équivalente à la détection sur intervalles par régression (RIM). Dans cette étude, la
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régression sur les marqueurs a été étendue aux schémas demi-frères avec transmission
incertaine des allèles aux marqueurs et les propriétés des paramètres concernant les
(aTLs ont été examinées analytiquement. Dans cette méthode, les phénotypes de la
descendance ont été d’abord régressés sur la probabilité de transmission d’un allèle
donné issu du parent commun à des loci de marqueurs flanquants. Les coefficients
de régression résultant peuvent alors être interprétés à partir d’un modèle génétique
supposé. En présence d’un seul QTL par intervalle de marqueurs, on a montré que
les valeurs espérées des coefficients de régression pour les marqueurs flanquants
contenaient toute l’information à propos de la position et de l’effet du QTL, et
étaient indépendantes de la probabilité de transmission des allèles aux marqueurs.
Par simulation, on a montré que la régression du phénotype sur la probabilité de
transmission des allèles aux marqueurs est équivalente au RIM avec le même modèle
génétique supposé. La régression sur les génotypes aux marqueurs demande moins
de temps de calcul que la détection de (aTLs par intervalle, parce qu’éliminant la
nécessité de chercher la meilleure position pour le QTL dans les intervalles entre
marqueurs. Ceci peut former la base de méthodes plus efficaces avec des modèles plus
complexes, incluant les modèles à seuils ou logistiques pour l’analyse des variables
discrètes. &copy; Inra/Elsevier, Paris

marqueur génétique / détection de QTL / schéma demi-frères

1. INTRODUCTION

Identification and mapping of genes affecting quantitative traits, so-called
quantitative trait loci or QTL, based on genetic markers has gained much
importance in animal and plant genetics in recent years. The main goal behind
identifying and mapping QTL is to accelerate genetic progress with the use of
information on identified QTL (e.g. [9]). Earlier studies used a single marker
approach to detect QTL linked to a marker (e.g. !11!). Lander and Botstein [7]
proposed a method to map QTL using two DNA markers that flank a genomic
region (so-called interval mapping). Later studies (e.g. [5]) showed that the
effect and position of a QTL are confounded in single marker methods and
suggested the use of the interval mapping method of Lander and Botstein [7]
to overcome this problem. Now, interval mapping of QTL is widely applied in
livestock populations based on a variety of statistical methods.

Regression interval mapping (e.g. [3]; henceforth abbreviated to RIM) is
based on a genetic model that assumes that a QTL is located in the marker in-
terval. In RIM, phenotypic observations for the quantitative trait are regressed
on the probability of offspring inheriting a given QTL allele from a common
parent in half-sib designs (e.g. [6, 8, 12!) or from a given parental line in back
cross and F2 designs (e.g. [3]), conditional on a hypothetical position of the
QTL in the marker interval. The analysis is repeated for a range of assumed lo-
cations of the QTL along the marker interval (grid search). Estimates from the
location that gives the minimal residual sum of squares (RSS) are considered
to be the best estimates.

Wright and Mowers [14] proposed multiple regression on genetic markers
to estimate QTL effect in F2 designs, which will henceforth be referred to
as marker regression mapping (MRM). In contrast to RIM, MRM does not
require assumptions about a genetic model in the process of statistical analysis
but phenotypic observations are regressed on variables that code which marker
allele has been transmitted to offspring, instead of on the probability of the



offspring inheriting a specific QTL allele given QTL position. The resulting
estimates of regression coefficients on marker alleles can then be interpreted
based on an assumed genetic model. In F2 designs, Wright and Mowers [14]
showed that the sum of partial regression coefficients on flanking markers
provides an unbiased estimate of the effect of an additive QTL in the marker
interval when interference is complete and when there are no QTL in adjoining
marker intervals (isolated QTL). Without complete interference, however, some
bias is introduced.

Whittaker et al. [13] showed that the information contained in the regression
coefficients on flanking markers in F2 and back-cross designs is in fact equivalent
to that provided by the conventional regression interval mapping of Haley
and Knott [3]; with no interference, estimates of QTL position and effect

equivalent to those obtained from RIM can be derived as non-linear functions
of regression coefficients on flanking markers. Whittaker et al. [13] considered
two situations for multiple marker, multiple QTL models: first, isolated QTL,
where a marker interval containing a single QTL is flanked by marker intervals
devoid of QTL and second, non-isolated QTL, where flanking marker intervals
also contain QTL. They showed that, with no interference, expected regression
coefficients from a multi-marker multi-QTL model are equivalent to expected
regression coefficients from a two-marker single QTL model for markers that
flank an isolated QTL. Specifically, Whittaker et al. [13] showed that the partial
regression coefficients for markers that flank an isolated QTL depend only on
the effects of the QTL in that interval and not on effects at other QTL, as effects
of those QTL are accounted for by simultaneous fitting of markers external to
the interval. For non-isolated QTL, Whittaker et al. [13] showed that it is

impossible to uniquely map two additive QTL in adjoining intervals but that
it is possible to map non-isolated QTL if at least one QTL has non-additive
effects. The main advantage of MRM for QTL mapping is that estimates are
obtained from a single simple linear regression analysis on markers and there
is no need for a grid search as in RIM.

Wright and Mowers [14] and Whittaker et al. [13] assumed that transmission
of marker alleles from parent to offspring was known with certainty, which is
often not the case in half-sib designs. Also, in F2 or backcrosses between outbred

lines, transmission of marker alleles from parental lines may not be known
with certainty (4!. In such situations, only a probability statement can be made
about marker allele transmission from the parent to progeny. Progenies with
incomplete marker information must be included in the statistical analysis to
increase the statistical power and reduce bias and standard errors of estimates

[12].
The objective of this paper, therefore, was to extend the MRM method of

Whittaker et al. [13] to QTL mapping in a half-sib family, with emphasis on
uncertain marker allele transmission. Simulation was used to validate methods
and to compare MRM to QTL mapping based on RIM.



2. MATERIALS AND METHODS

2.1. The genetic and experimental model

A sire that is heterozygous at two marker loci, 1 and 2, that flank a biallelic
QTL is considered. With sire genotype - Mi i - Q i - M2 1 - / - M12 - Q2 - M22 - ,
the QTL is located with recombination rates rl and rz from marker loci 1 and

2, respectively. Rates rl and rz are unknown. The recombination rate between
marker loci 1 and 2 is 0 and is assumed known. The Haldane mapping function
[2] is assumed such that 0 = rl + rz - 2rlrz.

The sire is randomly mated to n dams, resulting in n offspring. The sire
transmits one of four marker haplotypes hj to its offspring with frequencies
f (h!), where f (h!) is equal to (1 - B)/2 for marker haplotypes -Mll - M21-
and -M12 - Mzz-, and equal to 0/2 for marker haplotypes -Mll - Mzz-
and -Mlz - Mzl-. Which marker haplotype is transmitted from the sire
to progeny cannot always be determined with certainty, but depends on the
marker haplotype the progeny received from its dam. The available marker
information can, however, be used to compute probabilities of marker allele
transmission from the sire to its progeny. The probability of a given paternal
marker allele being present in the ith offspring, conditional on the marker
information that is available for offspring i (Si), is denoted as p(Mlk ISi) for
marker locus 1 and p(M2t I Si) for marker locus 2. Here, subscripts k (k = 1, 2)
and (P = 1, 2) refer to the paternal marker alleles at marker loci 1 and 2,
respectively. The sources of marker information included in Si could include,
besides the known recombination rate between markers, 0, marker genotypes
for the flanking markers and possibly other markers on the offspring (gi), its
sire (Ms), its dam (Md), and other relatives.

2.2. Expected phenotypic value of marker haplotypes

2.2.1. Known marker haplotype transmission

When marker allele transmission from the sire to offspring can be determined
unequivocally, the expected value of offspring phenotype given that the off-
spring received the jth sire marker haplotype can be derived under an assumed
genetic model of one QTL in the marker bracket, based on the probability that
the paternal marker haplotype carries the Q, or Q2 allele. The expected value
of offspring phenotype given marker haplotype h! is transmitted by the sire
can be derived as

Here, E(y!h!) is the expected value of offspring phenotype given paternal
marker haplotype h!, wj is the probability that the offspring received the Q,
allele from the sire conditional on inheritance of paternal marker haplotype hj,
and a is the allele substitution effect at the QTL !1!. Conditional probability wj
can be derived as wj = f (Ql, h! )/ f (h! ) where f (Q1, hj) is the joint probability
of paternal transmission of the Q, allele and marker haplotype h!. Equations
for f (Ql, h! ), f (hj) and wj are given in table L



2.2.2. Unknown marker haplotype transmission

If the paternal marker haplotype transmission is not known with certainty,
transmission probabilities can be computed for each paternal marker haplotype
based on the marker information that is available for offspring i (Si). These
probabilities, which are denoted as p(hj ISi) can then be used to derive the
expected value of the ith offspring phenotype, as shown below.

With no interference, p(h!!Si) is the product of conditional probabilities for
paternal allele transmission at each marker locus:

where k and are appropriately determined by hj.
The expected value of the phenotype of offspring i is then obtained as a

weighted sum of the expected value of each of the four possible haplotypes,
E!y!!h!)! as:

Based on the rules of probability when conditioning on the same source of
information Si, it can be shown that

Note that probabilities p(Mik [ Sz ) and p(M2RISi) are both dependent on each
others’ information (Mlk and M2R) which is included in Si. Also, note that when
probabilities p(Mlk!Si) and p(M2RISi) are equal to 0 or 1, i.e. when sire marker
allele transmission is known, then E(y2!Si) = E(y2!h!).



2.3. Expected values from regression on flanking markers

Using the expected values for phenotypes of offspring with known and un-
known paternal marker haplotype transmission, as derived above, the expected
values of coefficients of regression of phenotype on marker allele probabilities
can be derived as shown below.

Let p(Mii [Sz) =pi2 and p(M21 [Sz) = P2i-
The model for regressing phenotype on marker allele transmission probabil-

ities is

where y2 is the phenotype of offspring i, (30 is the overall mean, (31 is the

regression coefficient on marker 1, fl2 is the regression coefficient on marker 2,
ei is the error term for the ith offspring and all other terms are as described
earlier.

In matrix notation, the MRM model can be written as Y = P (3 + e, where
Y is a vector of observations on n offspring with size n x 1, P is a matrix
of size n x 3, and /3 is of size 3 x 1 with 0 = ((30 !31 /?2/. When phenotypic
observations are adjusted for the mean genetic values of parents and for all
other systematic environmental effects, the expectation of an observation y2,
with marker information Si, is equal to .E’(t/!5’t), which can be calculated using
equation (3). Based on equation (3), the expectation of the vector of adjusted
observations y can be written as a product of two matrices: E(y) = Hw where
H is a matrix of haplotype transmission probabilities of size n x 4 and w is a
4 x 1 vector with haplotype coefficients w. Based on equation (2), haplotype
transmission probabilities, p(h!!Si) can be written in terms of p(Ml!S2) = pli
and p(M21 !Si) = P2i. Equations for E(y) are:



Matrix P is given as,

Expected values of the regression coefficients can be derived based on

Derivations for E(j) in equation (7) are given in Appendix I. The resulting
elements in !(/3), after simplification, can be shown to be independent of the
paternal marker allele transmission probabilities as

Substituting formulas from table I for wj in equation (8), it can be shown
that the regression coefficients are equal to

Equation (9) proves that E(fJ) depends only on the coefficients wj and is in-

dependent of marker allele transmission probabilities p(M11!5’2) and P(M21ISi)’
In other words, -E(/3) depends only on contrasts between sire marker alleles
Mll and M12 for locus M1 and between alleles M21 and M22 for locus M2.
The expectations of marker regression coefficients are identical to those found
by Whittaker et al. [13] for F2 designs but are shown here to apply also for
half-sib family designs and with uncertain marker haplotype transmission. An
alternative proof is also given in Appendix II.

2.4. QTL location and its effect

The estimates of the partial regression coefficients fJ1 and j2 (equation 9)
contain all information to determine the position of a QTL that is flanked by
markers M1 and M2_. The absolute value of E(iJ1) will be greater than the
absolute value of E(!2) if the QTL is located closer to marker Mi, and smaller



if the QTL is located closer to marker M2. If the QTL is located at the centre of
the interval, we would expect E((31) and E(/?2) to be equal. The relative size of
the estimates of the regression coefficients /31 and /32 leads us to determine the
QTL position ri. As shown by Whittaker et al. !1_3!, estimates of QTL location
and QTL effect can be obtained by writing E((3I) and E(/32) as a ratio and
solving for ri, knowing that r1 E (0, 0.5).

Following Whittaker et al. [13], the estimate of QTL location (rl) is given
as

Once the QTL location has been estimated, !31 and fl2 can be equated to
their expectation, replacing rl with rl and solving for a. Following Whittaker
et al. !13!, a is obtained from

Note that a solution to equation (10) only exists if !1 and fl2 have the same

sign. If (31 and (32 have opposite signs, the solution for rl is undefined with
respect to presence of a single QTL within the marker interval. If Øl and j2
have the same sign, an estimate of a can be obtained from equation (11) as
,jâ2. If !31 and fl2 have opposite signs, the solution for a is undefined. When
a solution for r, exists, the sign of a can be determined, based on the signs of
/3, and /?2’ The sign for a will be negative if (31 and $2 are both negative and
positive if (31 and $2 are both positive.

2.5. Validation

In the previous section, it was proven analytically that the expectation of the
partial regression coefficients are invariable to transmission probabilities. In this
section, the analytical proof will be validated by simulation. A single sire family
with 100 half-sib progeny was simulated. The recombination rate between QTL
and the left marker, rl, was 0.3 and between flanking markers, B, was 0.4.
Expectations of offspring phenotypes given paternal marker haplotype, E(y!h!)
were then calculated using equation (1). The WjS needed for the computation of
E(y!h!) were obtained from substituting rl = 0.3, r2 = (0-rl)/(1-2r,) = 0.25
and B = 0.4 in the formulas for Wj in table I. They were: wl = 0.87500,
W2 = 0.43750, w3 = 0.56250 and w4 = 0.12500. To ensure generality, each
offspring was randomly assigned a value for the probability that it received
alleles Mn (p(Mn)) and M21 (p(M2I)) from the sire based on random draws
from a uniform (0,1) distribution. Based on these probabilities, expectations
of offspring phenotypes E(y2) were simulated using equation (3). Observations
were then regressed on sire marker allele probabilities using model [4]. The
resulting regression coefficients (from a single replicate) were /3i = 0.3125 and



j2 = 0.4375, which is identical to results obtained when substituting rl = 0.3,
rz = 0.25 and 0 = 0.4 in the formula for E(/!1) and E(fj2) in equation (9).

2.6. Comparison of MRM and RIM

2.6.1. Simulation

To compare MRM with RIM for QTL mapping, a single sire family with
500 offspring was simulated. The genome of the sire carried a pair of homologous
chromosomes with two biallelic markers with a spacing of 20 cM. A QTL
was simulated at 5, 10 or 15 cM from the left marker, which corresponds
to recombination rates of 0.04758, 0.09063 and 0.12959 with the left marker.
The sire was heterozygous at both marker loci and at the QTL, denoted as
- Mn - Ql - M21 - / - M12 - Q2 - Mzz-. Marker-QTL (MQTL) haplotypes
produced by this sire were sampled according to their expected frequencies of
transmission. Maternal marker haplotypes were sampled based on population
frequencies for Mll and M2i The marker genotype of each offspring was
generated by combining paternal MQTL with the maternal marker haplotype.

Phenotypic values of offspring were generated using the following model

where yi is the phenotypic observation on the ith offspring, u is the sire’s

polygenic effect, qi is the effect of the paternal QTL allele (Ql or Q2) inherited
by offspring i, and ei is a random residual. Residuals were sampled from

N[O, a! - (0.25Qa + 0.5a!TL)], where a§ is the phenotypic variance, Qa is the
polygenic variance and o, QTL 2 is the QTL variance in the dam population, which
was based on equal frequencies for the two QTL alleles among dams. A total
heritability of 0.25, including the QTL effect, was used. The QTL substitution
effect, a, was 0.4!!,. A total of 1000 data sets was simulated for each QTL
position. Each data set was analysed by MRM and RIM.

2.6.2. Analysis

!.6.!.1. Conditional probabilities for MRM and RIM

For RIM, the conditional probability that the QTL allele (Ql) which is
associated with marker allele Mn in the sire was transmitted from the sire
to offspring i was computed as shown in Liu and Dekkers [8]. For MRM,
computation of conditional probabilities of paternal transmission of alleles Mll i

and M21 is given in Appendix III.

!.6.2.2. Parameter estimation: RIM and MRM

For RIM, parameters (QTL location and effect) were estimated with a
search for QTL at every cM in the 20 cM marker interval (e.g. !3!). For MRM,
parameters were estimated based on the theory described earlier. For MRM,
the estimated regression coefficients (/31 and j2 ) must have equal signs to obtain
estimates of rl and a based on equations (10) and (11), respectively. Whittaker



et al. [13] suggested that estimates of regression coefficients with opposite signs
could result when i) the data do not support the presence of a single QTL in
the marker interval, ii) the data support the presence of two QTL with opposite
signs in the interval, and iii) the data suggest that a QTL is located outside
the marker bracket. With regard to possibility iii), if the QTL is estimated to
be outside marker 1, Rl will have a greater absolute value than /32. Similarly, if
the QTL is estimated to be outside marker 2, j2 is expected to have a greater
absolute value than /31, When data suggest that a QTL is outside the marker
bracket, the estimate of rl by MRM will be negative or greater than 0 or be
undefined. In this situation, RIM would show minimum RSS at one of the
marker loci because the search with RIM is limited to the marker bracket.

Based on the above and to allow comparison of results from MRM with
results from RIM, the QTL was positioned at one of the markers based on
the largest absolute value of /31 and 02 when regression coefficients from MRM
had opposite signs: the QTL was located at M1 if 11311 ! 1021 and at M2 if

1011 < 1,621. The estimate of the QTL effect was obtained as JI&21 based on
equation (11). Note that this approach was applied only if regression coefficients
had opposite signs in a given replicate. Forcing the QTL to lie at one of the
markers is analogous to RIM, for which the QTL is located at a marker when
the estimate of location falls outside the marker bracket.

2.6.!.3. Test of significance for presence of a QTL

For MRM, a likelihood ratio (LR) test statistic was obtained as for RIM by
computing:

where n is the total number of offspring in the half-sib family, R6’5’red is the
residual sum of squares when fitting only an overall mean and Rssfun is the
residual sum of squares when the full model was fitted (equation (4)).

For RIM, table values cannot be used for significance testing because the
model is fit at multiple positions (e.g. (6!). With regression on markers, only
a single model is fit and, hence, table values should apply. For completeness,
however, significance threshold values were determined empirically for both
MRM and RIM from data generated under the null hypothesis.

3. RESULTS

3.1. QTL location and effect

Empirical means and standard deviations of marker regression coefficients
for MRM are given in table II for different QTL positions. Equal values for !31
and j2 were as expected for a QTL that is located in the centre of the marker
bracket (10 cM). For other QTL locations (5 and 15 cM), the marker that is
closer to the QTL has a greater value for regression coefficient than the other
marker.



Empirical means and standard deviations of estimates of QTL position and
effect from MRM and RIM are given in table III. Estimates of QTL location
from MRM and RIM were not significantly different and had a correlation close
to unity (0.999) for all situations. Both RIM and MRM resulted in unbiased
estimates of rl when the QTL was located at the centre of the marker bracket
but were significantly biased towards the centre of the marker bracket when
the true QTL location was off centre (5 and 15 cM). This bias is as expected,
because we are forcing estimates to lie within the interval, in which there is
more room for error to the right (or left) of the true location, resulting in
the observed bias. For MRM, 38, 33 and 38 % of replicates had estimates of
marker regression coefficients with opposite signs when the QTL was located at
5, 10 and 15 cM, respectively. For RIM, the estimate of QTL position was at a
marker for 40, 35 and 40 % of replicates, for QTL positions of 5, 10 and 15 cM,
respectively. This indicates that MRM and RIM have similar frequencies of
locating the QTL within the marker bracket. Estimates of QTL effects did not
significantly differ between RIM and MRM and had correlations equal to 0.969,
0.980 and 0.970, for QTL located at 5, 10 and 15 cM, respectively. Estimates
of QTL effects were unbiased for both RIM and MRM.

3.2. Significance threshold values and power

Values of the LR test statistic were very similar for RIM and MRM under the
alternate hypothesis and had correlations of 0.993, 0.997 and 0.996 for QTL
located at 5, 10 and 15 cM, respectively. Two sets of empirical significance
threshold values were determined for RIM and MRM for each simulated QTL
location: the first set (unrestricted) was derived from 10 000 replicates under the
null hypothesis irrespective of existence of a solution for QTL position under
MRM. The second set of significance thresholds (restricted) was determined
only from replicates for which estimates of QTL position and effect existed
under MRM. The purpose of this restriction was to limit analyses to replicates
for which the estimates of QTL position was inside the marker interval. To
obtain the restricted significance thresholds, 50 000 replicates were run, of
which only 9 765, 9 750 and 9 803 had useable solutions for QTL located at
5, 10 and 15 cM, respectively. This is as expected because data sets under the



null hypothesis are simulated with no QTL in the marker interval. Significance
threshold values for RIM were obtained from the same replicates as used for
MRM. Resulting threshold values are given in table IV.

Restricted threshold values were similar for MRM and RIM (table I t!. Un-
restricted threshold values were similar to restricted threshold values for MRM
but smaller than restricted threshold values for RIM. For MRM, unrestricted
and restricted threshold values were higher than table values for x( !10! but
were close to x2 table values (table 1!. For RIM, unrestricted significance
threshold values were higher than table values for xf but lower than table val-
ues for x2. However, restricted significance threshold values for RIM were close
to x2 table values. Correlations of LR test statistics for RIM and MRM under



the null hypothesis were 1.000 when based on the restricted data sets. The
empirical power to detect the QTL was also calculated based on the two sets of
significance threshold values and are given in table V. The power of RIM and
MRM was significantly different when based on either unrestricted or restricted
significance threshold values, except for the restricted threshold values when
the QTL was at the centre of the marker bracket (10 cM).

When power was computed only from replicates for which estimates of QTL
position existed with MRM (620, 670 and 620 of 1 000 replicates when the QTL
was located at 5, 10 and 15 cM, respectively), the power of RIM and MRM was
not significantly different for any QTL location.

4. DISCUSSION

In this study, the method of multiple regression of phenotype on marker
genotypes for QTL mapping in F2 populations [13] was extended to a half-sib
family design.

In contrast to Wright and Mowers [14] and Whittaker et al. [13], offspring
with complete and incomplete marker information on paternal marker allele
transmission were included in the analysis. Inclusion of offspring with incom-
plete marker information in QTL mapping results in higher statistical power
and lower standard errors and bias of estimates of QTL location and QTL effect
!12!.

It was shown that regression coefficients and hence the resulting estimates of
QTL parameters did not depend on transmission probabilities. The regression
coefficients only depended on contrasts between marker haplotype class means
under known marker haplotype transmission. Although, results from this study
focused on half-sib designs, uncertainty of marker allele transmission can also
apply to F2 and backcross designs that involve outbred lines and to QTL
mapping with markers of limited polymorphism.

Although MRM and RIM are essentially equivalent, the two methods
resulted in different test statistics under the null and alternate hypothesis and,



therefore, had different power to detect a QTL (table T!. These differences were
found to be caused by the fact that MRM does not restrict the test for the QTL
to within the marker interval. Rather, the test is for a QTL anywhere on the
chromosome. Furthermore, MRM does not make assumptions on the genetic
model in the process of analysis and any effects that are present in the data,
even if they do not conform with a genetic model of one QTL within the marker
bracket, are picked up by the regression coefficients. The RIM, on the other
hand, assumes a genetic model (usually of one QTL within the marker bracket)
and, in the present study, searches for the QTL only within the marker bracket;
if data indicated a QTL outside the marker bracket, the QTL was mapped to
one of the markers. To compare results from RIM and MRM on an equivalent
basis, MRM estimates of location outside the marker interval were forced to
be at the nearest marker (table III). This was used to illustrate that MRM
and RIM are equal when the search is restricted to between the two flanking
markers: RIM and MRM had similar LR test statistics under the null and
alternate hypotheses (correlation of 1.000, table V) and identical power (not
shown). An alternate way of comparing these methods would be to also search
for the QTL outside the interval by fitting markers outside the marker bracket
under study. In this case, MRM and RIM are expected to give identical results.
One advantage of RIM over MRM, is that the LR test statistic (or RSS) will
be continuous across marker intervals, and can be used to provide a graphical
representation of the location of the likelihood which can, therefore, be used as
a ’confidence region’.

Empirical thresholds for MRM were similar to standard Chi-square values
with two degrees of freedom. Empirical thresholds for MRM were not affected
by exclusion of replicates for which a solution for QTL position did not exist
(table 7V). Empirical threshold values for RIM were intermediate to Chi-square
values with one and two degrees of freedom when computed from all replicates
(unrestricted) but were close to Chi-square values with two degrees of freedom
when computed from replicates for which a solution for QTL position existed
with MRM (restricted). This raises the question on the number of degrees
of freedom that are available for interval versus marker regression mapping
methods in relation to the number of parameters that are estimated. Note
that for MRM two parameters are estimated (two regression coefficients).
Accordingly, significance thresholds were similar to Chi-square table values
with two degrees of freedom. For RIM, two parameters are estimated (QTL
position and QTL effect) if the QTL is mapped to between the two markers,
but only one parameter is estimated if the data suggest the QTL is outside
the marker bracket. In the later case, the QTL is mapped to one of the
markers. In order to test the existence of such a mixture distribution of the
LR test statistics for RIM, 10 000 replicates were generated under the null
hypothesis and threshold values were determined based on replicates in which
the QTL was mapped outside versus inside the marker bracket (8 216 versus
1 784 replicates, respectively). When the QTL was mapped outside the marker
bracket, 1 and 5 % significance threshold values (based on 8 216 replicates)
were 7.05 and 4.34, respectively, which were slightly higher than Chi-square
table values with one degree of freedom (6.83 and 3.84). When the QTL was
mapped inside the marker bracket, 1 and 5 % significance threshold values
(based on 1 784 replicates) were 8.58 and 5.93, respectively, which were slightly



less than Chi-square table values with two degrees of freedom (9.21 and 5.99).
Therefore, the differences in threshold values between RIM and MRM were
due to differences in treatment of QTL fitted outside the marker bracket. As
mentioned earlier, RIM and MRM may yield similar results when fitting more
markers and searching for a QTL among marker brackets on the chromosome.
When regression is performed on multiple markers, MRM amounts to

standard multiple regression, as described by Wright and Mowers [14]. With
no interference, only marker brackets which contain a QTL are expected to
give non-zero regression coefficients and those that are devoid of QTL are
expected to give zero regression coefficients. For multiple QTL located on the
same chromosome, results from a two-marker single QTL model is equivalent
to a multi-marker multi-QTL model when QTL are isolated, as shown by
Whittaker et al. !13!. That is, if a second QTL exists on the same chromosome,
its effect on the expected regression coefficients from the two-marker single
QTL model, can be removed by fitting a conditional regression on a marker
positioned outside the interval but between the interval and the second QTL.
The same procedure also applies to RIM (13!. When multiple QTL are located
within the same marker interval, no unique and independent estimates of QTL
parameters can be obtained with RIM or MRM [13] and possibly with other
statistical methods. In such cases, regression coefficients would simply relate to
some weighted average of QTL effects and positions for both RIM and MRM.

The MRM studied here was for a single sire family. There are difficulties
associated with extension of this method to QTL mapping in a multi-family
half-sib design, as studied by, for example, Knott et al. [6] and Liu and Dekkers
!8!. In a multi-family analysis with RIM, a nested regression is used with one
unique estimate of QTL location but different QTL substitution effects for
each sire. Although the MRM method can be extended to multiple families by
nesting regression coefficients within family, each family will receive a separate
estimate of QTL location and effect. This problem may be overcome by fitting
markers as random effects and by expressing estimated variances at markers in
terms of a genetic model of one QTL with multiple alleles.

The MRM method described in this study shows that information to

map QTL is derived entirely from contrasts between marker-associated effects
at flanking markers, regardless of uncertainty of marker allele transmission.
However, the uncertainty of marker transmission results in increased standard
error for the regression coefficients. This study has provided further insight into
properties of the test statistic for RIM. Specifically, results illustrate that the
difference between empirical and table threshold values is not due to multiple
testing within the marker interval but results from a mixture of fitting one
(when the QTL is positioned outside the marker bracket) and two parameters.
The computational efficiency of MRM over RIM may be of little importance for
least-square analyses because the computational demands of RIM are already
limited. The same principle of regression on markers can, however, also be
applied to other types of models, for example threshold and other non-linear
models, for which computing time is of importance.

In general, the marker regression method can be applied to QTL mapping
studies where the RIM is considered to be the method of choice. Because of
the simplicity of the MRM method, initial screening of marker data can be
performed with this method to identify regions displaying QTL activity before



adopting advanced statistical methods such as maximum likelihood, generalized
linear mixed models, non-parametric or Bayesian methods. Once potential QTL
regions are identified we can either choose to adopt advanced methods focused
on those genomic regions or simply interpret the regression coefficients based
on a genetic model.
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APPENDIX 1: Derivations of expected values of the regression
coefficients for flanking markers

Expected values of the regression coefficients can be derived based on:

Since E(y) = Hw from equation (5), E(!3) can also be written as

with C = (P’P)-1P’H.
Noting that the conditional probability P(M12ISi), is equal to (1 -pli) and

p(A/22!), is equal to (1 -p2i), and simplifying C in equation (A2), it can be
shown that C matrix simplifies to



Note that elements within rows of C in (A3) corresponding to the mean and
the two regression coefficients sum to one and zero, respectively.

Based on table I, the coefficients for expectations of sire marker haplotypes,
w3 and W4 are equal to 1-w2 and 1&mdash;u!i, respectively. Substituting, w3 = 1-w2
and W4 = 1 - wl in vector w given in equation (A2), it can be shown that the
resulting equations simplify to E({J) given in equation (9).

APPENDIX 2: Alternative proof

Let y, g and s be the phenotypic value, genetic value and available marker
information, respectively, for an individual, and let h = (h!, hr) be the complete
marker information at the flanking markers. Then, suppressing the constant
term for convenience

As in Whittaker et al. !13!, it follows that A and p are regression coefficients,
but now from the regression of phenotype on expected, rather than actual,
marker genotypes.

APPENDIX 3: Transmission probabilities for paternal marker
alleles

The conditional probability for transmission of marker alleles Mll and M21
from the sire to offspring i, conditional on marker linkage phase Ll in the sire
are denoted by p(Mll !Si = gi,Ms,L1,rl,B) and p(M2 1 [ Sz = 9i, MS, Ll, rl, 9),
respectively. Similarly, for linkage phase Lz, the conditional probability for
transmission of marker alleles Mn and M21 from the sire to offspring i are
denoted by p(Mll !Si = !,M!,L2,ri,6’) and p(M211Si = !,M!,L2,ri,!),
respectively. The conditional probabilities of marker allele transmission are
given below for marker linkage phase Li. The conditional probability of Mn
and M21 allele transmission from the sire to offspring i across linkage phases,
is then computed as P(MllISi) = p(L1) ! p(Mil ISi = gi,Ms,L1,rl,B) +
p(L2) - p(MlllSi = gi, Ms, L2, rl, B) and P(M21ISi) = p(L1) . p(M2, ISi =
gi, Ms, L1, ri, B) + p(L2) . P(M21 ISi = gi, Ms, L2, rl, 0) where p(Li) and p(L2)
are the probability for linkage phase 1 and 2, respectively.
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