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Abstract — The testing of Bayesian point null hypotheses on variance component
models have resulted in a tough assignment for which no clear and generally accepted
method exists. In this work we present what we believe is a succeeding approach to
such a task. It is based on a simple reparameterization of the model in terms of the
total variance and the proportion of the additive genetic variance with respect to it,
as well as on the explicit inclusion on the prior probability of a discrete component
at origin. The reparameterization was used to bypass an arbitrariness related to
the impropriety of uninformative priors onto unbounded variables while the discrete
component was necessary to overcome the zero probability assigned to sets of null
measure by the usual continuous variable models. The method was tested against
computer simulations with appealing results.

animal breeding / prior distribution / Bayes factor / hypothesis testing /
heritability

1. INTRODUCTION

Probably one of the most natural questions arising when dealing with quant-
itative traits is just whether the trait considered has a genetic background or
not. In addition, in some circumstances such as the initial stages of genetic
analysis, where the interest is aimed at predicting if the future artificial selection
will produce or not a genetic response, this can be a very relevant question
from both a genetic and economical point of view. Even in fields like animal
breeding, where the effects of genes on economically interesting traits is in
principle evident, there are some cases where hypothesis testing of the genetic
background could be useful. For instance, it could be the case with chickens
where the strong artificial selection in the past has reduced the genetic variab-
ility, or in small populations, where most of the alleles of the interesting genes
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have disappeared by chance. Apparently quite a harmless question, hypothesis
testing of the genetic background has resulted in a tough assignment.

Just to be specific, let us concentrate on hierarchical unbalanced mixed
linear models, those commonly used in animal breeding, to analyse the genetic
background of quantitative traits [12]. In these models, the genetic and environ-
mental components of variance are traditionally estimated via either restricted
maximum likelihood or through Bayesian inference [14]. Testing of the null
hypothesis of the additive variance component of the genetic part of the model
will answer whether genes influence the trait under analysis or not. At least in
the case of hierarchical unbalanced mixed linear models, this task does not have
a clear and generally accepted method. The null point hypothesis on variance
components is exactly at the lower bound of the parametric space, where the
asymptotic properties of the likelihood ratio tests fail [23]. Under the Bayesian
framework, hypothesis testing is usually analysed by calculating the Bayes
factor (BF) which retains good behavior even when the hypothesis to be tested
is close or even at the boundary of the parametric space. Several methods to
calculate BF, most of them approximated BF, have been described, such as
the intrinsic BF [3], the fractional BF [21] or the posterior BF [1]. Moreover,
numerical alternatives have been proposed, such as the reversible jump |10],
incorporation of model indicators [4,7] or the harmonic mean estimator [20].
However, in spite of all of these efforts (see Kass and Raftery [17] for a nice
review), the problem of testing the point null hypothesis on variance component
models remains unsolved.

Gelman et al. [6] suggested that testing point hypothesis for continuous
variables like variance components is not reasonable, simply because the prob-
ability of any set of null measure is zero for a continuous random variable.
In this present article it is shown constructively that to test the null point
hypothesis is indeed reasonable. In other words, we present here a method to
implement the null-hypothesis test free of any inconsistency. We have identified
two main causes as the origin for these possible inconsistencies: firstly, the
zero probability assigned to isolated points in the usual probability models
for continuous variables; secondly, the impropriety of the usual flat prior for
unbounded variables. In the following we show by mixing continuous and
discrete probability models how it is possible to overcome the former while for
the latter a simple reparameterization of the standard model will do the task.
Numerical simulations reveal the excellent behavior of our proposal.

2. MODELS

The mixed linear model considers both environmental and genetic effects.
The model equation for the observed phenotypes (y) is defined as

y=Xb+Zu+e
where b is a vector of environmental effects, X is the incidence matrix relating b

and y, u is a vector of sire effects, Z is the incidence matrix relating u and y,
and e is the vector of residuals.
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Two models will be considered below: the standard between-sires variance
model and the heritability model. This latter one will be revealed as superior
as far as testing the null hypothesis is concerned.

2.1. Between sires variance component model

This mixed linear model can be regarded as a hierarchical Bayesian model,
where ulo? ~ N (0,021I) and e|o2 ~ N (0,02I). In this case, we will test the
null hypothesis on the between-sires variance component (¢2), a quite usual
simplifying assumption. For instance, Wang et al. [25], described a Bayesian
implementation of the Gibbs sampler using this model. On the contrary, in
animal breeding, dams are in general artificially inseminated and hence there
is no environmental contact between the sire and their progeny. Therefore,
differences between progeny groups are obviously explained just by the genes of
the sire, making this model widely used in animal breeding for inferences about
the heritability of the quantitative traits. Anyhow, the conclusions reached here
do not depend on this simplification.

2.2. Heritability model

Here we define a model involving two alternative variables: the phenotypic
variance, which is defined as, 02 = 02 + 02, and the coefficient of heritab-
ility, obtained from the classical expression h? = 402/ (62 +02). A similar
model, including heritability and residual variance as unknowns, was analysed
in Theobald et al. [24]. We will test for the presence of genes by testing the
null hypothesis on the heritability. The heritability coefficient represents the
proportion of variance explained by the genes involved in the performance
trait. Usually, in the animal breeding context, 402 is called the additive genetic
variance.

The hierarchical model now considers ulo?,h? ~ N (0,0.2502h%I) and

elo?, h? ~ N [0,0% (1 - 0.25h%) I].

3. METHODS

Standard probability distributions for the description of continuous random
variables rely on the Riemann integral to assign probabilities to intervals. Con-
sequently, the probability of any set of zero measure, such as an isolated point,
is also zero. However, this is just a property of a class of probability models.
There is nothing fundamental impeding us to assign finite probabilities to
isolated points belonging to the real line. But their random behavior should be
described using discrete distribution functions rather than its continuous coun-
terpart. Nor is there any inconsistency in mixing both types of distributions.
More specifically, we would need a probability distribution, F(z) = P(0 < z),
with discontinuities at each isolated point with finite probability. In view of
all this, including the possibility of a finite probability of null genetic variance
in a Bayesian inference scheme is just a matter of including a discontinuity at
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zero in the prior. However, we would like to work with probability densities
rather than with distributions as is usual in the field. At a first glance, this is a
desperate task, since we need to derive F(x) at a discontinuity. In other words,
we would need the derivative function of the Heaviside step function H(x)
(H(z) =0, Vz < 0; H(z) = 1, Vz > 0). Surprisingly enough, it is possible to
give a rigorous mathematical meaning to such an object within what is called
the theory of generalized functions. This is known as the Dirac delta and is
usually denoted by d(z). The interested reader can find a readable but quite
rigorous introduction to the Dirac delta and the theory of generalized functions
in Griffel [11]. For our purposes here, it suffices to know the following properties
applied blindly, namely

d(z) =0 for z #0, /°° d(z)dz =1 v (1)
/ * 5(z) f(z)dz = % £(0) if a >0,
0

Needless to say that the integrals in (1) are not of the Riemann kind but they
must be understood in the generalized function sense. The reader can convince
himself that given (1), the density probability distribution of a continuous and
positive random variable with a finite probability of being exactly zero have
the form

9(0) = P(Ho)26(6) + P (Hy) f (0) (2)

where 6 is the variable to be tested, f(#) is a sensible conventional probability
density integrating to one, and P(Hp) and P(H;) are the probabilities assigned
to the null and alternative hypotheses respectively. We stress that although
this goes beyond the classical function theory, there is nothing poorly defined
within this framework. We will take equation (2) as the general form for our
prior density probabilities. Except for the factor of two necessary for math-
ematical consistency when a discrete component is at the lower boundary of
the parametric space, (2) coincides with the prior density used by Berger and
Sellke [2].

After a prior density is defined, the posterior probability of both the null
and the alternative hypotheses can be obtained from the marginal posterior
provided by the Bayesian analysis

P(thly) = iy [ 9(ly)as 3)
Ply) = liny [ o6l @)

where a is the upper limit of the parametric space for 8 (assumed positive). We
stress that these integrals are mathematically rigorous under the generalized
function theory. Usually, the Bayesian analysis is implemented via an MCMC
algorithm, such as the Gibbs sampler. Although, the Dirac delta can be imple-
mented numerically, it is far easier to use just f(#) as an operational prior from
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which g(0) can be obtained as

M)
f(9)

being f (8]y) the conventional posterior obtained by using f(6). Formula (5)
can be regarded as an important sampling procedure, the usual tool for repla-
cing a priori distributions for a sensitivity analysis [22].

Replacing (2) in (5) and assuming P (Hy) = P (H;) = 0.5, making our prior
uninformative (following the “canonical” Bayesian approach we will include all
our prior information at the model level) results in

gwly)«ﬁ%@c@ (6ly) = (;%ws)f(am.

Then, integrating this function for the hypothesis intervals, following the for-
mulas in (3) and (4)

P (Holy) o lim / (;((2 +0. 5) £ (Oly)dé

P (thly) ol [ (f(g +05)f(9|y)d9

and using the properties (1) of the Dirac delta

f(6=0ly)
2f(9=0)

P(thly) o [ 31 (6ly)do =

g9 (0ly) ox Z7=+f (0ly) (5)

P (Holy) o

Since P (Hply) + P (H,|y) =1 we have

_ f (6 =0ly)
PURR) = 7 =op)+ 7@ =0) ©
P(Hly) = 70 =0 @

f(O=0ly)+f(6=0)

so that the ratio, which represents the Bayes factor against the null hypothesis,
is given by ‘

P(Hily) _ f(6=0) @)
P(Holy) f(6=0ly)
Testing the null hypothesis only requires the ordinate at zero of the conventional

marginal posterior density. This result is equivalent to that presented in Berger
and Sellke [2].




8 L.A. Garcia-Cortés et al.

3.1. Testing the null hypothesis on the between sires variance
component model

Once the model has been established and under the assumption that it
conveys all our prior information, we will take flat priors on the levels of b and
the residual variance component while for o2 we use (2) with a flat f(#) with
density k. All together this amounts to

g(02) =6(c2) +05k if ol¢€ [O, éog] :

We know a priori that the between sires variance component should not exceed

the third part of the residual variance [24]. From the causal point of view,

the between sires variance component involves the fourth part of the variance

explained by the genes, and the residual variance involves three fourths of the

variance explained by the genes plus the variance due to the environment.
The posterior distribution is

g (b,02,02y) « f (y|b,02,02) f (b) g (02) f (02) .

An operational flat prior on o2 is used to implement the Bayesian analysis.

Now, the posterior distribution is proportional to
_1 1
f (b,02,02ly) o [V| % exp {—5 (y —Xb)' Vi(y - Xb)} ,
where V is presented as a function of the variance components
V = 0227 + 021

Replacing this formula in the joint posterior distribution

1
f(b,02,0%y) « |022Z' + 01| 2
1 -
X exp {—5 (y — Xb) (6222 +621) " (y — Xb)} .
In this case, it is unnecessary to carry out the whole Bayesian analysis to realise

the logically absurd results that the procedure offers. We can analyse just the
ordinate at the origin of the Gibbs conditional of o2

1
202

(0% = 0lb.02%,y) o (2)F exp {~ 2z (v~ XY y - Xb) |

which is a positive value for any value of o2 greater than 0. Using the Rao-
Blackwell argument, the average of these conditional densities, that is, the
marginal density of o2, will also be greater than zero at 02 =0, i.e.,

f(e2=0ly)=a>0.
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Posterior odds of the null and the alternative hypothesis can be obtained from
formula (6) and (7)

B f (o =0ly) __¢@
P(H0|Y)—f(dgzoly)+f(03=0) T a+k (9)
2 __
P(Hily) = S (0u=0) __k (10)

fof=0ly)+f(ci=0) a+tk

that is, this model leads to a result that depends on &, the ordinate of the prior
density. Considering the arbitrariness of k, the result turns out useless when
the prior is improper.

3.2. Testing the null hypothesis on the heritability-phenotypic
variance model

Again, we consider flat unbounded prior distributions for b and 2. The
prior distribution for A2 is now given by

g(h®) =06 (R?)+05 if h%€(0,1].

Hobert and Casella [13] studied the effect of improper priors on the propriety
of the posterior distributions in cases of hierarchical linear models. They show
that in general, propriety of the posterior is mathematically difficult to probe
or impossible, and they propose to always use proper priors to painlessly cir-
cumvent this problem. This is precisely the advantage of the heritability model
since now, for the relevant variable h2, the prior probability density, although
it is flat is perfectly proper.

As in the previous case, we consider an operational proper prior distribution
of the heritability coefficient similar to g(h?) but ignoring the Dirac delta at
Zero

f(R?)=1 if R*€0,1].

The posterior distribution of the parameters given data is
f (b,0%,h?ly)  f (yb,0%,h?) f (b,0°,h%) « f (y|b,o?, h?)
that is,

f(b,0 h2ly) o |V| % exp {—% (y — Xb) V-l(y — Xb)} (11)

with,
V =0?[0.250% (22’ - 1) +1]. (12)

Before replacing (11) in (12), we reduce V to its canonical form in order to
avoid its repeated inversion. Lin [18] described this procedure in an EM-REML
context.

1

Vli=072U0.25R*D +1I] U’ (13)
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where the columns of U contain the eigenvectors of (ZZ' — I) and D is a
diagonal matrix containing their corresponding eigenvalues. Cases including
animals related by coancestry will include an extra non-diagonal matrix. For
these cases, Lin [19] proposed the simultaneous diagonalization of two matrices,
a procedure that could be used here if necessary. Replacing (13) in (11) :

-z -1
f(b,0% h?y) « (¢2) "% |0.25R°D + 1| *
4 B
X exp {'P (y —Xb) U[0.25h°D +1] ' U’ (y — Xb)} :
Some remarks about the Gibbs sampler implementation to obtain the marginal
posterior distribution of h? are presented in the Appendix.

Probabilities of the null and alternative hypotheses were obtained using
formulas (6) and (7) and the conventional marginal posterior f (h2|y).

f (h? =0ly)

P (Holy) = TRE=0ly) +1 (14)
1
P(Hily) = FR =0y 1

This time the prior distribution is a well-defined proper distribution yielding
well-defined unambiguous posterior probabilities.

4. RESULTS ON SIMULATIONS

4.1. Simulation

In order to ascertain the value of the method for testing the null hypothesis,
nine cases with three different true heritabilities (0, 0.1 and 0.2) and three
different data sizes (500, 1000 and 2000) were analyzed. Twenty replicates
were simulated for each case. All replicates included 25 fixed levels of b, whose
true values were arbitrarily sampled from a uniform distribution within the
interval (100-200). The true phenotypic variance was arbitrarily set to 100 in
all cases. The number of sires was 50, 100 or 200, depending on the data set size.
True values of the sires were sampled from a normal distribution with null mean
and the sire variance was equal to 0, 2.5 or 5, depending on the heritability.
Records were obtained from a fixed level and a sire was chosen at random.
The residual variance equaled 100, 97.5 or 95, depending on the heritability.
These 180 data samples were analysed using a Gibbs sampler algorithm. The
chain length was 1100 and the first 100 iterations were discarded as burn-in.
Marginal densities at the origin were obtained via the Rao-Blackwell argument.

4.2. Results

The average results of the twenty replicates are presented in Table I. The
fourth column presents the ordinates at zero of the operational posterior distri-
bution of the heritability coefficient given the data. The fifth column presents
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Table I. Ordinate at zero of the conventional marginal posterior distribution, pos-
terior probability of the null hypothesis, and Bayes Factor against both the null and
the alternative hypothesis. Average results of 20 replicates.

Case h> Sires f(h*=0ly) p(Holy) BF(1/0)* BF(0/1)* LLRT**

1 0 50 8.2753 0.8401 20-0-0-0 4-10-6-0 0.9505(2)
2 0.1 50 4.4263 0.7030 20-0-0-0 10-8-2-0 1.3560(1)
3 0.2 50 2.1099 0.4394 13-3-3-1 16-3-1-0 6.2034(11)
4 0 100 11.4483 0.8931 20-0-0-0 2-6-12-0 0.6105(0)
5 0.1 100 1.8600 0.4544 14-1-4-1 17-3-0-0 2.8713(7)
6 0.2 100 0.2785 0.1561 3-10-2-5 20-0-0-0 7.6374(14)
7 0 200 20.8802 0.9430 20-0-0-0 0-0-0-20 0.7093(1)
8 0.1 200 4.0054 0.4294 12-6-1-1 15-3-2-0 7.2953(13)
9 0.2 200 0.2203 0.0996 2-4-5-9 20-0-0-0 21.2338(20)

* The 20 replicates classified as four types: no evidence, substantial evidence,
strong evidence and decisive evidence.

** Average of the log likelihood ratio test of the 20 replicates. Between parentheses,
the number of replicates where the null hypothesis was rejected with p = 0.05.

the probability of the null hypothesis calculated from formula (14) for each
replicate. Both the sixth and the seventh column correspond to the BF against
both the null and alternative hypotheses respectively. As Kass and Raftery [17]
suggest, we considered no evidence against the hypothesis when the BF was
smaller than 3.2, substantial evidence when the BF was within 3.2 and 10,
strong evidence when the BF was within 10 and 100 and decisive evidence
when the BF was greater than 100. Thus, from the 20 replicates analysed for
case 6, there was no evidence against the null hypothesis in 3 replicates, the
evidence was substantial for 10 replicates, strong for 2 replicates and decisive
for 5 replicates. The last column of this table shows the average of the log
likelihood ratio test (LLRT) for the twenty replicates of each case. It also
shows between parentheses, the number of replicates where the null hypothesis
was rejected with a significance probability of 0.05.

In Figure 1, the operational marginal posterior density f (h?|y) is illustrated
for the first replicate of cases 1 to 3. Taking case 3 as an example, its value at the
origin, i.e., f (h2 = 0|y), corresponded to 0.3810. The posterior probabilities
of the null and alternative hypotheses are then given by

0.3810
P(Holy) = 53g10 71 — 02959
1

Cases 1, 4 and 7 of Table I show that the posterior probability of the null hypo-
thesis increased when the number of data increased and the true heritability
was null. On the contrary, the probability of the null hypothesis was decreased
by increasing the number of data as illustrated in the remaining cases where
the true heritability was set to 0.1 or 0.2. Table I reveals an excellent behavior
of our approach as far as testing the null hypothesis is concerned.
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p(hlly)
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h2
Figure 1. Conventional marginal posterior distribution of the heritability coefficient
for the first replicate of cases 1 to 3.
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Figure 2. Path of the first 100 cycles after burn-in of the last replicate of case 1.

The average sample sizes of the Gibbs chains over the 20 replicates, obtained
as in Geyer [8], are presented in Table II. These results show the fast mixing
of the Markov chains in all cases. For instance, Figure 2 contains the path of
the first 100 cycles after burn-in of the last replicate of case 1.
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Table I1. Average effective sample size for the 9 cases and phenotypic variance and
heritability.

Case o? h?
1. 193.4 376.3
2 192.7 287.4
3 225.6 539.8
4 332.0 441.4
5 262.0 691.4
6 475.7 311.3
7 554.9 708.5
8 455.2 779.5
9 630.0 744.3

5. DISCUSSION

In the light of the previous results, some comments are necessary concerning
the Bayesian hypothesis testing presented here. In the first place, the failure
of the variance component model along with the success of the heritability one
does not imply any inconsistency of the Bayesian inference approach. On the
contrary it yields a consistent output. The arbitrariness of the posterior prob-
abilities is a direct reflection of the arbitrariness of the prior density. We are
purposely avoiding the word prior probability, since the prior density used does
not lead to a probability. Bayes’ theorem is a well-established mathematical
result relating probabilities and as such, consistency is guaranteed when it is
applied to probabilities. But we are pushing its application outside the realm
in which the theorem is proven. It is not surprising if along the way we get
some useless or apparently absurd result. Notice also that the arbitrariness of
k is caused by the arbitrariness of the prior density present only because the
restriction of a total area equaling one does not apply. It has nothing to do
with the subjective character of Bayesian inference.

It can be argued, however, that in fact &k is not so arbitrary and although
usually not stated explicitly it is an infinitesimal quantity. Putting it mathem-
atically, the prior uninformative density is not just a constant function but the
limit of a succession of proper flat distributions, i.e.,

flow) =limk if ke [0,&7']. (15)

Operationally, (15) implies taking the limit k& — 0 after performing the calcu-
lations, thus making any arbitrariness disappear. Immediately, formulae (9)
and (10} led us to an “absurd” result, namely the posterior probability of
the null hypothesis equal to one and zero for the alternative, whatever the
evidence added by the data. It then seems, that there is some inconsistency
in the Bayesian inference itself that invalidates its application to certain ques-
tions or models. But again this was only apparent. The Bayesian approach
yielded a reasonable output. Although, definition (15) led to a probability
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between 0 and 1, the limit process spoiled the countable additivity, and again
the associated “probability” was not well defined. More specifically, it assigned
zero probability to any finite interval (although it gives the correct answer for
the probability ratio between two finite intervals). The Bayesian inference is
doing nothing else than reflecting this “a priori” absurd.

The above argumentation does not mean that every Bayesian method based
on an unbounded flat prior is wrong. It simply means that it is necessary to
be aware of the improper character of the prior. Depending on the problem
addressed, inconsistencies will show up or not. Choosing heritability and pheno-
typic variance as the basic variables (as a matter of fact, a time honored election
in genetics) is just to re-encode the information contained in two unbounded
variables in one representing the total and the proportion of the second with
respect to the total (obviously bounded). The impropriety inherent to a flat
prior on unbounded variables is still there but behind the scene on the total vari-
ance. The relevant variable, that is, heritability, is now armed with a perfectly
proper prior density leading to a well-defined prior probability. The impropriety
has been hidden rather than eliminated but this is enough for our purposes.

The conventional likelihood ratio test implemented on the 180 replicates also
showed good results, but it only provides whether the observed likelihood ratio
is within the rejecting interval or not. Frequentist approaches do not provide
probabilities of both the null and the alternative hypotheses, as the BF does.
Furthermore, the hypothesis test is implemented integrating out the variables
of the model using the BF, while LLRT only the most probable values are
considered. Future research should be aimed to the numerical comparison of
the frequentist properties of LLRT and BF.

With regard to the possible outcomes of a Bayesian analysis, Jaynes [15,16]
proposed a very interesting idea, namely, that a Bayesian statistician can never
say that a result is absurd. Saying that a result is logically absurd implies that
we are using information that is not included in the prior or the data, although
the prior should include all information we have before the analysis. Hence,
what we are saying really is that our prior knowledge about the problem was
not well modeled. This was the rational which guided our search. In view of
the results, it has resulted in being a very useful one.
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APPENDIX

The Gibbs sampler implementation of the conventional
heritability model

The Gibbs sampling algorithm is implemented by successively sampling from
the full conditional distribution of each variable in the model [5]. In this
appendix we show the Gibbs conditionals used to implement the heritability
model.
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The Gibbs conditional distribution of b is a multivariate normal distribution
with the following expectation and variance

-1
B (bl 1,y) = (X'U [0.25A%D +1] U'X) X'U [0.25h°D +1) ' U’y

Var (blo?, h?,y) = o? (X’U [0.25K°D + 1) U’X) -

To circumvent the calculations involved in these formulas in cases with a large
number of elements in b, each element of b can be sampled in a univariate way.
The Gibbs conditional distribution of g2 has an inverted chi square form

f(c?b, %, y) (0'2)_%exp {~ Q }

202

where Q = s’ [0.25h%D +I]_l s and s = U’ (y — Xb). Although there are
methods available to sample from inverted chi square distributions, we used
the adaptive rejection algorithm [9]. The algorithm requires knowing, by
proportionality, the logarithm of the conditional and its derivative

log [f (¢%|b, %, y)] ox —0.5nlog (¢°) — 0.507°Q
Odlog [f (0’2|b, h2,y)]
do?

The Gibbs conditional distribution of h2, taking into account that 0.25h2D +1
is diagonal

x —0.50"%n + 0.5 (0%) Q.

d _1 i _

F(P*|b,0?%,y) o< [] (0.25h%d; + 1) % exp {-0.50“2 > s?(0.25h%d; + 1) 1}
i=1 i=1

where n is the rank of V, i.e., the number of observed data, d; is the ith

element of the diagonal of D and s; is the ith element of s. The adaptive

rejection algorithm can also be used to sample from the Gibbs conditional

of h?. The logarithm of the conditional and its derivative are

log [f (hzlb, UQ,y)] x —0.5 Zlog (025h2d1 + 1)
i=1
— 050723 57 (0.25K%d; +1)
=1
dlog [f (h2|b,02,y)]
Oh?

x ~0.5 0.25d; (0.25h%d; + 1)

i=1
+0.5072 3" 0.25d;57 (0.25h%d; + 1)
=1

The marginal posterior density of h2?, especially the density at zero, can be
obtained following the Rao-Blackwell argument, that is, by averaging the con-
ditional densities of each cycle of the algorithm.
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