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Abstract — Optimum breeding schemes for maximising the rate of genetic progress
with a restriction on the rate of inbreeding (per year or per generation) are invest-
igated for populations with overlapping generations undergoing mass selection. The
optimisation 1s for the numbers of males and females to be selected and for their
distribution over age classes. Expected rates of genetic progress (AG) are combined
with expected rates of inbreeding (AF") in a linear objective function (2 = AG-MAF)
which is maximised A simulated annealing algorithm is used to obtain the solutions

The restriction on inbreeding is achieved by increasing the number of parents and, in
small schemes with severe restrictions, by increasing the generation interval. In the
latter case the optimum strategy for obtaining the maximum genetic gain is far from
truncation selection across age classes. In most situations, the optimum mating ratio
18 one but the differences in genetic gain obtained with different mating ratios are
small. Optimisation of schemes when restricting the rate of inbreeding per generation
leads to shorter generation intervals than optimisation when restricting the rate of
inbreeding per year.

optimal selection / overlapping generations / restricted inbreeding / mass
selection / genetic gain

Résumé - Stratégies optimales de sélection individuelle en générations
chevauchantes et avec une contrainte sur ’augmentation de la consan-
guinité. On a recherché les schémas de sélection optimaux pour maximiser le gain
génétique tout en restreignant augmentation de la consanguimité (par an ou par
génération) dans des populations sous sélection individuelle et 4 générations chevau-
chantes. L’optimisation concerne le nombre de males et de femelles & sélectionner et
leurs distributions dans les différentes classes d’age. Le progrés génétique espéré (AG)
et 'augmentation attendue de la consanguinité (AF) sont combinés linéairement pour
constituer Pobjectif & maximiser (2 = AG — AAF'). Les solutions ont été obtenues
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4 ’aide d’un algorithme simulé «en anneau». On a satisfait a la restriction sur la
consanguinité en augmentant le nombre de parents et, dans les schémas de petite taille
et avec une contrainte sévére, en augmentant l'intervalle de génération. Dans ce der-
nier cas, la stratégie optimale de sélection pour un gain génétique maximum se situait
loin de la troncation A travers toutes les classes d’age. Dans la plupart des situations,
la valeur de d (nombre de femelles reproductrices par male sélectionné) optimale était
égale & 1, maus le gain génétique est demeuré voisin de son maximum pour les valeurs
de d proches de 1. Conduite en considérant Paugmentation de la consanguinité par
génération, Voptimisation des schémas de sélection s’accompagnait d’un intervalle de
génération plus court que lorsque la contrainte portait sur augmentation annuelle
de la consanguinité.

sélection optimale / générations chevauchantes / contrainte sur la consan-
guinité / sélection individuelle / progrés génétique

1. INTRODUCTION

Recent studies on optimisation of selection policies in breeding programmes
have focused on maximisation of genetic progress while restricting the accu-
mulation of inbreeding. The restriction on inbreeding ensures maintenance of
long-term response by constraining the reduction in genetic variance and it
limits reduction in performance in traits showing inbreeding depression.

Optimal selection decisions with restricted inbreeding have been described
for populations with discrete generations where individuals born at different
times do not breed with one another [4,7,15,21,22,28]. However, in most
populations there is a continuous range of ages, and individuals of different
ages can breed together (i.e. generations overlap).

When generations overlap, selection is usunally performed by truncation
across age classes and the individuals selected are those with estimated breeding
values above a given threshold [6]. If genetic progress is being achieved in the
population then younger parents are expected to have higher breeding values
and a higher proportion of them is expected to be selected [1]. Truncation
across age classes has been described as the optimal strategy for maximising
genetic gain in the short-term {1,11]. However, if restrictions on inbreeding are
imposed, the optimal age distribution may depart from that obtained when
ignoring inbreeding in the optimisation.

Dynamic procedures have been proposed recently for maximising genetic
response while constraining the absolute increase of the inbreeding coeffi-
cient [16] or the rate of inbreeding [8] in schemes with overlapping generations.
These studies are based on stochastic simulations of specific breeding schemes
and provide useful guidance for day-to-day selection decisions in practice that
involve a particular set of candidates for selection. However, they do not give
a general insight into which are, a priori, the optimum schemes for maximising
gain given the basic design variables (available resources, trait selected and
restriction on inbreeding).

A priori optimisation of breeding programmes requires accurate predic-
tions of rates of genetic gain and inbreeding [21,22]. For selected popula-
tions with overlapping generations, predictions of response have been available



Optimal selection policies 341

for many years {10]. However, accurate predictions of rates of inbreeding
accounting for the inheritance of selective advantage have been only developed
recently [2,25,26].

This study extends the procedures developed for optimising the design of
breeding programmes with discrete generations [21,22] to the situation where
generations overlap. Optimum designs for maximising gain with a restriction
on the rate of inbreeding are obtained for populations under mass selection with
overlapping generations. Restrictions on the rate of inbreeding per year and
per generation were both considered. The optimisation is for the number of
parents and their distribution across age classes. The optimisation procedure
involves maximising a single objective function that combines predictions for
rates of response and inbreeding.

2. METHODS

2.1. Population model

A population with overlapping generations under mass selection was
modelled. The population model was described in detail by Bijma and
Woolliams [3]. Briefly, there were up to emax age classes leading to a total
of 2cmax sex by age categories. Categories from 1 to cpax correspond to males
and categories from 1+ Cpax 10 2¢max correspond to females. The time between
two selection rounds was taken to be one year. The age distribution of parents
was kept constant across years. Each year the n, individuals with the highest
phenotypic values were selected from the jth category to produce the next gen-
eration. The ranking of individuals within categories was constant over time.
The numbers selected from each category (n,) were optimised as described
later. Mating of selected individuals was at random and followed a hierarchical
mating design in which each male was mated to d females. The mating ratio
(d) was also optimised. Resources were constrained by keeping fixed the total
number of offspring available for selection each year (7). The total numbers of

Cmax 2Cmax
males and females selected each year were Ny = > myand Ne = > n,,
i=1 J=1+cCmax

respectively. The number of offspring born per female (n,) was determined by
T and the total number of females selected; i.e. n, = T/Ny. Equal numbers
of male and female offspring available for selection were produced.

2.2. Rate of genetic gain

Predictions of rates of genetic progress were based on the theory of long-
term genetic contributions and assumed the infinitesimal model (3,23, 24, 26,27].
These predictions account for changes in genetic parameters due to selection
{Bulmer effect) but not for changes due to inbreeding. The expected value for
the asymptotic rate of response (AG) is

2Cman
E[AG] = Y n;Eu,a;]

=1
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where u, is the expected long-term contribution from an ancestor in category
J and a; is its Mendelian sampling term [26]. The expected long term genetic
contribution for an ancestor i in category j is given by u,(;) = oy + 5, (Ay() —
A]), where o is the expected contribution of an average parent in category j
and 3; is the regression of the contribution of an individual in category 7 on its
breeding value (A,(,)), expressed as a deviation from the mean breeding value
of selected contemporaries in category j(A,). The solutions for o, and 8, were
obtained as described in Bijma and Woolliams [3].
Substituting the value of u,(,) into the equation for E[AG] gives

2emax 2¢max

E[AG] = (0.5)030 0';1 Z Ny, + Z n;F; (1 — k_,hz)
j=1 7=1

where 4, is the selection intensity in category j, k, is the Pearson’s variance
reduction coefficient, o3, is the additive genetic variance in the unselected base
population, and aﬁ and A2 are the asymptotic (Bulmer equilibrium) phenotypic
variance and heritability, respectively [3].

2.3. Rate of inbreeding and generation interval

The expected value for the asymptotic rate of inbreeding per year (AFy) is

Cexe Cexc

EARY] = (1/2) > n.E [u2] + (1/8) Y n.ds
s=1 s=1

where subscript s represents exclusive categories, Cexc is the number of exclusive
categories and J is a correction factor for deviations of the variance of family
size from independent Poisson variances [2,25]. Derivations of E[u?] and d;
are given in Bijma et al. [2] (equations 9 to 15) and a numerical example is
described in their Appendix B.

The rate of inbreeding per generation (AFg) was approximated by AFg =~
LAFy, where L is the generation interval (in years) defined as the time in

26max
which genetic contributions sum to unity and given by L =1/ } n,a; [3].
=1

2.4. Optimisation of breeding schemes

The objective was to find the combination of numbers of individuals selected
in each category that gives the highest annual rate of genetic gain for a pre-
defined rate of inbreeding (per year or per generation). Thus the optimisation
was for the set of n, (j = 1,...,2¢nax) and therefore implicitly for L and d.
The predictions for AG and AF were combined in a single objective function,
® = AG — MAF, which was maximised. The parameter A is a Lagrangian
multiplier that was increased until the desired AF was achieved [22]. From the
theory of Lagrangian multipliers, maximisation of ® is equivalent to maximising
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AG with a constraint on AF. Both restrictions on AFy and on AFg were
investigated. The set of values for n, (j = 1,...,2¢pnax) giving the maximum
value for ® was considered to be the optimum.

A minimum number of males to be selected was imposed in the optimisation
to avoid inaccurate predictions of AG and AJ" which occur with extreme selec-
tion intensities [2]. The minimum Ny, (Non_min) depended on T (smaller values
of T allow lower N,,_mn for accurate predictions). The number of females to
be selected was thus also constrained to dNp_mun. It should be noted however
that the optimum numbers selected presented later were always higher than
the minimum numbers allowed in the optimisation.

The optimisation was carried out in two steps. Firstly, optimum values for
n, {j =1,...,2cmax) were obtained for fixed mating ratios (only integer values
for d were allowed). Subsequently, the values of & obtained for schemes with
the optimal age structure for different mating ratios were compared and the
scheme giving the highest value of ® was defined as the optimum (z.e. d was
optimised in this second step).

For a given d the potential number of alternative schemes (.e. number of
possible combinations of numbers of individuals selected across categories) is
very large. For instance, for T = 200, d = 1 and cpayx = 5 the number of
possible combinations of males selected across age classes is 101% — 1. Sim-
ultaneous optimisation of females leads to a very large-scale problem. The
method of simulated annealing [18] is useful for this type of large optimisation
combinatorial problem, where the objective function has many local maxima,
and it was the method chosen for finding the optimal age structure for a given
mating ratio. Although the method does not guarantee to find the global
maximum it generally finds a solution close to the optimum that is very unlikely
to be improved [17].

A summary of the steps carried out for the global optimisation is as follows:

Choose an initial value for A (e.g. A =0).

Set the mating ratio (d) to 1.

Find the optimum n, for each category (2.e. find the optimum n, where

nT = (nyng...ng,,,)) using simulating annealing (see later). Store the

optimum n (z.e. the n giving the highest value of ® for the given d) and

corresponding @ value.

4. Increase d by 1.

5. If d is less than or equal to its maximum possible value (i.e. T/2Np,_min)
then go to step 3. If d > T/2N,,,_min then go to step 6.

6. Find the optirnum d by comparing the ® values obtained in step 3 with
optimal n for different d.

7. If AF = desired value: Stop.

8. If AF < desired value: Decrease A and go to step 2.

9. If AF > desired value: Increase A and go to step 2.

padi e

2.5. Simulated annealing algorithm

As mentioned above, the optimum numbers selected from each sex by age
class were obtained for fixed values of A and d using a simulated annealing
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algorithm [18]. The optimal solution was that which minimised the object-
ive function —®. (Note that minimisation of —® gives the same solution as
maximisation of ®.) The steps involved in the algorithm were:

1

2.

Generate at random an initial solution (z.e. an initial set of numbers selected
for each category). Compute & for the initial solution.

Apply a small modification (the modifications considered are described
below) to the current solution and compute ® for the new solution.

If the modification decreases the objective function value then it is accepted
and replaces the current solution. Otherwise, the modification is accepted
with a probability P = exp(—A®/t), where AQ is the change in the object-
ive function value (as a result of the modification) and ¢ is the imaginary
temperature (a control parameter in the annealing algorithm).

Decrease the value of ¢ (i.e. multiply ¢ by fee where 0 < g < 1) after Zmoq
modifications or after xq,. accepted modifications (€sye < Zmod), Whichever
comes first. Both z.,04 and x4, are integers.

The optimal solution is found when the solution is unchanged during Zmeq
suggested modifications (z e. steps 2 to 4 are repeated until zy0q Successive
modifications of the solution are not accepted).

The initial value of ¢ and the values of ff.c, ®moq, and x4y, depended on

the scored population size, the heritability and cpax. The initial £ was set to
a value considerably larger than the largest A® encountered. Some trial and
error was needed to find the values for ts¢, Tmod, and zgye that led consistently
to the optimal solutions.

The modifications to the current, solution were chosen at random from the

following five:

The number of males selected in category j (where j was chosen at random)
was increased by one. Then the number of females selected was increased
by the number needed to get the given integer mating ratio (d). The extra
females selected were allocated at random across categories.

The number of males selected in category j (where § was chosen at random)
was decreased by one. Then the number of females selected was decreased
by the number needed to get the given d. The categories from which the
selected male and females were removed were chosen at random.

The mumber of males selected was increased by one in category i and
decreased by one in category j. Both categories were chosen at random.
The number of females selected was increased by ome in category ¢ and
decreased by one in category 7. Both categories were chosen at random.

. The number of males selected was increased by one in category ¢ and

decreased by one in category j. Similarly the number of females selected
was increased by one in category k and decreased by one in category (.
Categories 4, j, k and [ were chosen at random.

Modifications 3, 4 and 5 imply no changes in the numbers selected.
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Table I. Optimum numbers selected across categories for maximising the annual
rate of gain under different restrictions on the annual rate of inbreeding (AFy}),
heritabilities (k*} and scored population sizes (7) when two age classes are considered.

AFy <1% APy <05% ARy <0.25%

k2 T n' na ns ng 71 Mo ng 7a n1 N2 ns T4
0.1 50 3 10 3 10 2 12 0 14 1 18 6 19
200 27 1 27 1 42 9 42 9 58 30 58 30

800 36 0 36 0 63 1 63 1 107 5 107 5

3200 44 0 44 0 80 0 80 0 143 1 143 1

0.6 50 11 2 0 13 1 14 0 15 2 20 o 22
200 32 1 32 1 48 13 48 13 36 57 36 57

800 31 0 61 1 76 1 76 1 127 1 127 1

3200 39 0 78 0 69 0 137 1 126 a 251 1

1 Categories 1 and 2 correspond to males and categories 3 and 4 correspond
to females.

Table II. Annual rates of genetic gain (AG) and generation intervals (L) for optimal
schemes under different restrictions on the annual rate of inbreeding (AFy), heritab-
ilities (2*) and scored population sizes (T') when two age classes are considered.

AFy < 1% AFy <05% ARy <£0.25%

2 T AG L AG L AL L
0.1 50 0.059 1.745 0040 1.922 0.023 1.972
200 0.114 1.037 0 086 1176 0.059 1.339
800 0.166 1.000 0.142 1016 0.115 1.045
3200 0.211 1000 0.191 1.000 0168 1.007
0.6 50 0.272 1.586 0.182 1.947 0.097 1.942
200 0.533 1.036 0.395 1.211 0.260 1.542
300 0.789 1.007 0.669 1015 0.537 1.011
3200 1.012 1.000 0.910 1.003 0789 1.002

3. RESULTS

3.1. Optimum schemes when restricting AFy for cax = 2

Table I shows the optimum numbers of males and females to be selected
for obtaining the maximum AG under different constraints on AFy when the
maximum number of age classes is 2. The corresponding gains and generation
intervals resulting from the optimisation are shown in Table II. In all cases,
the total numbers selected were larger than the minimum values allowed (z.e.
(r1+n2) > Npp_mun and (ng + n4) > dNp_min). For the cases studied, the
optimum total numbers selected increased with the scored population size, the
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heritability and the severity in restricting AFy. The optimum mating ratio
was one (z.e. Ny, = Ny) except for a high heritability and the larger schemes.
In these cases the optimum d increased to 2. For the least severe restriction
on inbreeding considered (AFy < 1%), the maximum gain was obtained by
selecting the youngest individuals unless the schemes were very small (T' = 50).
For T' > 200 the optimum L was very close to one in all cases when restricting
AFy to 1%.

More severe restrictions on AFy were achieved by decreasing the intensity
of selection (i.e. by increasing N,, and Ny) and, in the smaller schemes, by
selecting older individuals. The optimal L increased by up to 23% and 17%
(h? = 0.6) with 7 = 50 and 200, respectively, when the restriction on AFy
was changed from 1% to 0.5%. With k% = 0.6 and the most severe restriction
considered (AFy < 0.25%), L increased by up to 22% and 49% (relative to
AFy <1%) with T' = 50 and 200, respectively. The increase in L found when
Imposing more severe restrictions on inbreeding was less acute with the largest
schemes; only small increases in L were observed in schemes of size T' = 800
and the optimum L remained practically unchanged (L = 1) in the largest
schemes (T = 3 200) across heritabilities and restrictions on AFy.

The rate of genetic progress increased with the scored population size and
the heritability and decreased with the severity in the restriction on AFy. The
loss in gain by restricting AFy to 0.5% relative to the gain obtained when
AFy < 1% ranged from 10% (T = 3200, h? = 0.6) to 32% (T =50, h* =0.1).
In percentage, the decrease in AG was approximately doubled when restricting
AFy to 0.25% (relative to the gain obtained when AFy < 1%).

3.2. Optimum schemes when restricting AFy for fixed d
and Cpax =4

Table IIT shows optimal age structures and rates of progress when fixing
d to specific values (1 to 4). The annual rate of inbreeding was restricted to
1% and the maximum number of age classes was four. For a given restriction
on inbreeding (AFy < 1% in this case), the differences in gain with different
mating ratios were small. The loss in gain when fixing d to 4 relative to the gain
obtained with the optimum d (d = 1 or 2, depending on k2 and T') ranged from
3% (T = 800, h? = 0.6) to 7% (T = 200, h? = 0.1) for the cases considered.

As d increases fewer and younger males and more and older females need to
be selected to achieve the maximum gain under constrained AFy. The increase
in L with d was small and it was a consequence of selecting more females in
older categories.

3.3. Restriction on AFy versus restriction on Afg

Optimum schemes presented above were obtained when imposing a con-
straint on the annual rate of inbreeding (AFy). The optimum generation
interval differed from one, particularly when the schemes were small. Table TV
shows a comparison of optimum schemes when imposing a constraint on ARy
versus optimum schemes when imposing a constraint on the rate of inbreeding
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Table III. Effect of mating ratio (d) on the annual rate of gain (AG) and the
generation interval (L) when the annual rate of inbreeding is restricted to 1% for
different scored population sizes (T') and heritabilities (h*). The numbers selected
across categories (n,, j = 1,...,8) were optimised for maximising AG for fixed d.
The number of age classes was 4.

h.z T d AG L (5 t Nz ns T4 s Nng nr ne
0.1 200 1 0.114 1.037 27 1 0 0 27 1 0 0
2 0113 1.109 19 1 0 0 34 5 1 0

3 0.109 1.122 17 0 0 0 39 11 1 0

4 0.106 1.179 15 0 0 0 42 14 3 1

800 1 0.166 1.000 36 0 0 0 36 0 0 0

2 0 165 1.009 26 0 0 0 a1 1 ] 0

3 0.162 1.014 22 0 0 0 64 2 0 0

4 0.159 1.023 20 0 0 0 76 4 0 0

0.6 200 1 0.533 1.036 32 1 0 0 32 1 0 0
2 0.524 1.085 24 0 0 0 40 7 1 0

3 0515 1.110 20 0 0 0 46 13 1 0

4 0514 1.140 17 0 0 0 48 17 3 0

80 1 078  1.000 45 0 0 0 45 0 0 0

2 0.789 1.007 31 0 0 0 61 1 0 0

3 0779 1.006 26 0 0 0 77 1 0 0

4 0.763 1017 24 0 0 0 92 4 0 0

i Categories 1 to 4 correspond to males and categories 5 to 8 correspond to females.

per generation (AFg) for schemes of size T = 50 or T = 200 and ¢pax = 2.
For a particular combination of heritability and restriction on AFy, the rate
of inbreeding per generation was restricted to the value obtained for AFg
in the scheme restricting AFy. For instance, for k12 = 0.1, T = 50 and
the restriction AFy < 1%, the value obtained for AFy was 1.74%. Thus
the comparison was for the optimum scheme (with the same heritability and
resources) obtained when imposing the constraint AFy < 1.00% versus the
optimum scheme obtained when imposing the constraint AFq < 1.74%.

Imposing a constraint on AFg rather than on AFy substantially reduced
the optimum generation interval. Note that AFg = LAFy and therefore the
restriction on AFg can be achieved by decreasing L. Higher annual rates of
response were obtained with the restriction on AFg than with the restriction on
AFy. However, this was a consequence of the order in which optimisations were
performed. If the scheme had been first optimised with a constraint on AFg
and subsequently with a constraint on AFy, higher responses would have been
obtained with the restriction on AFy. For instance, for A% = 0.1, T = 200,
and the restriction AFg < 0.59%, the optimal age distribution was nT =
(41 1 41 1) and the values obtained for AG and AFy were 0.090 and 0.57%,
respectively. A subsequent optimisation with a restriction on AFy (AFy <
0.57%) led to higher rate of gain (AG = 0.092). The optimal distribution in
the latter case was nT = (39 6 39 6).
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Table IV. Optimum numbers selected across categories (n1,ns2,n3,ns) for maxim-
ising the annual rate of gain (AG) when restricting the rate of inbreeding per year
(AFy, in %) or per generation (AFG, in %) for different heritabilities (h%) and scored
population sizes (T"). The number of age classes was 2.

B2 T Restriction AFy  AFg AG ! ny ns g L

0.1 50 AFy <1.00% 100 174 0.059 3 10 3 10 1745
AFe £174% 159 171 0074 13 1 13 1 1075

AFy £050% 050 096 0.040 2 12 0 14 1922
AFg <09% 089 094 0.045 19 1 19 1 1053

200 AFy <050% 050 059 0.086 42 42 9 1176
AFg £059% 057 0.58 0.090 41 41 1 1.025

9

1
0.6 50 AFy £1.00% 099 1.57 0.272 11 2 0 13 1.586
AFe <157% 140 156 0.317 12 0 19 5 1113

ARy <050% 049 094 0.182 1 14 0 15 1947
AFe £094% 093 093 0.205 19 g 19 0 1000

200 AFy <050% 049 060 0395 48 13 48 13 1.211
AF <060% 059 059 0423 45 0 45 0 1.000

t Categories 1 and 2 correspond to males and categories 3 and 4 correspond to
females

4. DISCUSSION

Recent developments in prediction of rates of inbreeding for selected pop-
ulations with overlapping generations [2,25,26] allow deterministic optimisa-
tion of designs of breeding programmes under constrained inbreeding. In this
study, optimum breeding designs giving the maximum rate of genetic progress
while restricting the rate of inbreeding (per year or per generation) have been
described for populations undergoing mass selection. The optimisation pro-
cedure used was an extension to that developed for populations with discrete
generations [22]. With overlapping generations, the restrictions on inbreeding
were mostly achieved by increasing the numbers of parents selected and to a
lesser extent by increasing the generation interval. In most cases, the optimum
schemes under restricted inbreeding were those selecting equal number of males
and females although the differences in gain for different mating ratios were
small.

The optimal strategy for obtaining the maximum gain while restricting the
rate of inbreeding to a particular value depends on the relationships among the
rates of gain and inbreeding, the number of parents selected and the distribu-
tion of parents over age classes. An example of these relationships is given in
Figure 1 for T = 100 or 400 and A% = 0.3 and a maximum of two age classes.
Both the rate of gain and the rate of inbreeding decrease with the total number
of parents selected but the proportional reduction in the rate of inbreeding is
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Figure 1. Annual rate of genetic gain, in o, units, (e} and rate of inbreeding per
generation, in %, (A) for (a) different numbers of parents selected and c¢yax = 1 and
(b) different proportions of parents in the second age class (p2) when the number of
parents selected of each sex is 20 and ¢nax = 2. The heritability was 0.3, the mating
ratio was one and the number of offspring born per year was 100 (solid line) or 400
{dotted line).
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higher than the reduction in gain (Fig. la). Doubling the number of parents
when keeping T' constant more than halves the rate of inbreeding (as would be
the case if AF is predicted by using (1/8N,,) + (1/8N)). With selection, the
rate of inbreeding is a function of approximately i2/N,, and i2/N; (equation 7
of Bijma et al. [2]) and these terms decrease faster than 1/N,, and 1/Ny when
decreasing the intensity of selection.

The relationships among the rates of gain and inbreeding and the distribu-
tion of parents over age classes are more complex (Fig. 1b). In general, the
rate of gain decreases as the proportion of parents in the oldest class increases.
However, the rate of inbreeding reaches a maximum when the parents are
equally distributed across classes (the same individuals are selected in consec-
utive years) and a minimum when most parents are in the oldest class (more
parents enter the population each generation) [2]. These relationships lead to
the fact that the restriction on inbreeding per generation with mass selection
is mainly achieved by selecting more parents. For example, by increasing the
number of parents of each sex (N, and Nf) from 20 to 25, the rates of gain
and inbreeding are reduced respectively by 16% and 29% for T' = 100 and
by 6% and 24% for T = 400. However, for N, = Ny = 20, the increase
in the proportion of parents in the oldest class from 0% to 95% reduced the
rates of gain and inbreeding respectively by 41% and 32% for T' = 100 and by
44% and 34% for T = 400. Thus, less gain is lost by selecting more parents
than by increasing the generation interval when restrictions on inbreeding are
imposed.

With no control on the accumulation of inbreeding, the optimal strategy
for maximising gain in populations with overlapping generations is to select
the individuals with the highest genetic merit independently of their age; ¢.e.
truncation selection across age classes [1,6]. If there is any genetic trend in
the population, this strategy implies that most parents selected would belong
to the youngest age class (one-year-old in this study). This study shows
that when the rate of inbreeding is restricted then truncation selection across
age classes may not be the optimum strategy for maximising gain. As men-
tioned above, In some situations, the imposition of restrictions on the rate of
inbreeding led not only to an increased total number of parents but also to
an increased number of individuals selected from older age classes. In some
situations, particularly with small schemes or with severe restrictions and high
heritability, the optimal strategy was far from truncation selection across age
classes and that was due to the restriction on inbreeding. For instance for
T =50, h? = 0.1, AFy < 1% and cpax = 2, the optimal age distribution was
nT = (3 10 3 10) (Tab. I) whereas without any restriction on inbreeding and
the same number of parents selected (N,, = N; = 13) the optimal distribution
was nT = (10 3 10 3). With nT = (10 3 10 3) the annual rate of inbreeding
was 1.93%.

In most situations the maximum gain was achieved when the selection pro-
portions were the same in both sexes (i.e. optimum d = 1). Only when
the heritability was high and the size of the scheme was large the optimum d
increased to 2. By imposing more stringent constraints on inbreeding in these
schemes the optimum d changed to 1 (Tab. I). These results were also found for
populations with discrete generations by Villanueva et al. [22] who related the
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deviation from 1 of the optimum d observed in some cases, to the prediction of
the rate of inbreeding in schernes with hierarchical matings. Complete factorial
mating designs may lead to maximum gains with d = 1 across heritabilities
and scheme sizes.

Full exploitation of resources can be difficult to achieve in practice with
optimal mating ratios (d < 2), particularly in animal populations where the
reproductive capacity of males is often much larger than in females. Results
from this study (Tab. III) show that little genetic gain was lost by using higher
mating ratios with restricted rate of inbreeding. The decrease in the selection
intensity in females as a result of imposing values for d higher than the optimum
(i.e. more females needed to be selected) was in part compensated for an
increase in the selection intensity in males. The net result was a small reduction
in the rate of genetic progress.

The study has assumed unlimited reproductive capacities (z.e. the number
of offspring per breeding animal is unlimited). In practice, this may be appro-
priated for fish breeding schemes but also for livestock schemes using advanced
reproductive techniques (e.g. in vitro production of embryos). However, limit-
ations on the number of offspring a female may produce are likely to occur in
practice. This situation could be accommodated into the optimisation simply
by increasing the minimum number of breeding females (dNy,_min) allowed in
the procedure. The study also assumes that the first progeny can be obtained at
one year of age. For species where this is not possible, the procedure could also
be easily modified to allow higher minimum ages at breeding. The constraints
on limited reproductive capacity and minimum age for breeding would result
in lower gains to those presented here.

Optimum schemes have been presented for maximising the annual rate of
gain while restricting the rate of inbreeding per year (AFy) or per generation
(AFg). Whereas, in practice, maximisation of gain on an annual basis is clearly
the choice, the appropriateness of restricting the rate of inbreeding per year
or per generation is less clear. Our results show that unless the constraint
on inbreeding is very severe and the schemes are of small size, the optimal
generation interval is close to one and therefore, in most situations, there is no
argument about restricting AFg or AFy.

However, with small schemes such as those involved in conservation pro-
grammes and with a restriction on the annual rate of inbreeding, the optimal
generation interval was far from one. Also, the generation interval can deviate
from one if the trait can not be measured before the individuals are one
year old. When schemes were compared at a fixed Afl, the restriction
on AFg led to shorter generation intervals than the restriction on AFy.
Similar results have been found by Sonesson et al. [20]. If the accumula-
tion of mutational variance occurs on a per generation basis and it is of
interest to safeguard the existence of the population, then restricting AFg
may be the appropriate choice since shorter generation intervals would imply
higher genetic variability for a fixed period of time. However, there may be
situations where, to satisfy particular customers, breeding companies (e.g.
pig or poultry companies) may be prepared to take the risk of losing some
lines. 1In the latter situation the interest is short-term optimisation and
the aim may be to maximise gain over a fixed time horizon. Also, there



352 B. Villanueva et al.

could be an argument to increase the generation interval for traits exhib-
iting inbreeding depression since depression is proportional! to the level of
inbreeding and then it would increase faster in a scheme with restrictions
on AFG

When selection is based only on the individual performance of the candidates
(i.e. mass selection), the accuracy of selection is the same across age classes.
In practice, most breeding programmes make use of performance information
of relatives, including descendants, and therefore the selection criterion may
vary across age classes. For instance, with BLUP selection, the estimates of
breeding values of older individuals are expected to be more accurate than for
those for younger individuals since EBVs of older individuals are based on more
information. In schemes with no progeny testing, optimal generation intervals
with mass and BLUP selection may however be similar. On the one hand,
the rate of genetic gain is expected to be higher with BLUP and this gives
younger individuals an increased selective advantage. But on the other hand,
BLUP is also expected to give a higher rate of inbreeding and then for a specific
restriction on the inbreeding rate, BLUP may favour more parents from the
older age classes to be selected.

Two recent studies [8,16] have investigated optimal generation intervals for
schemes with overlapping generations using BLUP estimates as a predictor
of genetic merit. Meuwissen and Sonesson [16] found large increases in I in
schemes with progeny testing in comparison to schemes with no progeny testing.
With progeny testing, there is a lower intraclass correlation between EBVs of
sibs. Therefore, selection of progeny tested individuals will give more gain
at a fixed rate of inbreeding. However, the restrictions they applied were on
the annual rate of inbreeding, which leads to longer generation intervals than
restrictions per generation.

The methods of Meuwissen and Sonesson [16] and Grundy et al. [8] are
aimed to maximise progress with constraints on rates of inbreeding in the
routine operation of breeding schemes (day-to-day optimisation). This is a
different type of optimisation to the one we deal with in this study. Here the
optimisation is a prior:, to maximise gain given the basic design variables (avail-
able resources, trait selected and restriction on inbreeding). In this situation,
the ability to solve the problem depends on appropriate models for predicting
both rates of gain and inbreeding and on appropriate algorithms for obtaining
optimum solutions which maximise the objective function (® = AG — AAF).
Appropriate approaches for obtaining predictions of inbreeding with overlap-
ping generations have been described for index selection (including the index
approximating BLUP) |25, 26] but explicit formulae need to be developed. With
more variables to be optimised (e.g. index weights) with index selection, the
computer time required for finding the optimal solutions could be prohibit-
ively large for schemes with overlapping generations when using simulated
annealing algorithms (the number of evaluations of @ is already very large
with mass selection). Genetic algorithms [9,14,19] may prove to be useful in
this situation.

Predictions for the rates of progress and inbreeding used in the optimisa-
tion have assumed a population with equilibrium genetic parameters. With
constant selection intensities across generations, the rate of inbreeding reaches
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an equilibrium value after an appropriate number of generations. However,
the rate of progress would steadily decrease with time as a result of the
decrease in genetic variance. Here we have considered the rate of progress
at Bulmer equilibrium, thus ignoring further decreases in genetic variabil-
ity in later generations due to inbreeding. Villanueva and Woolliams [21]
found that under restricted inbreeding, the optimum schemes for maxim-
ising gain at different time horizons were very similar when the changes in
genetic variance due to inbreeding were accounted for in populations with
discrete generations. This could also be expected when generations overlap
since by restricting the rate of inbreeding the loss of genetic variance is also
restricted.

The highest optimal generation intervals (L) were found for the smallest
schemes and the most stringent restrictions on AFy. For T = 50, h? = 0.6
and AFy < 0.25, the optimal L was 1.94 (and N,, = Ny = 22). Let us
consider twenty years of selection which is equivalent to 20 or 10 generations
for L = 1 or L = 1.94, respectively. With discrete generations and account-
ing for the reduction in genetic variance due to inbreeding, the cumulative
gain was 0.0802 and 0.0836 after 20 and 10 generations, respectively. Thus
even with small schemes of size 50, the reduction in gain is not very large
when the rate of inbreeding and therefore the loss of genetic variability are
constrained.

In addition, in practice there will be new genetic variation produced by
mutation. If the only processes involved in the evolution of the genetic variance
are mutation and random drift then the population will eventually approach
an equilibrium where the loss in variance due to random drift will be balanced
by the new variation by mutation [13]. At equilibrium and on a generation
basis, the genetic variance can be approximated by o2, /AFg where o2, is the
mutational variance [13] and therefore the equilibrium value for the heritability
is h2, = (02 /AFG) [[(02,/ AFe) +02) = (02, /02)/[(02, /o2) + AFg], where o? is
the environmental variance. A recent estimate of the mutational variance scaled
by o2 for 6-week weight in the mouse is 02, /o2 = 0.0034 [5,13]. Assuming this
value for 02, /02 and a restriction on AFg of 1%, the equilibrium heritability is
0.25, which indicates that the mutation rate may be high enough to compensate
for the loss of genetic variability due to inbreeding when AFs < 1%. Less
conservative estimates of the mutational variance (e.g. [12]) would lead to even
higher values for the equilibrium heritability.
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