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Abstract — A simulation study illustrates the effects of the inclusion of half-sib
pairs as well as the effects of selective genotyping on the power of detection and the
parameter estimates in a sib pair analysis of data from an ontbred population. The
power of QTL detection obtained from samples of sib pairs selected according to their
within family variance or according to the mean within family variance within half sib
family was compared and contrasted with the power obtained when only full sib pair
analysis was used. There was an increase in power (4-16%) and decrease in the bias
of parameter estimates with the use of half-sib information. These improvements in
power and parameter estimates depended on the number of the half sib pairs (half sib
family size). Almost the same power as that obtained using all the available sib pairs
could be achieved by selecting only 50-60% the animals. The most effective method
was to select both full and half sib pairs on the basis of high within full sib family
variance for the trait in question. The QTL position estimates were in general slightly
biased towards the center of the chromosome and the QTL variance estimates were
biased upwards, there being quite large differences in bias depending on the selection
method.

selective genotyping / QTL detection / sib pair analysis / outbred popu-
lations

Résumé — Génotypage sélectif pour la détection des QTL par l’analyse
de fratries dans des populations non consanguines & structures familiales.
Cette étude par simulation a porté sur les effets de I'inclusion des paires de demi-fréres
et du génotypage sélectif sur la puissance de détection des QTL et D'estimation de
leur position et de leur variance dans des populations non consanguines et & structure
familiale de germains ct demi-germains, On a calculé la puissance de détection des
QTL dans 'analyse des paires de demi-fréres sélectionnés en fonction de leur variance
intra-famille, et on I'a comparée a celle obtenue quand seulement des paires de ger-
mains étaient utilisées. Quand l'information sur les demi-fréres a été incluse, on a
observé une augmentation de la puissance de détection (4-16 %) et une diminution
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du biais de l'estimation des paramétres. Ces améliorations dépendaient du nombre
de paires de demi-fréres (taille des familles}. Ainsi, en incluant les demi-fréres, on
atteignait semsiblement le méme pouvoir de détection avec 40-50% d’animaux en
moins que pour Panalyse 4 partir des germains seulement. La méthode la plus efficace
a consisté 4 analyser conjointement des fréres et des demi-fréres provenant de familles
avec une grande variance pour le caractére étudié. Les estimations des positions de
QTL étaient légérement biaisées en direction du milieu du chromosome, alors que
celles de la variance des QTL étaient surestimées. Ces biais différaient fortement
selon la méthode de sélection des données utilisée.

génotypage sélectif / QTL / germains / population ouverte

1. INTRODUCTION

Sib pair analysis is a method for QTL detection, which utilises information
from full sib families, and which has been described for single {12] and bracket
markers [8]. The principle behind sib pair analysis is that for any locus a pair
of full sibs will share 0 or 1 or 2 alleles Identical By Descent (IBD) from their
parents. Sib pairs, which share alleles IBD for a gene controlling a trait, are
likely to have similar phenotypes for the trait compared to sib pairs which do
nct share alleles. Hence, the association of differences between the phenotypes
of sib pairs and the number of alleles shared IBD at a marker provides a means
for identification of 2 QTL near that marker. A simple test to detect these asso-
ciations is the regression of the squared phenotypic difference between a sib pair
on the proportion of alleles the sib pair shares identical by descent (IBD) [12].

The power of the sib pair methods increases with increasing family size [2,
10] and is comparable with other QTL detection methods using analysis of
variance when applied in animal populations (e.g. pigs, [10]). Moreover, it has
been shown [1] that the same regression method for the detection of QTL [12]
can be used for any type of outbred relatives (e.g. half sibs, first cousins etc.).
Gétz and Hamann [9] have shown that full sib and half-sib information can be
used simultaneously in a combined analysis, with a resulting improvement in
the power of detection and the parameter estimates.

In a previous paper [6] it was shown that by selection of full sib pairs from
families with high within family variance, the power of QTL detection can be
maintained with a reduced number of genotyped individuals. In this paper,
selected samples containing both full and half sibs were analyzed jointly in a
single analysis. This was applied in populations with two different hierarchical
structures. Furthermore, the power and parameter estimates from samples
selected on the basis of the within family variance and comprising both full
and half sibs were compared with the power and parameter estimates from
randomly selected samples and samples only of full sibs.

2. MATERIALS AND METHODS

It has been shown that the expectations of the squared phenotypic differences
conditional on the proportion of alleles shared IBD at a marker locus between
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full sib pairs, when there is no dominance variation present, are {12]:

E(Y;|#5m) = {02 +2(1 — 20 + 26%)02] — 2(1 — 20)202%# 1
ARG g g7

eFs

where,
E(Y;|#jm) = expected mean of squared phenotypic differences conditional on
the estimated proportion of alleles shared IBD at a marker locus;

im = estimated proportion of alleles shared IBD at a marker locus;

U&Fs = contains environmental variance and covariance of full sibs and any

order effect;

Ug = additive genetic variance of the QTL;

f = recombination fraction between the marker and the QTL;

Y; = squared phenotypic differences of sib pairs.

Amos and Elston |1] have shown that the same holds for half sib pairs, with the
only differences being the regression constant and the “environmental variance”
component, which is that of half sibs (¢2_):

€HS
E(Yil#jm) = (02,5 +2(1 — 0+ 6%)0%] - 2(1 — 260)°03ftsmm (2)

Therefore, the regression coefficient of the squared phenotypic differences on
the proportion of alleles shared IBD at a marker locus is identical for both full
and half-sib pairs. However, since the regression constants are different, the
two regression lines are parallel to each other. Moreover, the proportion of
alleles that a half-sib pair can share IBD) can only be 0 or 0.5, whereas in the
case of full sibs it can be 0, 0.5 or 1.

Gotz and Hamann [9] suggested that by correcting for the differences
between the regression constants:

Ap=02 —o2 +20(1— B)o; (3)
both full and half sibs can be used in one combined analysis. However, the
parameters of equation (3) (e.g. 8, o7 etc.) are not known in advance, therefore,
A, must be estimated. The use of the expectations of the squared phenotypic
differences conditional on the proportion of alleles shared IBD from the two
regression equations (1) and (2), obtained when full and half sibs are analyzed
independently can provide such an estimate. However, the proportion of alleles
shared IBD in half sib pairs can only be 0 or 0.5. Therefore, the correction
factor (A,) is estimated from the squared phenotypic differences of the two
regression equations of full (1) and half (2) sibs both under the condition of
T jm = 0.25:

An = (Yas|Fjm) — Yes|Tjm). 4

Correction of the squared phenotypic differences of full or half sibs for the
correction factor A,, can provide the data for a combined analysis of full and
half sibs [9]. Nevertheless, A, has to be estimated separately for each marker.
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2.1. Selection methods

Two selection schemes based on the within family variance were used for the
selection of both full and half-sib samples. A randomly selected sample of full
and half sibs and a sample only of selected full sibs were used for comparison.
For all methods of selection, the size of the sample for analysis was varied by
altering the intensity of selection from a population of fixed size.

2.1.1. Within family variance for full sib families (WFV)

The within family phenotypic variance was calculated for each full-sib family.
Families with the highest within family variance were selected for analysis
regardless of the half sib family from which they came. All the possible full sib
pairs from selected families were included in the analysis. In addition, where
they occurred, half-sib relationships between the selected full-sib families were
also included in the analysis. Therefore, all the possible half-sib pairs between
selected full-sib families with high within family variance were used in the
analysis.

2.1.2. Mean within family variance within half sib families
(MWFV)

In this selection scheme the mean within full-sib family variance from the
full-sib families included within a half-sib family was calculated. Half-sib fam-
ilies with the highest mean within full-sib family variance were selected. All
possible half or full sib pairs from selected families were included in the analysis.

2.1.3. Full sibs only (FS)

Families were selected according to their within family variance as in the
WE'V approach. However, only the full sib pairs were used in the analysis.

2.1.4. Random selection (RS)

Entire full sib families were selected at random, without replacement, and
all their sib pairs (half and full) were used in the analysis.

2.2. Analysis

Regression of the squared phenotypic difference (Y;) on the proportion of
alleles shared IBD at a marker locus [12] was used for the detection of a linked
QTL. The correction factor (A,) was calculated for each marker from the
regression equation of full and half-sibs, independently, as in equation (4).
Then the correction factor (A,) was subtracted from the squared phenotypic
differences of half sibs and all values were used in one single regression analysis.

Single marker [11] and interval mapping [8] analyses were used for this
parameter estimation and the results of parameter estimates were compared.
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2.3. Simulations

Simulated data were used to evaluate the power of the alternative selection
schemes, Initially, a biallelic marker (p = ¢ = 0.5) completely linked (6 = 0)
with a biallelic QTL accounting for 0.10% (10% of the phenotypic variance) was
simulated. For simplicity the phenotypic variance of the trait was considered
to be one (0 = 1). No selection was applied on the parents and loci were
assumed to be in linkage equilibrium.

The scenario of a QTL completely linked to the marker was chosen because
increasing the distance between the marker and the QTL has a similar negative
effect on power of detection in all selection schemes {4]. A marker completely
linked with a QTL should give a clearer comparison between the selection
schemes.

Two different population structures were simulated; both of which had the
same full sib family size (8) and the same total number of progeny (800). In the
first structure (PS1) 50 sires were mated with 100 dams (2 dams/sire) resulting
in 3200 half-sib pairs. In the second structure (P52} 10 sires were mated with
100 dams (10 dams/sire), producing 28 800 half-sib pairs. In both structures
2800 full sib pairs were produced. These population structures were selected
because in previous studies of two pig nucleus populations from a commercial
company {unpublished data) the number of dams per sire varied between 2
and 10. Therefore, the above simulations should indicate the maximum and
minimum power in two extreme scenarios.

In order to evaluate the effect of repeated correlated tests and obtain
estimates of position and variance contributed by the QTL, the simulations
were extended. Parents with a 100 ¢M chromosome were generated with
markers spaced at 10 c¢cM intervals. Each marker had eight alleles at equal
frequency (0.125). The biallelic QTL was simulated at 25 ¢cM in all cases, and
symmetrically placed at 5 ¢M between two markers. The same family size (8)
was used, but only the PS2 population structure was simulated. No selection
was applied to the parents and loci were assumed to be in linkage equilibrium.
A fixed level of the trait heritability {0.4) and common family environment
variance (0.2) were used. The parents were mated at random to produce the
offspring generation that provides the sib pairs used in the analysis.

In all cases the phenotypes of an additive quantitative trait were determined
by: (a) a QTL with two alleles at equal frequency, (b) a polygenic effect
created by 10 additional biallelic (p = g = 0.5) trait loci of equal effect, which
were independent of each other and the QTL (unlinked), (¢) an environmental
component (normally distributed) and (d) a common environmental effect (nor-
mally distributed). The model of the simulated phenotype was:

Tijk = L+ Qijr + Pisk + i + eijx (5)

where, z;;, = phenotypic value of animal % in family {j
= overall mean;
qijr = effect of animal ijk’s QTL genotype;
pije = effect of animal ijk’s polygenic genotype;
c;; = effect of common litter environment;
ei;k = envircnmental effect.
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The empirical thresholds, at the 5% level of significance, were obtained for every
level of selection {sample selection intensity) and for the different selection
methods by simulations under the null hypothesis (J%LT = 0) using 1000
replicates. In the simulations under the null hypothesis, all the genetic variance
were due to the polygenic effect. The same starting seed value was used for
both null (aéLT = 0) and alternative hypotheses (C’?QLT = 0.10%) in order to
avoid any effect on Type I errors. For the power calculations, the appropriate
threshold for each method and level of selection was used.

3. RESULTS

3.1. Power

The power of detection was the percentage of 1000 replicates, under the
alternative hypothesis (o4 = 0.103), exceeding the empirical threshold sim-
ulated in each case. In Figure 1 the scaling of power of detection under different
sample sizes of four selection schemes for a population with 2 dams/sire (PS1)
is presented. Selecting the samples of both half and full sib pairs based on high
within full sib family variance (WFV) was the most powerful selection method
for all sample sizes (.. all selection intensities). The gain in power of detection
from selecting according to the WFV rather than random selection of samples
(RS) was rather substantial, except where most families are genotyped (at low
selection intensities). The gain in power of detection from the inclusion of the
half sibs in the analysis was rather marginal, equivalent to an absolute increase
in the power of detection of about 4% on average.

When the alternative population séructure was used (PS2), with 10 dams /
sire and hence more potential half sib pairs, the use of the mean within family
variance in a half sib family (MWEFV) as the selection criterion was most
powerful in small sample sizes (less than 280 individuals) (Fig. 2). However, this
advantage disappeared in bigger sample sizes and the selection of full and half-
sib pairs from families with high WFV became more powerful as the sample
size increased. The gain in power of QTL detection from including the half
sibs in the analysis was much larger in this population structure (PS2), being
about 16% in average. The overall power of QTL detection was consequently
increased from a maximum of about 66% in PS1 (Fig. 1) to a maximum of
about 81% in PS2 (Fig. 2).

By appropriate selection of substantially fewer individuals, in both popula-
tion structures, almost the same power of QTL detection could be achieved,
as when all individuals were genotyped. However, the optimum sample size
changed in the two different population structures. For example, in the PS1
structure with 50% of the individuals, almost the same power as when geno-
typing all individuals can be achieved; in the PS2 structure at least 60% of the
individuals have to be typed in order to achieve almost the same power as with
all individunals {Figs. 1 and 2).

3.2. Parameter estimates

Since the gain in power from the inclusion of half sibs in the PS1 struc-
ture (2 dams/sire) was rather marginal (Fig. 1), only the PS2 structure
(10 dams/sire) was used for the parameter estimation.
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Figure 1. Power of alternative selective genotyping schemes at different selection
intensities. Data were simulated with one QTL of medium effect (0% =1, h* =04,
o'QQLT = 0.250% = 0.16%) completely linked to a biallelic marker. The population
consisted of 50 sires with 2 damg/sire and 800 progeny (PS1) {maximum number of
animals genotyped 950: 800 progeny and 150 parents). The power was the percentage
of 1000 replicates, under the alternative hypothesis (craTL = 0.103), exceeding the
empirical threshold simulated in each case.
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Figure 2. Power of alternative selective genotyping schemes at different selection
intensities. Data were simulated with one QTL of medium effect (o3 = 1, h* = 0.4,
ohrL = 0.250% = 0.1¢}) completely linked to a biallelic marker. The population
consisted of 10 sires with 10 dams/sire and 800 progeny (PS2) (maximum number of
animals genotyped 910: 800 progeny and 110 parents). The power was the percentage
of 1000 replicates, under the alternative hypothesis (UéTL = 0.10%), exceeding the
empirical threshold simulated in each case.
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As can been seen in Table I the QTL position estimates, averaged over
all 1000 replicates, tend to be biased towards the middle of the chromosome
for all selection methods. However, the use of selected half sib information
{(WFV, MWFV) improved the position estimates substantially over the estim-
ates obtained from the use of only selected full sib pairs (¥'S), where the QTL
was positioned outside the correct interval in all sample sizes. Selection of the
sib pairs from families with high WFV produced marginally less biased posi-
tion estimates than the other methods (MWFV, RS). Furthermore, relatively
unbiased position estimates, similar to those obtained using all the animals,
can be obtained by using only 60% of the total number of animals (Tab. ).

The QTL variance estimates were biased upwards when the samples of both
full and half sibs were selected on the basis of WFV (Tab. II). Similar biases
were observed when only full sib pairs were used in the analysis. Selection of
the samples on the basis of the MWFV within a half sib family or random
selection seemed to produce less biased (although still inflated) QTL variance
estimates with randomly selected samples yielding the best estimates.

The method of analysis did not seem to have an important influence on
parameter estimation, with single marker and interval mapping analysis pro-
ducing similar parameter estimates (both position and QTL variance) (Tabs. I
and IT). However, interval mapping had the tendency to overestimate the QTL
variance slightly more than the single marker analysis (Tab. II).

4. DISCUSSION

Inclusion of half-sib information can improve the power of QTL detection
when a sib pair analysis is used. The gain in power increases with increasing
half-sib family size (Figs. 1 and 2, [9]). Selective genotyping can decrease
the amount of genotyping without significantly reducing the power of QTL
detection (Figs. 1 and 2). Selecting the animals to be genotyped based on the
within full sib family variance (WFV) is generally the best selection method,
although it yields substantially less total sib pairs when large half-sib families
are used {Fig. 3). '

‘When full sib pairs are selected from families with high WFV, the power
increases and reaches a maximum at a certain sample size and remains almost
stable as the sample size further increases [5,6]. This is because sib pairs coming
from families with low WFV are not segregating for the QTL and thus, are
“uninformative” for the analysis. Sib pairs from such families are not adding any
extra information in the analysis and consequently to the power of detection.

However, at high selection intensities (small sample size), selection of sib
pairs on the basis of the MWEFV within a half-sib family is a more powerful
selection method (Fig. 2). This is because when selecting on the basis of
MWFYV at high selection intensities, the number of half-sib pairs is high with
the majority of them being very informative (only one or two heterozygous
sires with all their dams are selected). On the contrary, when selecting on the
basis of WFV, although the number of full sib pairs is the same, the number of
half sib pairs, though very informative, is much lower than when the selection
is based on the MWFV (Fig. 3). Consequently, this results in lower power.



Table I. Mean position estimates in ¢cM for single and interval mapping analysis over 1000 replications with increasing sample size.
Standard errors of the estimates are given in parentheses. The simulated position was at 25 ¢cM with markers at 20 and 30 cM.

Sample size

~ 100 ~ 350 ~ 550 ~ 700 910

Selection Method  Single Interval Single Interval Single Interval Single Interval Single Interval
marker mapping marker mapping marker mapping marker mapping marker mapping

WEV 360 362 308 314 29.2 29.3 28.9 294 284 284
09) (09  (0.7) (0.7 (06)  (0.6)  (0.7)  (0.6) (06)  (0.5)

MWFV 379 380 320 323 30.3 30.5 287 201 284 284
09 (09 (07 (0.7 (0.7)  (06)  (06) (06)  (06)  (0.5)

RS 408 424 320 323 30.0 31.0 203 207 284 284
1.0) (09  (0.8)  (0.7) 07 (07  (08)  (06)  (06) (0.5

FS 36.9 373 32.7 330 32.3 32.8 316 322 312 317

(1.0) (0.9 ©.7)  (0.7) 7 (0.7) (07 (0.7 7  (0.7)

uor0e1ep TIEH 10y SuidLjousB oarjoolag

ggg



Table II. Mean QTL variance estimates as proportion of the total phenotypic variance, for single and interval mapping analysis, over

1000 replications with increasing sample size. Standard errors of the estimates are given in parentheses. The simulated variance was
0.10%.

Sample size

~ 100 ~ 350 ~ 550 ~ 700 910

Selection Method  Single Interval Single Interval Single Interval Single Interval Single Interval
marker mapping marker mapping marker mapping marker mapping marker mapping

WFV 0.566  0.623 0246 0267 0182 0199  0.143 0155 0111  0.121
(0.010) (0.010)  (0.004) (0.004)  (0.002) (0.003) (0.002) {(0.002) (0.002) (0.002)

MFWV 0185 028 0175 0192 0146 0159 0127 0137 0111 0121
(0.008) (0.007) (0.003) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002)

RS 0.185 0.195 3.135 0.148 0.124 0.134 0.115 0.126 0.111 0.121
(0.006) (0.005) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

FS 0579  0.630 0246 0265 018 0201 0149 0162 0124 0135

(0.010) (0.010)  (0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.002) (0.002)
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Figure 3. The number of sib-pairs generated in each selective genotyping scheme.
The numbers shown represent the mean of 1 000 replicates. The population size sim-
ulated and hence the maximum number of animals genotyped was 910 (800 progeny
and 110 parents) and the population structure was 10 dams/sire (PS2), resulting in
a maximum of 2800 full sib pairs and 28 800 half sib pairs.

When the selection pressure is relaxed (large sample size) and is based on
the WFV the extra full or half-sib pairs included are still very informative.
However, when the selection is based on the MWFV the number of “non-
informative” half or full-sib pairs increases because less “informative matings”
are entering the sample (matings with homozygous dams). Consequently, there
is a change in relative power between the two methods (Fig. 2). The above case
is more likely to appear in a population structure with large half sib families
(e.g. PS2) where the differences in the number of half-sib pairs between the
two selection methods (WFV and MWFV) are larger (Fig. 3). This is also the
reason why this situation does not appear in population structures with small
half sib families (e.g. PS1: Fig. 1).

This difference in the available half-sib pairs between different population
structures {e.g. P51, PS2) appears to be the reason for the difference in the
sample size needed to reach the maximum in the two population structures
(~ 50% for PS1 and ~ 60% for PS2). For example, decreasing the selection
intensity in population structures with large half-sib families (e.g. PS2) vastly
increases the number of available half sib pairs for analysis (Fig. 3), with some
of them being “informative”. Therefore, when large half-sib families are used
some additional power could be gained by genotyping an extra 10%.

The same scaling of power, between the selection schemes, was also observed
when the QTL was 5 ¢M away from a polymorphic marker on a 100-cM chro-
mosome {data not shown). However, in this paper only the case of an additive
biallelic QTL with equal allelic frequencies and a QTL variance of 0.1o} is
considered. Overall power will be less for smaller QTL-effects. However, QTL
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detection will still be possible with larger sample sizes. When the population
size is large enough to allow an increase of the sample size, selection according to
the WFV seems to increase its advantage over the other selection methods [4].
Nevertheless, the mode of action of the QTL (additive, dominant, recessive
etc.) and its allelic frequencies are parameters that are not known in advance.
Others [3,7,14] have considered a wide variety of models (additive, dominant,
and recessive) as well as different allelic frequencies and concluded that these
parameters have an effect on the efficiency of different selective genotyping
schemes. However, these authors considered selective genotyping schemes on
small sized families (= 2) that are based on the distribution of the phenotypes
of the sibs rather than the phenotypic variance of the trait. In these selection
schemes one is looking for informative sib pairs per se. These informative
sib pairs will change in alternative selection schemes according to the allelic
frequency of the QTL and its mode of action. On the contrary, when selecting
for the WFV of the trait, one is looking for informative matings (e.g. matings
of heterozygous parents) which, consequently, would result in informative sib
pairs. Selective genotyping on the basis of the WFV of the trait seems to be
as effective even in cases of rare QTL alleles (p = 0.2) or dominant QTL [4,5].
For example in cases of a rare QTL allele, although the informative matings
are reduced they could still be distinguished by a selection scheme based on the
WEFV of the trait in question. In cases of small family sizes (= 2), where the
use of the WFV is not applicable, the selection of concordant and discordant
sib pairs seems to be overall the most effective selection scheme [4,5]. Note
that larger families selected on the basis of high variance in which a QTL is
segregating will have a mixture of concordant and discordant sib-pairs. The
value of a mix of concordant and discordant sib-pairs has been demonstrated
by Eaves and Meyer [7], where a variety of QTL modes of action and allelic
frequencies were used. However, we do not have enough evidence to determine
how much such parameters (rare QTL allele, recessive) would affect the effect-
iveness of selection on the basis of WFV. Nevertheless, it is expected that the
overall power of detection, in a population of a fixed size, would be reduced in
such cases (rare QTL allele, recessive QTL) due to reduction in the number of
informative matings.

A comparison of efficiency of selective genotyping schemes under different
population structures and different models can only be suggestive of which
analysis and selective genotyping methods are the most suitable in specific
cases. It is the authors’helief that there is not an overall “best” analytical
or selective genotyping method. The method of selection and analysis of the
available information depends on many parameters, both known (population
structure, capital investment etc.) and unknown (QTL mode of action and
allelic frequency). The most objective way to determine the most powerful
and cost effective design for different scenarios would be the use of a simulation
study under a variety of analytical and selective genotyping methods, tailored to
the population of interest. However, sib pair analysis seems to be at least com-
parable, if not more powerful, with other methods in hierarchical populations.
In a direct comparison with an intercross design [15], sib pair analysis was more
powerful when a family size of six was used [10]. Moreover, in a single marker,
with a least squares analysis of 20 sires with 100 half-sib progeny each, and a
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QTL, 5 cM away from the marker, accounting for ~ 0.148¢3 [13], the power was
80% (P > 0.01). In our analysis, although the marker was completely linked
with the QTL, 81.3% (P > 0.05) power could be achieved using a smaller QTL
(0.103) and substantially less individuals (< 25%). However, since the QTL
size, population size, linkage etc. differ between the two studies a large-scale
simulation study would be more appropriate in order to be able to make an
objective comparison.

The parameter estimates (QTL position and variance), are not greatly
affected by selection when the sample sizes are sufficiently large (> 50% of the
total population} (medium selection intensities) and are slightly improved when
half sibs are included (Tabs. I-II; [9]). However, when the selection intensity is
very high (less than 35% of the total population), the position estimates of the
QTL are outside the correct interval. Moreover, the QTL variance is inflated
when the samples are selected and this inflation is higher with increasing
selection intensity of the sample. The reasons for these biases are: (a) the
tendency of the method to position the QTL in the middle of a chromosome
when the information decreases (decreasing number of sib pairs with increasing
selection intensity) and (b) inflation of the regression coefficient due to selection.
Moreover, in simulations, there is an overall overestimation of the regression
coeflicient due to the fact that in every replicate the marker with the highest
test statistics (most negative) is selected, something that has “inflating” effects
on the regression coefficients. Consequently, since the test is one-sided, the most
negative regression coefficients predominate, resulting in an overestimation of
the parameters. In addition, in single marker analysis when the two markers
used for the parameter estimation have different signs, estimates in the range
of real values cannot be obtained. This has been reported [9] to produce biases
in the estimation of QTL variance in full sib, half sib and combined sib pair
analysis. Nevertheless, once linkage has been detected, random samples can be
used for the estimation of the QTL variance and position in order to achieve
better results and avoid biases due to selection (Tab. II).

Selective genotyping can be applied in populations with hierarchical struc-
tures for QTL detection with almost no negative effect on the power of detec-
tion. This makes sib pair methods attractive to use for QTL detection in a
variety of populations where large full and half sib families exist (e.g., plant,
fish, chicken, pig etc.) [10]. This includes dairy cattle populations where large
half-gib families exist, since the use of half-sib pair analysis is more powerful
than the full-sib pair analysis when the same number of progeny is available [9].
Moreover, sib pair methods are very flexible since full sib and half-sib informa-
tion can be used independently or combined in one single analysis in selected or
unselected samples with very good results in power and parameter estimates.

Selective genotyping for a single trait is considered here. If more than one
correlated traits are considered some decrease in the selection intensity of the
samples may secure sufficient power of detection for all traits. Unfortunately,
when the traits are uncorrelated then the applicability of any selective geno-
typing scheme might be reduced. However, this could be an interesting area
for deterministic simulation studies concerning the applicability as well as the
cost effectiveness of selective genotyping using sib pair analysis in different
populations.
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