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Abstract — This article gives a formal proof of a formula for the precision of
estimated genetic distances proposed by Barker et al. which can be used in designing
experimental sampling programmes. The derivation is given in the general multi-
allelic case using the Sanghvi distance. Two sources of sampling are considered, i.e.
i) among individuals (or gametes) within locus and ii) among loci within populations.
Distribution assumptions about gene frequencies are discussed, especially the normal
used in Barker et al. versus the Dirichlet via simulation. © Inra/Elsevier, Paris
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Résumé — A propos de la précision de l’estimation des distances génétiques.
Cet article présente une démonstration formelle d’une formule de Barker et al.
donnant la précision de I’estimation de distances génétiques & des fins de planification
expérimentale. Cette démonstration est faite dans le cas général multiallélique sur
la base de la distance de Sanghvi. Deux sources d’échantillonnage sont considérées
A savoir i) au niveau des individus (ou gamétes) intra-locus et ii) entre loci intra-
populations. Les hypothéses sur les lois des fréquences géniques sont discutées via
quelques simulations en particulier celle de la loi Normale adoptée par Barker et al.
par rapport 4 la loi de Dirichlet (© Inra/Elsevier, Paris
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1. INTRODUCTION

In a report to the FAQ, Barker et al. [2] proposed a formula to express the
standard error of an estimate of the genetic distance (d) which was intended
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to be used in deciding on sample sizes when designing field programmes. They
start from the following expression of the estimator:

D = [(p1 - p2)*)/[p(1 - P)] 1)

where D1, P2 are the observed frequencies of a given allele at one locus in
populations 1 and 2, respectively (P being an estimate of the average frequency)
in which 2n = n; + n» individuals are sampled assuming n; = na; using
equation (1) they infer that the standard deviation of D can be expressed
as

SE(D) = \/2/Lk[d + (1/n)] (2)

where L is the number of loci and k is the number of algebraically independent
distance estimates per locus, i.e. assuming &k + 1 alleles.

As no proof of this farmula was given in the paper, we thought it might
be useful to provide a formal detailed derivation which also helps to clarify
the assumptions made throughout and the sources of uncertainty taken into
account.

2. THEORY -

We will restrict our attention to the multi-allelic case. Let y1; = 2np1j; y2; =
2npy; be the number of A; alleles observed in the n individuals sampled in
populations 1 and 2, respectively, with p;;, p2; designating the corresponding
true allele frequencies. Under Hy: (p1; = p2; = p;; Vj) the statistic

J

Z? = Z(ylj — y2;)°/4np; 3)
=1

where p; = (D1; + D2;)/2, has an asymptotic chi-square distribution with J —1
degrees of freedom [7].

Factorizing n, and the expectation (J — 1) of the chi-square, Z? can be
written alternatively as:

J

7% =Y (B — B2)?/ (P + B2j)] = n(J — 1)D (4)
j=1

where D is the so-called Sanghvi’s G? distance closely related to the 62 of
Battacharyya [9].

Provided that the variance covariance matrices of y; = {y1;} and of
v2 = {y2;} are close to each other, Z? in equation (4) can be interpreted as a
non-central chi-square with v = J — 1 degrees of freedom with a non-centrality

j
parameter equal to A = n(J — 1)d, where d = (J — 1)~! Z[(plj — p2;)?/pj]

j=1
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with p; = (p1; + p2;)/2 corresponding to the true distance between the two
populations.
Therefore, E(Z2) = (J — 1) + A and var(Z?) = 2{(J — 1) + 2] [1]; hence

E(D)=d+1/n (5)

and
vare(D) = 2(J — 1)7}[(1/n?) + (2d/n)] (6)

J

Normalizing D by dividing 2 Z(ﬁlj — p2;)%/(P1; + D2j) by (J — 1) allows

j=1
the metric to be adjusted for the number of alleles.

For a locus (k) chosen at random in the genome, the value of the distance dj
becomes a random variable, and we will consider the expectation and variance
of di (later on designated as d for simplicity) with respect to sampling the
true frequencies of alleles in populations 1 and 2 from a larger population;
this results basically from sampling loci in the two populations from a pool of
‘exchangeable’ loci [3, 12].

Let the distribution of the vector p;(sx1) of gene frequencies in a given line
(say 1) over ‘exchangeable loci’ have mean 7 and variance covariance p;C, i.e.

Pi(sx1) ~ (7, p;C) (7)
where
C = C(n) = diag(w) — mr” (8)

p;C measures the ‘between loci’ within line component of variance in gene
frequencies, which, under pure genetic drift and random mating, is also a
‘between lines’ within locus component of variance. Thus, in these conditions,
p; can be interpreted as the inbreeding coefficient F; in line i, the value of
which depends only on the effective population size (V) and the number (¢) of
generations of drift F =1 — (1 —-1/2N)* [15].
J
The true distance d = (J — 1)1 Z[(plj - pzj)z/ﬁj] can be expressed as
1=1
a quadratic form d = 87 Q6 with 8,5, = {§; = p1; — P2;} and the (J x J)
matrix Q of the quadratic form being (J — 1)~1 diag(ﬁj“l). Assuming p = T,
and taking the expectation of d with respect to the distributions of p; and ps
requires the evaluation of:

Eplypz (d) = [Ep11p2 (8)]TQEP1 P2 (6) + tr[Qvarpl,Pz (6)]

As populations 1 and 2 are derived from the same founding population with
allele frequency 7, E(8) = 0. The second term is the trace of Q[varp, (p1) +
varp, (p2)]. As C(P) is close to C (7) if p ~ 7, this reduces to

J

tr{Q[varp, (1) +varp, (p2)|} = p1+p2 since tr(QC) = (J-1)~* Z(l—ﬂj) =1
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Then,

Ephpz (d) =2p (9)
where

7= (o1 +m)/2

So far, no assumption about a specific gene frequency distribution was
needed since the expectation of a quadratic form depends only on the first
two moments. Several assumptions can be made at that stage. For the sake of
simplicity, a normal approximation for the distributions of true gene frequencies
can be considered as in Barker et al. [2] and Lewontin and Krakauer [7]. One
may also rely on the Dirichlet distribution which is the natural conjugate of
the multinomial. The first alternative results in

J
d= (J - 1)_1 Z[(Plj _P2j)2/l—7j] ~ 25(J - 1)_1X.2]—1
j=1

Hence, as in equation (9) and as expected Ep, p,(d) = 2p, and
Valp, p, (d) = 89°(J — 1) (10)

Remember that the total variance can be decomposed into var(D) =
Ep, p.[var(D|p1, p2)] +varp, p, [E(D|p1, p2)]. The expressions for E(D|p1, p2)
and var(D|p1, p2) were given in equations (5) and (6) and correspond to effects
on the first two moments of multinomial sampling of individuals or alleles within
the two populations 1 and 2. Now

Ep, ps[vare(D)] = 2(J = 1)7*[(1/n®) + (4/n))] (11)

varp, p, [Ee(D)] = 89°(J — 1) (12)

Combining these two formulae results in the expression for the unconditional
sampling variance of the estimation of the genetic distance:

var(D) = 2(J — 1) 7?25 + (1/n))? (13)

the expectation being equal to E(D) = 25 + (1/n).

3. DISCUSSION

Formula (13) is identical to that given by Barker et al. [2] for L = 1 locus
and k = J — 1 algebraically independent estimates of the genetic distance.

Incidentally, formula (9) for the expectation of d is identical to the one
given by Weir [16], Laval [5] and Laval et al. [6] although these last authors
considered a different distance measure, namely Reynolds’. This clearly shows
the interest in normalizing the squared differences (p1; — p2;)? by the degree
of heterozygosity as in Sanghvi’s and Reynolds’ distances but not in Rogers’,

J
1
d= 3 Z(pl ;j — P2;)°. Takezaki and Nei [15] consider alternative estimators of
J=1
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genetic distance, and show that while the simple estimator D used here is not
the best, it is only marginally less so.

To derive the expectation of d (9) it was assumed that P = 7t. This implies
computing P in D (formula 4) from the whole collection of the I populations
I

involved in the distance study either as an unweighted p = (Z pi)/I, or as

i=1
a weighted mean; to that respect we suggest for unbalanced designs with n;
I I
individuals sampled in population ¢, p = (Z a;p;)/ Zai with weights o
i=1 i=1
inversely proportional to p; + [(1 — p;)/n;].

Actually this condition turns out to be mandatory as demonstrated by a
simulation study based on the Dirichlet distribution. This distribution and its
particular case of the beta for two categories have been used by population
geneticists, mostly in a Bayesian context, to specify prior information about
allele frequencies [16]. Under recurrent mutation, migration and drift but
without selection, Wright [17] also obtained gene frequencies at a biallelic
locus which are beta distributed. Thus, that assumption makes sense as long
as selection is absent or weak.

Results based on the Dirichlet distribution in the case of J = 5 alleles show
a non-negligible downwards bias increasing with F' and disequilibrium among
allele frequencies when using the standard formula (figure 1).

One can guess at its direction by considering populations taken towards
fixation: either they are fixed for the same allele or fixed for different alleles.
In the biallelic case, the line is either AA or aa. If it is AA (probability
7) the average distance between this line and another line is (0 x 7) +
(1-0)?

1/4
aa leading to 47 so that the expectation of the distance is [ x 4(1 — m)] + [(1 -
7)] % 4z, i.e. 8w (1 — m) which is lower than 2F, here equal to 2 for the limit
case. The higher the deviation of 7 from 1/2, the higher the bias as observed
in the simulation.

(1-m)x , 1.e. 4(1 — 7). The same reasoning applies given the line is

Regarding the variance of the true distance d, simulation indicates that the
normal approximation overestimates it in the case of an equal frequency distri-
bution over alleles and underestimates it under large heterogeneity (figure 2).
The approximation works reasonably well as long as the effective number of
alleles does not fall below about 70 % of its nominal number and provided the
averaging of gene frequencies in the denominator is made over all populations
(a value of 15 was taken in the simulation).

This makes this formula worthwhile on account of its simplicity relative
to its main objective, i.e. of providing a rough estimate of the precision of
estimated genetic distances, particularly when designing programmes of data
collection for distance estimation, as discussed by Barker et al. (2] for breeds of
livestock. For instance, using this formula with the aim of having a standard
deviation of 0.03 or less for distance values of 0.1, they recommended basing
breed characterization on 25 animals per breed assayed and 25 micro-satellite
loci, each with an effective allele number of at least 2.
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Figure 1. Expectation of standard and modified Sanghvi’s distances. S: standard
deviation shift of the mean in the underlying scale; H: heterozygosity; Na: effective
number of alleles. S = 0: pl = p2 = p3 = p4 = p5 = 0.20; § = 0.5: pl = 0.366,
p2 = 0.231, p3 = 0.177, p4 = 0.136, p5 = 0.090; S = 1: pl = 0.563, p2 = 0.209,
p3 = 0.123, p4 = 0.072, p5 = 0.033. The mean true frequency p; of allele A; in the
denominator of d was obtained from a set of I = 15 populations

Moreover, improving it analytically might be a tedious task even for ap-
proximations. For instance, using the so-called delta method based on Taylor
expansions, one should go beyond the second order expansion to obtain differ-
ent results and assume specific forms for the third and higher moments of gene
frequency distributions. Anyway, for those interested in further adjustments,
one may recommend basing them on the following general formula (derived
from equations (11) and (12)):

var(D) = 2(J — 1) [E(d) + (1/n))* + B2(d)[CV} — 2(J — 1)}

where E(d) and CVj are the expectation and coefficient of variation of the true
distance, respectively.
Formule (13) also provides a means for combining inter loci information
in the expression of the distance. Now, for K independent loci, a ‘natural’
K
estimator of the distance is obtained from D = Z(kak) Jwy where the
k=1
weight wy, is proportional to the reciprocal of the variance of the distance Dy
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Figure 2. Normal approximation versus Dirichlet simulation: effect on the standard
deviation of true distance (d) as a function of F' and of the effective number of alleles
(J = 5 allelles, I = 15 populations, N = 5 000 replicates).

K
pertaining to locus k, and with wy = z wg. From equation (13), wy x Jg —1
k=1
which is equivalent to weighting each locus by its number of alleles minus 1 so
that the formula for the pooled distance reduces to

S (P — Bage)”
D=(J;—K)™! ZZM (14)
k=1j=1 Pjk
and its estimated variance to
Est[varD] = 2(J; — K)7'[D + (1/n))? (15)

Finally, issues tackled here with respect to sampling of loci and of lines
at a given locus are closely related to theories developed for testing selective
neutrality: [7, 9, 11, 13, 14]. In particular, assumptions made in the distribution
of gene frequencies in equation (7) rely on the type (a) structure shown
in Robertson ([14], Figure 1), i.e. a set of equivalent populations deriving
independently from a common base population. For more complex relationships
involving some kind of splitting or fusion, one will have to adjust the mean
and variance of the gene frequencies accordingly: see, for example, techniques
proposed by Felsenstein [4].
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