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Abstract — A strategy of multi-step minimal conditional regression analysis has been
developed to determine the existence of statistical testing and parameter estimation
for a quantitative trait locus (QTL) that are unaffected by linked QTLs. The estim-
ation of marker-QTL recombination frequency needs to consider only three cases:
1) the chromosome has only one QTL, 2) one side of the target QTL has one or more
QTLs, and 3) either side of the target QTL has one or more QTLs. Analytical formula
was derived to estimate marker-QTL recombination frequency for each of the three
cases. The formula involves two flanking markers for case 1), two flanking markers
plus a conditional marker for case 2}, and two flanking markers plus two conditional
markers for case 3). Each QTL variance and effect, and the total QTL variance were
also estimated using analytical formulae. Simulation data show that the formulae for
estimating marker-QTL recombination frequency could be a useful statistical tool for
fine QTL mapping. With 1000 observations, a QTL could be mapped to a narrow
chromosome region of 1.5 ¢cM if no linked QTL is present, and to a 2.8 ¢cM chromosome
region if either side of the target QTL has at least one linked QTL.

multiple markers / regression analysis / quantitative trait loci / QTL
detection / QTL parameters

Résumé — Détection d’un QTL et estimation de son effet par analyses de
régression sur plusieurs marqueurs. On a développé une stratégie basée sur I’ana-
lyse de régression en plusieurs étapes et & partir d’'un nombre minimum de marquenrs
pour détecter un QTL et évaluer son effet individuel sur le caractére indépendamment
de Pexistence d’autres Q'T'L liés. Trois cas sont i considérer pour estimer la fréquence
de recombinaison entre le marqueur et le QTL : 1} Il y a un seul QTL, 2) Il existe
a1 moins un autre QTL sur un des cotés du QTL recherchg, 3) Il existe au moins un
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QTL sur chacun des deux cotés du QTL recherché. La fréquence de recombinaison a
été estimée analytiquement dans les trois cas. La formule obtenue utilise Pinformation
sur les deux marqueurs flanquants dans le cas 1), sur les deux marqueurs flanquants
et sur un marqueur plus éloigné dans le cas 2), sur les deux marqueurs flanquants et
sur deux marqueurs plus éloignés dans le cas 3). Pour chague QTL ainsi détecté, on a
aussi développé analytiquement une estimation de son effet et de sa variance, et, pour
I'ensemble des QTL ainsi validés, de leur contribution totale & la variance génétique.
On a montré par simulation que les formules pour la fréquence de recombinaison
pouvaient é&tre utiles pour la cartographie fine de QTL. Amnsi, 1000 observations
permettaient de placer un QTL dans un intervalle de seulement 1,5 ¢cM s'il n'était
pas lié & un autre QTL, et de 2,8 cM s'il était lié & un autre QTL & sa droite ou a sa
gauche.

marqueurs multiples / analyse de régression / QTL / détection de QTL /
paramétres du QTL

1. INTRODUCTION

The mapping of a quantitative trait locus (QTL) using genetic markers
includes two central issues, detection of the QTL and estimation of the QTL
location and effect. Most current methods for QTL detection and estima-
tion are based on a likelihood analysis [13,16,17,19,20,29] or a regression
analysis [9,10,22,30]. These likelihood and the regression analyses require
numerical maximization of likelihood functions and yield similar results [9], but
the regression analysis is computationally more efficient and generally robust
for QTL detection [9,10,28]. For a quantitative trait affected by a single QTL,
most of these methods could detect the QTL with good accuracy. However,
fine QTL mapping and mapping linked JTLs remain to be challenging tasks
in QTL analysis [6,21,31]. Several methods are available for mapping linked
QTLs, but unsolved problems exist. Whittaker et al. [26] developed analytical
formulae based on regression analysis to estimate the marker-QTL recombina-
tion frequency and the QTL effect for an F2 population without the influence of
linked QTLs under the assumption of an “isolated” QTT, as defined by Martinez
and Curnow [22]. With these formulae, numerical maximization is no longer
necessary such that statistical analysis becomes more efficient computationally.
This computational efficiency is appealing for complex QTL mapping issues
such as multiple traits and categorical data. In addition, parameter estimation
based on regression coefficients is robust against violations in the underlying
distribution assumptions. However, these formulae in fact do not apply when
two or more linked QTLs exist on the same chromosome even if these QTLs
are isolated, because necessary conditional analysis to separate linked QTLs
was not applied. The use of a pair of flanking markers is the main idea of
interval mapping [19] but this method may yield wrong QTL locations when
linked QTLs are present [22]. A multi-marker analysis [15] and composite
interval mapping based on multi-marker analysis [29] have been proposed to
improve the precision of QTL mapping. However, these methods do not solve
the problem of wrong QTL locations of interval mapping if linked QTLs are
not appropriately separated by markers, because these methods do not have
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a mechanism to distinguish between a QTL independent of linked QTLs and
a QTL correlated with linked QTLs. Consequently, mis-identification of QTLs
and seriously biased parameter estimation may occur (as shown in this study).
Without a mechanism allowing to make such a distinction, it is also difficult
to conclude whether the QTL location was identified correctly even if strong
statistical evidence exists to support the existence of the QTTL. A multi-marker
analysis using all available markers have practical problems such as reduced
statistical power [29]. Although multi-marker analysis is implemented in some
software packages, this analysis does not yet secem to be widely used [25].
One factor affecting the widespread usage of multi-marker analysis in animal
populations is the joint marker informativeness. Fitting multiple markers may
result in reduced sample size due to the reduced number of informative offspring
for multiple markers, because the joint marker informativeness decreases as the
number of markers increases [5]. Jansen [14] suggested selecting only statistic-
ally significant markers using a standard regression analysis, but this selection
may still require fitting a large number of markers before a small number of
markers is selected, and may result in incorrect QTL locations and biased
estimates due to improperly separated QTLs.

The purpose of this study was to develop a new approach to map each
individual QTL to a specific chromosome region and to cobtain independent
testing and estimation of QTL parameters (QTL location and effect) for each
QTL without the influence of linked QTLs. This approach uses a multi-step
regression analysis for detecting each QTL. Once a QTL is identified, estimation
of the exact QTL location, the size of the QTL effect, and the total QTL
variance is accomplished using analytical formulae. Both the QTL detection
and parameter estimation use a minimal number of markers per analysis while
ensuring the target QTL is unaffected by linked QTLs.

2. METHOD

2.1. General assumptions

Two designs for QTL detection were considered, a one-way backcross design
and an F2 design resulting from matings between the F1 offspring. Parental
lines were assumed to have homozygous marker and QTL genotypes. Under
this assumption, offspring of the one-way backcross had two marker genotypes
and two QTL genotypes, the F2 offspring had three marker and three QTL
genotypes, and alternative marker and QTL alleles in both designs had equal
allele frequencies in the offspring (see appendix). For the F2 design, homozyg-
ous marker genotypes were used to estimate the additive effect. Heterozygous
F2 marker genotypes were not used for estimating the additive effect because
they contained redundant information about the additive effect contained in
homozygous marker genotypes. When dominant effect is absent, heterozygous
and homozygous marker averages contain completely redundant information,
because the heterozygous marker average can be expressed by the averages of
the homozygous markers [4]. When dominance effect is present, the inference
about additive effects using both homozygous and heterozygous markers is
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affected by dominance effects. Chiasma interference was assumed to be absent
so that the relationship between recombination frequencies of three adjacent
loci in the order A-B-C is given by 840 = 0ap + 0pc — 204598 (8], where
8 = recombination frequency. The QTL genotypic difference is the difference
between the homozygous QTL genotype and the heterozygous genotype for
the one-way backcross and is the difference between two homozygous QTL
genotypes for the F2 design (Appendix). The one-way backcross design does
not have information to separate additive and dominance effects whereas the
F2 design does have such information [4]. Application of the results obtained
for the one-way backcross and F2 designs to a segregating population such as
the granddaughter design [27] will be discussed.

2.2. A strategy of multi-step analysis

The main goal of this strategy was to obtain independent testing and para-
meter estimation for each QTL without the influence of linked QTLs. A min-
imal number of markers was used per analysis to achieve this goal, because this
is more practical for animal populations and yields simple analytical formulae
for QTL parameter estimation. The first step was to evaluate whether the
chromosome contained one QTL or more than one QTL, and whether a marker
interval containing a QTL was a “continuous” or “discrete” interval based on the
statistical significance of the partial regression coefficient of each marker. A
continuous interval contains a single QTL flanked by two markers that share
a common marker with another marker interval containing at least one QTL.
A discrete interval contains a single QTL flanked by two markers but does
not share a common marker with another marker interval containing at least
one QTL. For examples, in 4A-Q1-B-Q2-C, A-Q1-B and B-Q2-C are both
continuous intervals because these two intervals share a common marker B;
in A-Q1-B-C-Q2-D, A-Q1-B and C-Q2-D are both discrete intervals because
these two intervals do not share a common marker, where Q1 and Q2 are QTLs,
and A, B, C, and D are markers. For a continuous interval, independent testing
for the QTL effect is possible but independent parameter estimation for each
QTL is impossible using flanking markers because the number of unknowns
is more than the number of equations for the unknowns. For example, in A-
Q1-B-Q2-C, the significance testing for marker A conditional on marker B
offers an independent test for the existence of Q1. However, it is impossible to
estimate the QTL effect of 1 or the recombination frequency between Q1 and
marker A or B without the influence of 2. With appropriate conditioning
on genetic markers, inference on QTL within a discrete interval can be made
independent of QTLs existing outside this interval [15,23,29,30]. Based on this
result, both independent testing and parameter estimation are available for a
discrete interval.

This section presents a method that distinguishes between one QTL and
more than one QTL and identifies continuous and discrete intervals if linked
QTLs exist using a multi-step minimal conditional analysis. This analysis is
a multi-step regression analysis because cne conditional analysis is conducted
for each marker; it is a minimal conditional analysis because only one to three
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markers are involved per analysis for QTL detection and parameter estimation.
The statistical model for the multi-step analysis can be described by

z [s]
y=2ﬁg+a¢jbj+2mkbk+£ (]_)
=1

k=1

3=

where y = the phenotypic observation of an individual, 5, = fixed effect ¢ such
as the general mean of the phenotypic value or herd effect, ¢ = number of fixed
effects, z; = independent variable of flanking marker j taking the value of 1
or —1, b, = partial regression coefficient of y on flanking marker 7, xy and b
are the independent variable and partial regression coefficient for conditional
marker k, ¢ = number of conditional markers ¢ = (1 or 2), and £ = phenotypic
residual value. Polygenic effects on other chromosomes can be modeled by
including random additive effects in model (1) with usual assumptions as in a
mixed model [11].

The significance of the partial regression coefficient of each flanking marker
was used to identify the presence of a QTL on either side of the marker. For
example, given the chromosome interval A-B-C| if the partial regression coeffi-
cient of marker A given conditional marker B is significant, then a QTL may be
present on either side of marker A. However, this partial coefficient alone does
not have information about which side of marker A may contain a QTL. If the
partial regression coeflicient of marker B given conditional markers A and C' is
insignificant, then neither side of marker 5 contains a QTL and the significant
effect of marker A must be due to a QTL to the left of marker A. Note that
a conditional marker is used to separate linked QTLs so that linked QTLs do
not affect the target QTL for QTL testing and parameter estimation, but the
conditional marker itself is not used to test the presence of a particular QTL
or to estimate the QTL parameters. With this type of multi-step conditional
analysis for each marker, a method can be developed to distinguish between one
QTL and more than one QTL, and between continuous and discrete intervals.
This method can be summarized as follows.

1. Ifbgpg =0 bgac >0,bcpp > 0and bp o =0, then only one QTT. exists
in the chromosome region of A-D and the marker-QTL order is A-B-Q-C-D.

2. 0 bag =0,bpac >0,bcep >0, bpeorg > 0, and bg p = 0, then two
QTLs exist in two continuous intervals, i.e., A-B-Q1-C-Q2-D-E.

3. Ifby =0,bac >0, bcpp > 0,bpce =0, bgpr > 0, bree > 0,
and bgp = 0, then two QTLs are present in two discrete intervals, z.e.,
A-B-Q1-C-D-E-Q2-F-G.

In the above algorithms, b4 p = partial regression coeflicient of marker A
conditional on marker B, bg 4c = partial regression coefficient of marker B
conditional on markers A and C, “> (” indicates a significant marker effect,
and “= 0” mdicates an insignificant marker effect fromn the conditional analysis.
With sufficient marker coverage, these algorithms should be able to define a
discrete interval for each QTL. If the marker coverage is insufficient, these
algorithms could identify chromosome locations to place more markers to obtain
discrete intervals. For example, algorithm 2 indicates that adding a marker
to each side of marker C could define two discrete intervals similar to those
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Figure 1. Multi-step analysis for simulated QTL genotypic values consist of four
QTLs. The locus spanned by a dotted line is a QTL. Multi-step analysis correctly
identified all four QTLs, two in discrete intervals (loci 2 and 6} and two in continuous
intervals (loci 9 and 11). Estimates of marker-QTL recombination frequencies and
the QTL effects involving the two QTLs in discrete intervals are nearly unbiased. The
discovery of two contmuous mntervals suggests that adding a marker on either side of
locus 10 may result in independent parameter estimation for the two QTLs (loci 9
and 11) in the continuous intervals.

defined by algorithm 3. In the case of three neighboring statistically significant
markers, such as loci 7, 8 and 10 in Figure 1, it may not be clear whether each
of the two adjacent intervals contains a QTL. This potential ambiguity can
be clarified by removing the identified QTLs to one side of a flanking marker
and then test the significance of the flanking marker. This removal can be
achieved by subtracting (1 — 26p4)a from the right-hand-side of the normal
equations for model (1), where « is the effect of the identified QTL, and Oy, is
the recombination between marker M and the identified QTL. If this marker is
still significant, then the other side of this marker also has a QTL. The valley
point at marker 4 was a result of this test, indicating no QTL in the interval
between loci 3 and 4 (Fig. 1).

The multi-step analysis yields simple mathematical formulae for independent,
estimation of QTL parameters for each QTL. To derive formulae for QTL
parameter estimation, only three cases need to be considered: 1) the target
QTL is the only QTL on the chromosome, 2) one side of the target QTL
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within a discrete interval has one or more QTLs, and 3) either side of the
target QTL within a discrete interval has one or more QTLs. For convenience
of presentation and discussion, we use “side interval” to refer to case 2), and
“middle interval” to refer to case 3).

2.3. QTL parameters for a single QTL

The derivation of formulae for QTL parameters starts with a mixed linear
model for a single QTL fitted with a single marker. Assuming a single QTL on
each chromosome, this mixed model can be described as

Gy =pt+my;+1y (2)

where ¢,, = quantitative value of QTL genotype @, (i = 1,2), p = fixed effect
of common mean, m; = effect of marker j (j = 1,2), and r,; = recombination
residual of the QTL value not explained by the common mean and the marker
effect. Treating the marker effect (m,) as random, the first and second moments
of model (2) are E(g,;) = p and var(q,,) = var(m,) + var(r,) = 03 = o2, + 02,

where 03 = variance of the QTL value, o2, = variance of marker effects, and
o2 == variance of recombination residuals. For both the backcross design and
the F2 design using homozygous markers only, the variances of QTL value, the

marker effect and recombination residual can be expressed as:

o2 = %Lag (3)
1

o2 = it 20)2a? (4)

02 =9(1— 8)? (5)

where o = the difference between two alternative QTL genotypes for the
backcross design or the F2 design, and 6 = recombination frequency between
the marker and the QTL. Note that recombination residual variance is non-
zero only when the marker-QTL linkage is incomplete and that the marker
variance equals the QTL variance when the marker-QTL linkage is complete.
It is important to note that the definitions for o under the two designs are
different in terms of additive effects (see Appendix). From equations (3-5), the
marker-QTL recombination frequency and the QTL effect can be expressed as

0= [1-VoBT (0% v D) (©)
|| = 204. (7)

Equation (6) has the advantage that estimates of € are guaranteed to be within
the parameter space if an estimate of each variance component is nonnegative,
ie., 0 <8 < 1/2 because 0 < ¢2,/(02, + 02) < 1. Equation {7) shows that
the QTL effect is simply twice the standard deviation of the QTL values. The
phenotypic correspondence of model (2) can be denoted by

Yog = +My+ 7+ ey = p+m, +e (8)
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where y,; — the phenotypic value of individual j with marker genotype 4,
€,; = random residual and &,, = 1y, +e,; with 02 = 02+02. In equation (6), 52,
is available from model (8) as a variance component of the marker effect but
o2 is unavailable because o2 and o2 cannot be separated by a single-marker
model due to confounding between r,, and e,;,. When two flanking markers
are available, 62 can be avoided by using 02 = 62, + o2 in equation (6) or
estimated as shown by the two equations below equation (14), either using two
separate analyses of single-marker models, or a joint two-marker analysis. This
study used two separate single-marker analyses according to our strategy to
use a minimal number of markers per analysis. The statistical models for the
two single-marker analyses to estimate o2 can be described as y,; = p+ma, +
(7., +es;) and Y = p+mpg-+(rk +ex). Let the marker-QTL order be A-¢g-B,
where A and B are flanking markers and q is the QTL, 84, = recombination
frequency between marker A and the QTL, fg; = recombination frequency
between marker B and the QTL, and 8,45 = recombination frequency between
flanking markers A and B (assumed known), and let the estimates of marker
variances for these two models be denoted by 0% and c% respectively. Then,
noting a0 = 1/4(1 — 2048)0?, 62 = 040p/(1 — 204g), and substituting o2
into equation (6), f,4, can be expressed as

ﬁAq=% [l—\/(1~—29AB)O'A/UB}. (9)
When the QTL is located exactly in the middle of markers A and B, we.
Oaq = OBq and 0 44/0p4 = 1, equation (9) is reduced to the estimation of 4,
and fpq based on Oap = 0, + 0pqg — 260449p,. Therefore, the ratio ca/op
can be considered as an adjustment for unequal marker-QTL distances between
the QTL and the two flanking markers to the estimation obtained by assuming
equal marker-QTL distance. When an estimate of 64 is available, 8, can be
estimated using the relationship between recombination frequencies involving
the flanking markers and the QTL under the assumption of no interference, i.e.,

0y = (Opc — Oaq)/(1 — 20,4,). (10)

Equivalently, 04, and opg in equation (9) can be replaced by the ratio of
the absolute values of the regression coefficients each from a single marker
analysis, i.e.,

90 = 5 [1— /T~ 20a5)lba/bs]] (11)

A proof for equation (11) is given in the Appendix. The absolute sign for the
regression coefficients is to account for the possibility that the two regression
coefficients have different signs due to a repulsion phase of the flanking mark-
ers with respect to QTL effects. During our data simulation, we noted that
random data errors could cause regression coefficients of flanking markers to
have opposite signs. The chance for this problem to occur decreases as the
sample size and marker-QTT. distance increase. The regression coefficients in
equation (11) can be obtained in three ways, (i} from normal equations based
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variances and covariances [30], (ii) from model (8) as the difference between the
two marker effects, or (iii) from model (1). For purposes of estimating marker-
QTL recombination frequency and significance testing, these three methods
yield identical results in terms of estimates and statistical significance. How-
ever, in terms of estimating the QTL variances (equations 3-5) and the size
of the QTL effect (equation 7), the result from method (iii) is different from
those of methods (i) and (ii), because the partial regression coeflicient from
method (iii) is half of that from methods (i) and (ii). In equation (11) and
in formulae derived below for parameter estimation, regression coefficients are
assumed to be from method (iii), because this method uses a marker contrast
that is independent of dominance effect [3] and is convenient to deal with the
problem of non-informative offspring in segregating populations.

Once the marker-QTL recombination frequency for each flanking marker
is awailable, two separate estimates of QTL wvariance are available based on
regression coeflicients of flanking markers, i.e.,

g = b4/(1—04,) (12)
ogp = bh/ (1~ 08,)". (13)

A weighted average of the two estimates of QTL variance can then be devised.
While the best weighting method is a subject of further study, it is reasonable
to use a weight that is a function of the sample size for each marker and
an inverse function of the marker-QTL recombination frequency, z.e., wq =
n4/0aq, wp = np/fpg, where ny and np are the sample sizes for markers 4
and B. Then, the weighted average of the QTL variance is

63 = (’LUAO'gA +7HBO'§B) /('HJA +wB). (14)

The recombination residual variance for each marker can then be obtained
based on equations (3), (5), and (14), i.e, 02, = 4844(1 — B44)03, 02 =
40p(1 — 8p)o2. Estimate for the size of the QTL effect is obtained by substi-
tuting equation (14) into equation (7).

When linked QTLs are present, analytical formulae for QTL parameters
are available only for discrete intervals. For continuous intervals, analytical
formulae for QTL parameters are possible only after additional markers are
used to divide these intervals into discrete intervals. Two sets of formulae are
required to estimate QTL parameters for discrete intervals: one set for side
intervals, and one set for middle intervals.

2.4. QTL parameters for a side interval

For a side interval, Q1-A-B-Q2-C is used as an example to derive formulae
of QTL parameters, where 1 and Q2 are two QTLs, and A, B and C are
markers. Let g = g1, + ga; = the QTL genotypic value of an individual, where
g1; = the value of genotype ¢ (i = 1,2) of Q1 and go, = the value of genotype
F (7 =1,2) of Q2, and let byp 4 and byc g be the partial regression coefficients
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of markers A and C respectively, then

1
qu A= 5(1 - 2932)(12 (15)

(1 —260p2)0pc(1 — 930) o
2(1 — 26’3(;)932(1 — 932) 2

boc.B = (16)

Replacing the QTL genotypic value (g) by the phenotypic value (y) in the
regression coefficients of equations (15-16) and letting w = [byp. 4 /byc B], the
recombination frequency between marker B and Q2(052) can be expressed as

O — é [1 3 \/1 46pc(1 —b5c) ] _ (17)

a (l — 20pc)w + 40pc(1 — 8pc)

From equations {3) and (15-16), estimates of the QTL variance of Q2 based
on markers B or C can be obtained as

byga 17
2 _ | Y
748 [1 - 2952] (18)
2 _ [(1—20pc)0R2(1—0B2) 2
TeC = [(1 — 2032)0pc(1 — 85¢) bios| (19)

Then, the weighted average of the QTL variance for 2 is obtained by substi-
tuting equations (18-19) into equation (14), and the size of the QTL effect is
obtained by substituting equation (14) into equation (7).

2.5. QTL parameters for a middle interval

For a middle interval, the marker-QTL order Q1-A-B-Q2-C-D-Q)3 is used as
an example and Q2 is assumed to be the target QTL for parameter estimation,
where 1, Q2 and @3 are QTLs and A, B, C, and D are markers. Let ¢ =
g1 + G2, + qar = the QTL genotypic value of an individual, where q;, = the
value of genotype ¢ (i = 1,2} of Q1, g2; = the value of genotype j (7 = 1,2)
of Q2, gz = the value of genotype k (k = 1,2) of @3. Based on a general
expresston for the partial regression coefficient of a marker conditional on two
flanking markers in [30], the partial regression coefficients of markers B and C'
that involves only @2 can be expressed as

Opc(l —8pc) — 0pa(l —~ Opa)
2(1 - 20p2)0pc(1 — 8pc)

932(1 - 332)(1 — 253(;) s
2(1 — 20p2)0pc(l — 0pc) .

beB AC = (6% {20)

bsc.BD = (21)

Replacing the QTL genotypic value (g) by the phenotypic value (y) in the
regression coeflicients of equations (20-21) and letting w = |bys ac/byc.BD|,
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the recombination frequency between each flanking marker and the QTL can

be expressed as

1 + (1 — 2930)11)

From equations (3) and (22), estimates of the QTL variance of Q1 based on
partial regression coefficient of markers A or B can be obtained as

5 (1 = 205)05c(1 — 8pc) ]2
= b 23
7B [930(1 — fpe) — 0p2(1 — Op2) uB AC (28)
2 (l — 2332)930(1 - 930) 2
790 = [932(1 — 652)(1 —205c) VOEP) (24)

2.6. Parameter space

Of the three formulae for estimating marker-QTL recombination frequency,
two formulae (equations 17 and 22) guarantee the estimates to be within the
parameter space of 0 < & < 1/2, but one (equation 11) does not offer such
a guarantee. Estimates from equation {11) are within the parameter space
of 0 < @ < 1/2 only when |[ba/bp| < 1/(1 — 2845). To guarantee estimates
to be within the parameter space, equation (11) can be replaced by either
equation (17) or equation (22), at the expense of potentially larger variations
in estimates, as discussed in Section 3.

2,7. Multiple alleles

Formulae presented above apply to multiple marker alleles if each QTL has
only two alleles and a nested model with marker nested within family is used,
such as the nested models used in Ashwell ef al. [1] and Heyen et ol. [12].
When multiple QTL alleles are present, these formulae apply when each family
is analyzed separately, as is done in Ashwell et al. [1] and Heyen et al. [12].
Across-family analysis assuming multiple QTL alleles remains to be studied.

2.8. Total QTL variance

Once independent estimates of the variance for each QTL are obtained, the
total QTL variance of detected QTLs is available as a sum of QTL variances
across the genome, t.e.,

03 =0‘31—|—---+a§n.
This total QTL variance would provide a complete description of additive inher-
itance and an estimate of heritability of the quantitative trait using information
about the genes of the quantitative trait rather than the traditional approach
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of resemblance between relatives if all QTLs are identified by genetic markers.
For a given set of markers, however, this total QTL variance does not include
variances of QTLs unlinked with the available genetic markers. To account for
variances of unidentified QTLs, fitting a random polygenic effect in model (1)
should help.

2.9. Application to segregating population

The analysis of a segregating population such as the granddaughter
design [27] is similar to the backcross design or the F2 design using homo-
zygous marker genotypes, except that the QTL effect («) in the mathematical
formulae is now defined as the difference of the parental QTL alleles. For the
granddaughter design, the QTL effect is the difference between two alternative
sire QTL alleles. Therefore, results obtained for the backcross and F2 designs
are in principle applicable to segregating populations. The only problem that
requires additional statistical treatment is non-informative offspring. Geno-
types of non-informative offspring cannot unequivocally determine the marker
allele transmission from the parents to the offspring [5] and result in loss of
information for QTL analysis. For microsatellite markers in dairy cattle, non-
informative offspring account for about 256% of the sons [1], resulting in about
25% sample size reduction if these sons are not used. Dentine and Cowan [7]
proposed a regression model that makes use of non-informative offspring by
linking the quantitative trait with the grandparental marker alleles using pop-
ulation allele frequencies. We propose an alternative method to predict parental
allele transmission for non-informative offspring using linked markers for QTL
analysis. This method is described below for the granddaughter design. Let
yr = observation of offspring %k, yu = general mean of the quantitative trait,
b = the marker regression coeflicient = the difference between two marker
allele effects, and er = the random phenotypic residual of the quantitative
trait. Then, the statistical model can be described as

Y =p+xb+ep (25}

where £ = 1 or —1 for informative offspring, or £ = p — ¢ or ¢ — p for non-
informative offspring, and where p = the transmitting probability that the
offspring inherits marker allele 7 from the sire, ¢ = the transmitting probability
that the offspring inherits marker allele j from the sire. The assignment
of the « value is dependent on the sire marker allele or haplotype of linked
marker(s) the offspring inherits, as shown by the calculation of the transmitting
probabilities (p and g) in Table I, where the non-informative marker is denoted
by A, and two linked markers are denoted by B and C. Two alleles of two
adjacent markers are assumed as nonrecombinant type if they have the same
subscript (1 or 2) and are recombinant type if they have different subscripts
(1 and 2). Chiasma interference is assumed absent. The calculations of p and
g for the order A-B-C (non-informative marker not flanked by two markers)
shows that a marker separated from the non-informative marker does not
contribute information to the inference about the allele transmission of the
non-informative marker. Therefore, the use of more than one marker on one
side of the non-informative marker is unnecessary. The calculations of p and ¢
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Table I. Calculation of allele transmitting probabilities for non-informative marker ¢
using information of linked markers.

Locus Marker Prob{4,/BC} Marker  Prob{A./BC}
order alleles alleles
B and C Band C

A-B-C B,.C, p=1—04p BsCy g=1048

B1Cs p=1—06an B:Cy g="0aB
BAC B,Ch p— (1 —6ap)(l —8ac) BaCo _ Banbac

d (&) d
1—645)8 Gap{(l—8
B, Cy p= uw B, qg= M
fsc fzc

(2} Marker A in this table is the non-informative marker.
M d=(1-0ap)(1—0ac) + baBbac.

for the order B-A-C shows that flanking markers contribute more information
than a single adjacent marker. Therefore, whenever possible, flanking markers
should be used to calculate the probability of allele transmission of the non-
informative marker. Model (25) can be readily extended to include more
than one marker. Once the partial regression coefficient of each marker is
obtained, formulae for QTL parameter estimation can be applied. The benefit
of including non-informative offspring using information of linked markers
can be measured by the relative efficiency of the two alternative models.
Following Dentine and Cowan [7], the relative efficiency of the regression
model using full data to the regression model using informative offspring only
will be defined as the ratio of two variances. Let vy = variance of marker
regression coeflicient using full data, and v = variance of marker regression
coefficient using informative offspring only. Then the relative efficiency (R) of
using full data versus using informative offspring only is B = v/v;. Using full
data is more beneficial if R > 1, and has no benefit if & = 1. The variance of
the regression coefficient using informative offspring only is v = ¢2/n, where
n = number of informative offspring. Similarly, it can be shown that the
variance of the regression coefficient using full data is

v =02/ [n+no(p— q)°] (26)
where ny = number of non-informative offspring. Therefore, the relative
efficiency of using full data versus using informative offspring only is

R =1+ (no/m)(p— ). (27)

Equation (26) has an important implication to the calculation of degrees of free-
dom for testing QTL effect using a statistical test that requires the calculation
of degrees of freedom, such as the t-test and the F-test. To calculate the degrees
of freedom for the residual sum of squares, the total number of observations is
required. Equation (26) implies that the total number of observations for using
full data is n + ng(p — )%, not n + ng. The use of total number of offspring
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(n + no) as the degrees of freedom could greatly exaggerate the efficiency of
including non-informative offspring in the statistical analysis. Equation (27)
shows that including non-informative offspring is always beneficial unless the
linked markers are far from the non-informative marker (p = g). The benefit
increases as the number of informative offspring and the distance between
the non-informative marker and linked markers decrease. The maximum
information increase is the frequency of non-informative offspring measured
by np/n. This maximum is reached when the non-informative marker and
flanking markers are completely linked so that p— ¢ = 1.

3. SIMULATION RESULTS AND DISCUSSION

Seven sets of simulation data were used to test the method of the multi-step
analysis for QTL detection and the formulae for QTL parameter estimation
developed in this study.

3.1. Data simulation

Data set 1 was used to test the method of the multi-step analysis for QTL
detection. This set had 1558 observations that yielded equal recombination
frequencies between adjacent markers for 12 marker and QTL genotypes on
the same chromosome. Loci 2, 6, 9 and 11 were assumed to be the four QTLs,
and the rest of the loci were markers. The recombination frequency between
each pair of adjacent loci was 0.1502. Each QTL had a variance of 0.25. The
QTL genotypic value was assumed to be the sum of the genotypic values of
the four QTLs. The four QTLs were assumed to be in coupling linkage phase,
i.e., each parent had the following QTL genotype (1-Q2-Q3-Q4/q1-92-93-q4,
where the quantitative value for each QTL allele was 2 for @1, Q2, @3, and @4,
and was 1 for g1, 92,q3, and g4. To study the true patterns of the multi-step
analysis and other methods to be compared without the influence of random
errors, no random errors were added to the QTL genotypic values. Data set 2
was used to evaluate the performance of the formulae for parameter estimation
for medium recombination frequencies (0.10 ~ 0.20). This set had 30 samples
with 500 observations in each sample. Data sets 3 through 7 were used to
test the formulae for narrow marker intervals (1 ~ 2 cM). These five sets
had sample sizes of 1000 ~ 5000 in the increment of 1000, and each of the
five sets had 30 samples. These relatively large sample sizes were used for two
rcasons, to ensure that a sufficient number of recombinants were present, and to
test whether the accuracy for parameter estimation improved as the sample size
increased. Data sets 2 through 7 had the true order Q1-A4-B-Q2-C-D-Q3, where
@1, @2, and @3 were QTLs with genotypic values g1, g2, and g3 respectively, and
A, B,C, and D were genetic markers. For data set 2, recombination frequencies
were 1-(0.2)-A-(0.1)-B-(0.2)-Q2-(0.1)-C-(0.2)-D-(0.1)-Q3, where the number
in each ( ) is the recombination frequency between adjacent loci. For data sets
3 ~ 7, a recombination frequency of 0.01 was assumed for each pair of adjacent
loci. The genotypic data for the marker loci and QTLs were generated in such a
way that the assumed true parameters used to generate the data were reversely
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obtainable from the simulated data if no rounding of the genotypic probability
occurred. With multiple loci, the actual parameters in the simulated data may
not have been exactly the same as the assumed frue parameters due to the
rounding of each genotypic probability. In the simulated data set, the realized
parameters were either exactly the same as or only slightly different from the
true parameters. In the statistical analysis, the realized parameters were used
as the true parameters. For each sample, random residuals following a N (0,1)
distribution were generated using SAS [24]. For data sets 2 through 7, the target
QTL was ()2, i.e., recombination frequencies between ()2 and its flanking mark-
ers B and C were to be estimated. The total QTL genotypic value (¢) is ¢ = ¢
for a single QTL, g = g1 +g» for a side interval, and ¢ = g1 + g9 +¢3 for a middle
interval. Each QTL had a variance of 0.25. Each phenotypic value was a sum of
the QTL genotypic value and a random residual, i.e., y = g+e, with phenotypic
variance of 07 = 05 +02. The QTL heritability (= o2 /07) of each QTL was 0.2
for the case of one QTL, 0.167 for side interval, and 0.143 for middle interval.

3.2, QTL detection

Figure 1 shows that the multi-step analysis correctly identified all four QTLs
according to algorithms 1-3, two in discrete intervals (loci 2 and 6) and two in
continuous intervals (loci 9 and 11). Estimates of marker-QTL recombination
frequencies and QTL effects for the two QTLs in discrete intervals were nearly
unbiased. For the two QTLs in continuous intervals, independent parameter
estimation is impossible. However, with the information that either side of
locus 10 may have a QTL, adding a marker to either side of locus 10 may
result in independent parameter estimation for each of the two QTLs, and hence
significantly improve the accuracy of QTL detection and parameter estimation.
Interval mapping [19] and composite interval mapping [29] were also applied
to the data in Figure 1, using the ZMAPQTL and EQTL programs in the
computer package of QTL Cartographer Version 1.12 [2]. Interval mapping
identified seven QTLs, as shown by the seven peaks in Figure 2, whereas only
four QTLs exist. None of the parameter estimates was close to the true para-
meters. This indicates that interval mapping is an inappropriate analysis when
linked QTLs are present. Composite interval mapping identified three QTLs,
as shown by the three peaks in Figure 2. The two QTLs in discrete intervals
(loci 2 and 6) were correctly identified and the parameter estimates for these
two (QTLs were nearly unbiased. However, the two QTLs in continuous intervals
(loci 9 and 11) were mistakenly considered as one QTL by composite inter-
val mapping, with the marker-QTL order of loc10-(0.2201)-Q-(0.0791)-loc12,
where the number in () is the recombination frequency between adjacent loci.
However, the true order in fact is Q-(0.1502)-loc10-(0.1502)-@-(0.1502)-loc12.
The estimate of QTL effect for the wrong QTL was 1.488, whereas the true
value was 1.0 for each of the two true QTLs. These wrong results can be a
serious problem for gene cloning because gene cloning requires highly accurate
location estimation. Moreover, it is difficult to determine which of the three
QTLs identified by composite interval mapping in Figure 2 is a correct result
without defining discrete and continuous intervals. Therefore, a mechanism to
distinguish between discrete and continuous intervals is important for accurate
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Figure 2. Interval mapping and composite interval mapping for simulated QTL
genotypic values consist of four QTLs The true locations of the four QTLs are
shown in Figure 1. Interval mapping (dotted line) identified seven QTLs and yielded
incorrect parameter estimates. Composite interval mapping (solid line) identified
three QTLs. The two QTLs in discrete intervals were correctly identified, whereas
the two QTLs in continuous intervals were mis-identified as one QTL.

QTL detection and parameter estimation when linked QTLs are present. The
QTL Cartographer [2] also offers an option to analyze a subset of markers per
analysis. With this option, the number of markers per analysis can be reduced.
However, this option does not provide a mechanism to distinguish between
discrete and continuous intervals.

3.3. Estimation of recombination frequencies

The mean of the estimates from 30 simulations for each parameter of both
medium and narrow recombination frequencies {Tabs. II and III} show that
most averages of the estimates for marker-QTL recombination frequencies were
close to the true parameters for the given sample sizes. Bias in estimates
measured by the difference between the mean of estimates and the true para-
meter was mostly a few percentages of the true parameter. Therefore, bias
of the estimates from all formulae appeared to be negligible even for narrow
recombination frequencies. However, in terms of variation of the estimates,
different formulae showed different performances.

For medium recombination frequency (6 = 0.10 or 0.20), the standard devi-
ation (SD) of the estimates were in the range of 0.022 ~ 0.039 (Tab. 1),
the 95% confidence interval of the estimates for marker-QTL recombination
frequencies was in the range of mean +0.044 ~ 0.078 (obtained by multiplying
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Table II. Estimates of medium marker-QTL recombination frequency (.

Formula 6 ® cvie fp @ Cv

for (true § = 0.204) (%) (true 6 = 0.10) (%)
Mean + §D Mean + SD

One QTL 0.208 4- 0.022 10 58 0.087 1 0.030 34.48

Side interval 0.207 £ 0025 12 08 0.087 + 0.035 40.22

Middle interval 0.213 1+ 0.028 13.15 0.079 £ 0.039 49.36

(*) Based on 30 samples of simulated data sets each with 500 observations.

() Recombination frequency between the QTL and the left flanking marker and
the QTL.

{2} OV = coefficient of variation = SD/Mean.

&) Recombination frequency between the QTL and the right flanking marker and
the QTL

¢} 8D = standard deviation.

Table III. Estimation of narrow marker-QTL recombination frequency for simulated
data ).

Sample size Formula Estimate of 8 Estimate of Op
(true 6, (b}) Mean SD@ CV®  Mean SD cv
(true 85 ) (%) (%)
1000 One QTL 00103 0.0038 374 0.0099 0.0038 38.7
(0 01°) Side interval 00105 0.0053 51.2 0.0096 0.0055 568
(0.01°) Middle interval 0.0097 00090 929 0.0103 0.0091 879
2000 One QTL 0.0102 0.0038 37.2 0.0100 0.0038 37.8
(0 01®) Side interval 00094 0.0036 381 0.0108 0.0045 331

(0.01°) Middle interval 0.0093 0.0045 48.3 0.0109 0.0044 40.7

=) For each sample size, 30 samples of simulated data sets were generated to
obtain the average, standard deviation, and coeflicient of variation of estimates of
marker-QTL recombination frequency between each marker and the QTL.

b} Recombination frequency between the QTL and the marker to the left of the
QTL.

() Recombination frequency between the QTL and the marker to the right of the
QTL.

@) SD = standard deviation.

&) OV = coefficient of variation = SD/Mean

the SD by 1.96), and the coefficient of variation (CV) was in the range of 10.58—
40.46%. For the same sample size and true parameter, the formmulae with more
conditional markers yielded larger variances of the estimates than formulae with
fewer conditional marker(s). For example, for the data in Table IT, conditioning
on two markers had a CV of 13.15% whereas the formula without conditioning
had a CV of 10.58% for estimates of the true parameter 8y, = 0.204. A possible
interpretation of these increased variation is that the relative heritability of a
QTL decreases as the number of QTLs increases, because the total phenotypic
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Table IV. Estimates of marker-QTL recombination frequency from different
formulae ().

Formula, for 8. ™ (true 8 = 0.202) 8z (true § = 0.10)
Mean + SD Mean + SD
One QTL 0.200 £ 0.0161 0.102 £ 0.0209
Side interval 0.200 £ 0.0174 0.102 £ 0.0226
Middle interval 0.199 4+ 0.0181 0.103 & 0.0233

(*) Based on 30 samples of simulated data sets each with 1000 observations. Only
one QTL is assumed for all three sets of formulae.

(b) Recombination frequency between the QTL and the left flanking marker and
the QTL.

(&) Recombination frequency between the QTL and the right flanking marker and
the QTL.

@ SD = standard deviation.

variance increases as the number of genes increases. To exclude this possibility,
the three sets of formulae were applied to the same set of data with only
one QTL, 1000 observations, and a total of 30 simulations repeats. Results
of these simulations confirm that conditioning on more markers does result
in larger variations of parameter estimates (Tab. IV) and hence decreases the
performance of the formulation. Therefore, conditional markers should be used
only when necessary, such as when obtaining independent estimates of QTL
parameters. Variations of the estimates for different true parameters (¢, ~ 0.20
and fg = 0.10) show that estimating a narrower recombination frequency
is more difficult than estimating a larger recombination frequency (Tabs. II
and ITI). The CV’s of estimates for 81 ~ 0.20 were in the range of 3.1-9.2%
whereas the CV’s of estimates for fg = 0.10 were in the range of 8.4-20.9%.

For narrow recombination frequency (# = 0.01) with sample sizes of
1000 observations, SD ranged from 0.0038 to 0.0091 and CV ranged from 37.4%
to 92.9% (Tab. III). The width of the 95% confidence interval of the estimates
for 8 = 0.01 was in the range of 1.5 ¢M for a single QTL to 2.8 ¢cM for a middle
interval (Fig. 3). The calculation of this range of 95% confidence intervals
was based on mean +1.96 {SD) and the approximation that 1% recombination
frequency was roughly equal to 1 ¢cM when the recombination frequency was
narrow. These results indicate that 1000 observations could map a QTL to
a narrow chromosome region of 1.5 ¢cM if no linked QTLs are present, or
about 3 cM if either side of the target QTL has a linked QTL. As sample
size Increases, accuracy in estimating narrow recombination frequencies can be
further improved. As shown in Figure 3, confidence intervals become narrower
as sample sizes increase. However, for sample sizes beyond 2000, the decrease
in the width of the confidence intervals becomes slower (Fig. 3). This suggests
that using sample sizes beyond 2000 may be unnecessary for the purpose of
fine QTL mapping. Overall, the simulation results in Figure 3 indicate that
obtaining reliable estimates for narrow marker-QTL distance is possible and
the limits of fine QTL mapping are mainly in the resources available such as
sample size and marker coverage of the genome.
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Figure 3. 95% confidence intervals of 2 1% marker-QTL recombination frequency.

3.4. Discussion

The understanding of a quantitative inheritance requires the understanding
of each gene associated with the quantitative frait. The strategy of the multi-
step analysis and formulae for parameter estimation in this study provide an
approach to obtain independent testing and parameter estimation for each QTL
and to obtain a complete description of a quantitative inheritance. The multi-
step analysis is also an alternative multi-marker analysis that uses a minimum
number of markers (2 or 3 markers) per analysis and provides a mechanism to
distinguish between discrete and continuous intervals. Because of the minimal
number of markers used per analysis, this approach is more practical than meth-
ods that use all available markers simultaneously for populations where gene
fixation in parental lines is unavailable. The formulae for parameter estimation
in this study are mathematically simple, because no numerical maximization is
required for both QTIL detection and parameter estimation. This is appealing
for complex QTL mapping problems such as multiple traits and categorical
data. Further studies are needed to evaluate the false positive and negative
detections. As the approach in this research is based on regression analysis, the
statistical power is expected to be similar to exiting methods for QTL detection
based on regression analysis. A limitation of the approach in this study is that
the QTL detection and estimation for the F'2 design are based on additive effects
only. However, this limitation could be removed by developing new formulae.
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Another limitation is the number of markers available, because the number of
markers required per chromosome for independent QTL testing and parameter
estimation increases as the number of QTLs on the chromosome increases.
However, this limitation is disappearing rapidly because the number of markers
available is rapidly increasing in most species. The formulae to estimate the
variance of recombination residuals provide an alternative approach to account
for existing QTLs in testing for a new QTL by subtracting the variance of
recombination residuals of each QTL [rom the phenotypic residual variance.
This approach removes the influence of existing QTLs without the need of
fitting multiple markers simultaneously in the statistical model. Research is
needed to establish guidelines for the significance threshold to declare the
presence of multiple QTL using this approach. Simulation studies for various
sample sizes and data structure should yield such guidelines. The current for-
mulae for parameter estimation do not provide estimates of confidence intervals.
One way to estimate the confidence intervals of parameter estimates would
be to use simulations. Once estimates of the true parameters are available,
those estimates can be used in place of true parameters to simulate marker
and QTL genotypes for the given design and sample sizes. The simulation
study leading to Figure 3 is an example to obtain confidence intervals. Other
methods for obtaining confidence intervals could also be considered, such as
deriving asymptotic variances of the parameter estimates.
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APPENDIX
Proof of equations (4) and (11)

Definitions for QTL effect under the one-way backcross design
and the F2 design

For either the backcross design or the F2 design, two parental lines with
homozygous marker and QTL genotypes are assumed. Assuming that the QTL
and marker each has two alleles, then the two marker and QTL genotypes in
the parental lines can be denoted by M MQQ for line 1 and mmgq for line 2.
Also assume the one-way backcross is formed by MQ/mg x mmgg and the
F'2 design is formed by the mating MQ/mg x M@Q/mgq, where “/” signifies
the linkage phase, 2.e., M and { are on one chromosome and m and g are
on the other chromosome in the ¥1 generation. Then, the backcross offspring
have two QTL genotypes, Qg and gq, and the F2 offspring have three QTL
genotypes, QQ, Jq, and gq. Let g1; = the genotypic value of QQ, ¢12 = the
genotypic value of (Jq, and gs2 = the genotypic value of gg. Then the QTL
effect is defined as

a =gz — g2 for the one-way backecross of MQ/mg x mmgg (A1)
= g1 — gez for the F2 design of M@Q/mg x MQ/mgq. (A.2)

The rationale for defining o as the difference between the two alternative QTL
genotypes is to make the formulae in the text applicable to both designs.
Although @ is used to denote the QTL effect in both designs, it is important
to note the difference shown by (A.1) and (A.2). Another important difference
in the «’s under the two designs is the interpretation in terms of additive and
dominance effect. To show the relationship between the a and additive and
dominance effects, the following models can be used:

qu1 = p+ 201 for QQ genotype (A.3)
go2 = p + 2az for gq genotype (A.d)
g2 =+ (a1 +a2) +d  for Qg genotype (A.5)

where p = the overzll average of the QTL values, a; = additive effect of QTL

allele i ( = 1 or 2), and d = dominance effect of the QTL. From equations (A.1-
A.5),

a={a; —as)+d for the one-way backcross design (A.6)

= 2{a; — a3) for the F2 design. (A7)
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An important fact of equations (A.6) and (A.7) is that the QTL effect under
the F2 design is twice as large as that under the one-way backcross design
if dominance effect is absent. This fact not only is important for correct
interpretation of the QTL effect under these two designs, but also is the reason
why the F2 design requires a sample size about half as large as that required
by the backcross design for detecting additive effects (Da et al., 1999).

Derivation of equation (4) for the one-way backcross design

Equations (3) and (5) can be found in Zeng [30]. Therefore, a proof for
equation (4) is given in this section and the next. The frequencies of marker and
QTL genotypes in the offspring of the one-way backcross of MQ/mg x mmqq
are given in the following table.

F1 gamete Gametic Genotype of QTL value
frequency backcross offspring
1
MQ 5(1 —6) MmGlq Q12
1
Mg 3¢ Mrngq G2z
1
mQ@ 59 mm)g q12
1
mg 5(1-96) mmyq gaz

Let m; = the average QTL value of individuals with Mm marker genotype,
and mg = the average QTL value of individuals with msm marker genotype.
Then,

my = (1 — 8)gi2 + g0
g = (1 — 8)gan + 0912

where 8 = recombination frequency between the marker and the QTL. Since
Mm and mm have an equal frequency under the one-way backcross, the overall
average of the QTL genotypic value is & = (my -+ my)/2. Then, the variance
of marker genotypic averages is given by

72 = 3o 10 + o — i = J{(m — mg) 2+ [~ (s — o)/ 2P
= %(Tm —mg)® = 3(1 —20)%(q12 — g22)”
= E(1 — 26)%a”. (A.8)

4
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Derivation of equation (4) for the F2 design

For the F2 design, the marker-QTL genotypes and their frequencies in the
F2 generation are given in the following table.

F1 gamete and frequency

F1 gamete MQ meQ Mg myq
1 1 1 1

and frequency 5(1 - 59 56’ 5(1 - 0)
MQ MMQQ MmQQ MMQq MmQq

1 1 \ 1 1 1 .
5(1 —8) Z(l —8) 19(1 -8 19(1 - 8) Z(l - 6)
mQ MmQE mmQQ MmQq mmQq
1 lo1_ 12 1g2 Ly
28 46*(1 6} 49 46' 461"(1 ()]
Mgq MMQq MmQq MMgq Mmgq

1 Loei - 1 Ly Lo
29 4&9(1 &) 49 49 461(1 )
mq MmQq mmyg Mmgq NGy
1o Li_ep2 Lo Loa1 - 1i_pp
2(1 8) 4(1 )] 4:19(1 ) 49(1 ) 4(1 &)

Let m; = the average QTL value of individuals with M M marker genotype,
and my = the average QTL value of individuals with mmn marker genotype.
Then, from the above table and model (2),

1-9)? g1 —¢ 62 1
m1={( 4)911+2[(4 )}glz-l—zqzz}/z

= (1 - 9)2Q11 -+ 29(1 - 9)‘112 + 92422;

62 20(1 -6 1- 9
My = {-4—9111 + {—(4—)] q1z + ( }/4
= BQQH -+ 29(1 - H)II12 + (1 - 9)2(]22.

Since MM and mm have an equal frequency, the overall average of the QTL
genotypic values is g = (m1 + ma)/2. Then, the variance of marker genotypic
averages is given by

ey — m2)2

o8 = l(ml — )+ l(mz - )2 =7

1 —20)%(q1) — ga0)* = 1 260)%a’. (A.9)
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Although equations (A.8) and (A.9) have exactly the same form, it is important
to note the difference in definitions for @ by equations (A.1), (A.2), (A.6)
and (A.7). Correct distinction of the definitions for « is necessary for the correct
interpretation of the QTL effect and variance estimated from equations (7),
(12-14), (18-19) and (23-24).

Proof of equation (11)

For model (1) fitied with flanking marker A, the regression coefficient of
marker A is by = %(l — 2644)c. Similarly, for model (1) fitted with flanking

marker B, the regression coefficient of marker B is bp = 1/2(1—28p,)«. Hence,
w=|ba/bg| = (1—204g)/(1 —20p,) = (1 —2044)*/(1 — 204), because (1 —
2044)(1 — 2054) = (1 — 2048) under the assumption that chiasma interference
is absent. Solving w = (1—2844)2/(1—2045) for 0 4, and requiring the positive
root yield equation (11).
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