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Abstract — A random regression model for daily feed intake and a conventional multiple
trait animal model for the four traits average daily gain on test (ADG), feed conversion ratio
(FCR), carcass lean content and meat quality index were combined to analyse data from 1449
castrated male Large White pigs performance tested in two French central testing stations in
1997. Group housed pigs fed ad libitum with electronic feed dispensers were tested from 35
to 100 kg live body weight. A quadratic polynomial in days on test was used as a regression
function for weekly means of daily feed intake and to describe its residual variance. The
same fixed (batch) and random (additive genetic, pen and individual permanent environmental)
effects were used for regression coefficients of feed intake and single measured traits. Variance
components were estimated by means of a Bayesian analysis using Gibbs sampling. Four
Gibbs chains were run for 550 000 rounds each, from which 50000 rounds were discarded
from the burn-in period. Estimates of posterior means of covariance matrices were calcu-
lated from the remaining two million samples. Low heritabilities of linear and quadratic
regression coefficients and their unfavourable genetic correlations with other performance
traits reveal that altering the shape of the feed intake curve by direct or indirect selection is
difficult.
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1. INTRODUCTION

Electronic feeders installed in central testing stations allow for the meas-
urement of individual daily feed intake of performance tested growing pigs.
Today’s pig selection programs only make use of these data by calculating
average daily feed intake as a simple mean of daily feed intake records over the
whole testing period. In a previous study we have shown that more information
can be retained from these data with a random regression model, using a
quadratic polynomial to describe the course of daily feed intake of growing
fattening pigs [11]. Genetic eigenfunctions and low heritabilities of linear
and quadratic random regression coefficients of daily feed intake indicate that
changes of the overall level are easier to achieve than changes of slope or
inflexion of feed intake curves. It therefore seems difficult to improve the
efficiency of lean growth by selecting for a higher feed intake in the beginning
of the fattening period while leaving the feed intake capacity at its present
level towards the end [11]. Such an advantage over the use of traditional traits
(average daily feed intake, average daily gain and/or the ratio of the two, i.e. feed
conversion) for selection of pigs for growth performance would be necessary
to justify the use of a random regression model for routine evaluations.

Correlations of random regression coefficients for feed intake with traditional
single measured performance traits of growing pigs might help to judge the
potential of random regression models for future pig breeding programs. To
our knowledge, no attempt has been published to combine a random regression
model for a trait with repeated measurements with a conventional multiple trait
model for single measured traits in a joint analysis.

The objective of this study was to combine the random regression model
previously used for the analysis of daily feed intake data [11] with a multiple
trait model for single measured performance traits of growing pigs and to
assess possible routes of improvement of the efficiency of lean growth based
on estimates of genetic and phenotypic correlations obtained from this joint
analysis.

2. MATERIALS AND METHODS

2.1. Data

1449 castrated Large White pigs were performance tested in two French
central testing stations in 1997. Growing pigs were housed in group pens
equipped with one electronic feed dispenser each (Acema-48, Acemo, Pontivy,
Morbihan, France), where ad libitum daily feed intake was recorded. Groups
that were on test during the same period of time on the same testing station
formed a batch. There was a total of 155 groups in 13 batches. After one week
of adaptation to the automatic feed dispensers, pigs entered the testing phase
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Table I. Number (n) and proportion (%) of tested animals with records for weekly
means of daily feed intake by test week (or corresponding test day).

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Day 4 11 18 25 32 39 46 53 60 67 74 81 88 95

n 1423 1444 1443 1441 1442 14351423 1407 1378 1213 713 225 51 3
% 98.2 99.7 99.6 99.4 99.5 99.0 98.2 97.1 95.1 83.7 49.217.63.50.2

with about 35 kg live body weight and were slaughtered after the end of the
test with 100 kg live body weight on average. Weekly means of feed intake
per day were calculated and saved as the record of the middle day of the test
week, in order to reduce the amount of data for the evaluations. Whenever
records of more than one day per week were missing, all the records of this
week were discarded and the weekly mean was set to missing. This resulted in
records for days 4, 11, 18, ..., 81, 88, 95 (Tab. I). Other traits included in this
evaluation were average daily gain and feed conversion ratio calculated for the
period between the start and the end of the test, as well as carcass lean content
and meat quality index determined after the slaughtering of tested animals.

2.2. Model

The following random regression model, which is a quadratic polynomial in
days on test d,,, was fitted to weekly means of daily feed intake records:

Yiikm = batcho, + batchyy * d,, + batchy, * d;i
+ ay + ayxd, + az:’*dﬁ,

+ py + pyxds + pyxd, (1)
+ e + euxd, + ezi*d,%1
+ 8z:jkm

where batch,, are fixed regressions for the period and station of test; a,;
are random regressions for animal additive genetic effects; p,; and e,; are
random regressions for permanent environmental effects of pen and the tested
individual, respectively; &, is arandom residual error which accounts for daily
deviations of feed intake from the expected trajectory of animal i on day d,,.
What is called “permanent environmental effect of the tested individual”, is a
residual for regression coefficients. This random regression model corresponds
to the one used in a previous analysis of daily feed intake records of performance
tested growing pigs [11]. Fixed regression coefficients due to the gender of
the animals as well as random regression coefficients due to litter permanent
environmental effects were dropped from the model, since only castrated males
were tested, which usually had no litter mates in the test.
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Daily deviations from the estimated feed intake curve of an animal (residuals
&ijkm) Were assumed to be independent of each other. All the animals were
assumed to have the same residual variance for feed intake on a given day on
test d,,, which was modelled as follows:
ngm =exp (Yo + y1 % dw + v2 % d,zn) . (2)
In a previous analysis, this model for the residual variance proved to be better
than a constant residual variance over the whole testing period [11]. Changes
in the magnitude of the residual variance are mainly due to scale effects, since
daily feed intake of pigs increases with stomach and gut size during the growing
period.

The model for single measured performance traits average daily gain, feed
conversion ratio, carcass lean content and meat quality index contains the same
fixed and random effects as for regression coefficients for weekly means of
daily feed intake. Additionally, the live weight at the end of the test (before
slaughtering) was included as a covariable for average daily gain and feed
conversion ratio:

Ynijk = Bn * weight; + batchy, + an;i + ppj + eni + Enijr (3)

where y,;i is the record for trait n of animal i in pen j and batch k. B, is the
regression of trait n on the covariable “weight at the end of the test”. For the
combination of the two models, additive genetic (a,;) and permanent environ-
mental effects of the pen (p,;) of single measured traits (n) are assumed to be
correlated with the corresponding effects for random regression coefficients for
daily feed intake. Since residuals for regression coefficients are fitted explicitly
as individual permanent environmental effects in the random regression model
for daily feed intake, such individual permanent environmental effects (e,;)
were also fitted for single measured traits. Individual permanent environmental
effects are assumed to be correlated among single measured traits and regression
coefficients for feed intake. The residuals &, of single measured traits corres-
pond to the residuals &, in equation (1), which account for deviations of daily
feed intake from the expected trajectory. Residuals ¢, of single measured
traits are assumed to be normally distributed and independent of each other as
well as from residuals of daily feed intake. The two residual terms in model (3)
for single measured traits (e,; and &,;) were included to reach compatibility
with the random regression model (1) for daily feed intake. Explicitly fitting
individual permanent environmental effects e,; in a random regression model
is necessary for a proper definition of heritabilities of regression coefficients,
since they play the role of residuals for these artificial traits [11]. If one desires
to allow for correlations between these explicitly fitted residuals of regression
coefficients and residuals of single measured traits in a joint analysis, the only
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possibility is to fit individual permanent environmental effects explicitly for
single measured traits as well.

Normal distribution of feed intake data and single measured performance
traits is assumed:

yboap.eol ~N[Xb+ZatVpiWeld )

y is a vector containing data for all traits; b is a vector containing fixed effects
for batch and regressions §, on the covariable weight at the end of the test; a is
the vector of additive genetic effects; p and e are vectors containing permanent
environmental effects; X, Z, V and W are incidence matrices; I is the identity
matrix and o? 1s the residual variance around feed intake curves for day on
test d,, or the variance of uncorrelated residuals for single measured traits,
respectively.

The following assumptions were used for the distributions of fixed and
random effects:

b ~ constant
alA, Gy~ N{0, (A ® Gg)}
pIPp ~ N{0, I® Py)}
e[Eg ~ N{0, I ® Ey)} Q)

where A is the numerator relationship matrix, Gy is the (co)variance matrix of
random additive genetic effects and Py and E¢ are (co)variance matrices for
random permanent environmental effects. All these (co)variance matrices are
of dimension 7 x 7 (three regression coefficients plus four single measured
traits).

Informative priors with low numbers of degrees of freedom were used for
the variance components. For the 7 x 7 (co)variance matrices Gy, Py and
Ey, inverse Wishart distributions with nine degrees of freedom were used.
Scale parameters for inverse Wishart prior distributions (Tabs. II and III) were
chosen such that resulting expected values of covariance matrices corresponded
to our expectation. Expected values for (co)variances of feed intake regression
coefficients were taken from our results of an earlier study [11], while genetic
and permanent environmental (co)variances for single measured performance
traits were derived from Labroue et al. [7]. Their results for average daily feed
intake were used for genetic correlations between single measured traits and
the intercept of feed intake curves. Priors for genetic covariances of single
measured performance traits with linear and quadratic regression coefficients
of daily feed intake were set to zero (Tab. II), since no prior information about
their true value was available. For simplicity, prior values of all permanent
environmental covariances of single measured traits were also set to zero
(Tab. III). Total permanent environmental (co)variance (Tab. III) was divided
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Table II. Lower diagonal elements of the symmetric scale matrix S for the inverse
Wishart prior distribution of the additive genetic covariance matrix (G¢) between the
intercept, linear and quadratic regression coefficients for daily feed intake and single
measured performance traits: average daily gain (ADG), feed conversion ratio (FCR),
carcass lean content (CLC) and meat quality index (MQI).

Trait Intercept Linear Quadratic =~ ADG FCR CLC MQI
Intercept 2.23e-2

Linear —3.60e—4 1.40e-5 symmetric

Quadratic 2.90e—6 —7.00e—8 1.90e—9

ADG 4.90 0.0 0.0 3386.0

FCR 1.90e—3 0.0 0.0 —2.186  0.0080

CLC —1.562e—1 0.0 0.0 0.0 —0.0990 7.620

MQI 1.486e—2 0.0 0.0 0.0 0.0141 —0.1451 1.105

Table III. Lower diagonal elements of the symmetric scale matrix Spg, for the inverse
Wishart prior distribution of the total permanent environmental covariance matrix (sum
of Py and E,) between the intercept, linear and quadratic regression coefficients for
daily feed intake and single measured performance traits: average daily gain (ADG),
feed conversion ratio (FCR), carcass lean content (CLC) and meat quality index (MQI).

Trait Intercept Linear Quadratic ADG FCR CLC MQI
Intercept 3.06e—2

Linear —1.14e-3 1.96e—4 symmetric

Quadratic 1.11e—5 —-2.62e—6 3.97e—8

ADG 0.0 0.0 0.0 5079.0

FCR 0.0 0.0 0.0 0.0 0.032

CLC 0.0 0.0 0.0 0.0 0.0 3.267

MQI 0.0 0.0 0.0 0.0 0.0 0.0 4418

into its components pen (Py) and individual (Ey) permanent environmental
(co)variance with a ratio of 1 to 9. Priors for parameters y,, y; and y», that
describe the course of the residual variance agm for weekly means of daily feed
intake, were assumed independent of each other and normally distributed with
standard deviations of 1.5(yy), 0.1(y;) and 0.01(y»). These standard deviations
represent a relatively wide range of values, that parameters yy, y; and ), might
reasonably take. The same values were used in an earlier study [11], where
they were chosen to express the low level of knowledge about distributions of
these parameters. As the Metropolis-Hastings algorithm performed well with
these values, they were not changed for the present study.

Unlike residuals for daily feed intake in a random regression model, uncor-
related residuals for single measured traits cannot be distinguished from indi-



Random regression combined with single measured traits 67

vidual permanent environmental effects. To avoid difficulties of distribution
of variance between the two environmental effects of single measured traits,
the residual variance ng was not estimated, but fixed to a value 10000 times
smaller than the expected phenotypic variance of the trait. This computational
trick forced the residual variance of single measured traits to be attributed to the
individual permanent environmental (co)variance matrix Ey. This is illustrated
below for two traits with repeated and single measurements, respectively.
Suppose the true permanent environmental and residual (co)variance structures

for these two traits are given by:

o’ o, o> 0

Eo=| @ |;R=Ics2=| © . (6)
2 £n 2
Ocy, O, 0 o,

If the residual variance can be estimated for the trait with repeated measure-
ments (trait 1) and is fixed to a small value s* (smaller than the true value) for
the single measured trait (trait 2), the above components will be estimated as:

E _ Of] 0-61,2 . R_ |:U§] 0] (7)
0= O (032+0§2—32) B O

The major part of residuals of the single measured trait will thus be included in
explicitly fitted permanent environmental effects, if the mixed model equations
are built with these (co)variance components. As long as the value chosen for
s? is smaller than the (unknown) true residual variance of the single measured
traits, estimates of covariances in (7) will certainly be unbiased. As long as the
permanent environmental correlation calculated from Ey in equation (7) does
not reach the limits of the parameter space, even higher values than the true
residual variance can be chosen for s2. The following conditions must always
hold:

o
1< ‘2 <1
\/GZI (032 + ng - SZ)
(0e,,)?
= 0< 2 261'22 2 <
G, (Gez + O, =S )
(0e,,)*
=0<s <o, +o;, — —5—- ®)
o7

The value zero is not allowed for s> because R in (7) has to be positive definite.

2.3. Variance component estimation

For the estimation of (co)variance components, our own programs were used
applying Bayesian methodology using Gibbs sampling. The joint posterior
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distribution of the parameters given the data is the product of the likelihood
and the prior distributions of all parameters. From there, marginal distributions
are derived easily, as they only have to be known up to proportionality. This
results in normal distributions for solutions of covariables, fixed and random
effects and in inverse Wishart distributions for the (co)variance matrices for
additive genetic and permanent environmental effects. The parameters yy, yi
and y», that describe the course of the residual variance agm, had to be sampled
via a Metropolis-Hastings algorithm, as their distribution is not a standard
one. A detailed description of the procedure used can be found in Schnyder
et al. [11]. Mixed model equations (MME) were processed block-wise by
means of Cholesky decomposition and backsubstitution when generating new
solutions in the Gibbs sampler. The data was analysed including (model 1) and
excluding (model 2) “weight at the end of the test” as a covariable for the single
measured traits average daily gain and feed conversion ratio, to investigate the
influence of this covariable on heritability estimates. For both models, four
Gibbs chains were run, with 550 000 samples each.

2.4. Post-Gibbs analysis

Burn-in was determined for all (co)variances by the method of Raftery
and Lewis [10], using their Fortran program “gibbsit”. Additionally, line
plots of samples of (co)variance components from every 100th round of Gibbs
sampling were used to check convergence of parameters to their stationary
distributions. For graphical analysis of Gibbs chains, the statistical software
package S-Plus [8] was used. Samples from the burn-in period of each chain
were discarded, and posterior means calculated from the remaining samples
served as estimates of (co)variance components.

Heritabilities, and genetic and phenotypic correlations were calculated from
samples of (co)variance components. For regression coefficients for feed
intake, the phenotypic covariance matrix is defined as the sum of additive
genetic (Gy) and permanent environmental (Py, Ey) covariance matrices [11].
For single measured traits, the residual variance is also included, i.e. the fixed
value s? from equation (7) is added to the sum of estimated additive genetic
and permanent environmental variances. For heritabilities, genetic and phen-
otypic correlations, effective sample size [12] and standard errors of posterior
means (Monte Carlo errors) were estimated using estimates of Monte Carlo
variance obtained by the method of the initial monotone sequence estimator [3].
This estimator was preferred by Geyer [3] over the initial positive sequence
estimator, because it makes large reductions in the worst overestimates while
doing little to underestimates. Each Gibbs chain was processed separately,
using samples after burn-in only. Estimates of effective sample size were
summed over the four Gibbs chains. The variance of an arithmetic mean of
n independent values is equal to the original variance of these values divided
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by n (see e.g. [13]). Therefore, estimates of standard errors of overall estimates
of posterior means of (co)variance components, are obtained by averaging
estimates of standard errors of posterior means of the four individual chains,
and dividing this average by two.

(Co)variances between daily feed intake records and single measured per-
formance traits were calculated from posterior means of (co)variance matrices
of random regression coefficients for feed intake and single measured perform-
ance traits as shown in equation (9) below for additive genetic (co)variances:

1 dy &
P By =10 ©)

Co = DGd'; & = [‘I’"‘ 0} Lo
1 dy &

0 I,

where Cg is a matrix containing genetic (co)variances between daily meas-
urements of feed intake and single measured performance traits of dimension
(m 4+ n) rows by (m + n) columns, where m is the number of days (weeks)
with measurements of feed intake and » is the number of single measured
traits; Gy is the genetic (co)variance matrix between the 3 random regression
coefficients for daily feed intake and the n single measured traits; @ is a
matrix of (m + n) rows by (3 + n) columns consisting of (m by 3) matrix ®y,
containing covariables for quadratic polynomials (1, day, day?) for each day
with feed intake records in the upper left corner and the (n by #) identity matrix
I, in the lower right corner, with zeros everywhere else. If Gy is split into its
submatrices corresponding to (co)variances of regression coefficients for feed
intake (Gq,1), (co)variances of single measured traits (G3,2) and covariances
between regression coefficients and single measured traits (Gy,2), Cg can be
written as follows:

CG — |:(I>mG1,l(I> m q’mGl,Z] ) (]0)

G2,1®'m G

Residual variances around feed intake curves were calculated for the same
m days with measurements of feed intake according to equation (2), using
posterior means of parameters )y, ¥; and y,. The sum of calculated additive
genetic (C¢) and permanent environmental (Cp and Cg) (co)variance matrices,
with residual variances around feed intake curves (‘752,”) added to variances of
daily feed intake and fixed residual variances (afn) added to variances of single
measured traits, yields the phenotypic (co)variance matrix C between weekly
means of daily feed intake and single measured performance traits:

Ino? 0
CZCG+CP+CE+[ 0" InUi]' (11)

From additive genetic and phenotypic (co)variance matrices, heritabilities,
genetic and phenotypic correlations were calculated. Course of variances and
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heritability for weekly means of daily feed intake, genetic and phenotypic
correlations between weekly means of daily feed intake, as well as their
correlations to single measured traits, were plotted for the whole testing period.

3. RESULTS AND DISCUSSION

3.1. Behaviour of the Gibbs sampler

Burn-in periods estimated with the fortran program “gibbsit” by Raftery
and Lewis [10] differed substantially between parameters, chains and specified
quantiles of interest. The highest estimates were found for the estimation of
50%-quantiles of genetic variances of the single measured traits: carcass lean
content and meat quality index. Based on these estimates and after graphically
checking whether Gibbs chains had converged to a stationary distribution,
50000 rounds of burn-in were chosen for all parameters of all chains.

Sums of estimates of effective sample size per Gibbs chain (Tabs. IV and V)
were very low compared to the 500 000 rounds of Gibbs sampling run after
burn-in for each chain (2000000 samples total). The estimate of effective
sample size for the phenotypic correlation between average daily gain (ADG)
and feed conversion ratio (FCR) in model 1 with the covariable “weight at
the end of the test” for ADG and FCR (Tab. IV), which was much lower than
for model 2 without a covariable for ADG and FCR was especially surprising
(Tab. V). A possible reason for this low estimate of effective sample size for
the phenotypic correlation between ADG and FCR may be found in the special
interrelations between these traits. FCR is average daily feed intake divided
by ADG and ADG is the weight at the end of the test minus weight at the
start, divided by the number of days on test, i.e. both traits are ratios and the
covariable specified for both traits is involved too.

The reason for the generally slow mixing of Gibbs chains can be found
in fixing the residual variance to a small value and explicitly fitting individual
permanent environmental effects for single measured traits. With such a model,
traits are fitted almost perfectly by the specified effects, which reduces the
freedom of the sampler to change a single effect. This was confirmed by
the convergence of a Gauss-Seidel algorithm with a simulated data set. The
calculations involved in Gibbs sampling of fixed and random effects are almost
identical to the calculations used in the Gauss-Seidel algorithm for solving
the mixed model equations. Convergence of a Gauss-Seidel algorithm and
mixing of the Gibbs sampler for a given model are therefore closely related.
A data set was generated according to a model similar to our model for single
measured traits (3), assigning relative values of 70 to the individual permanent
environmental variance and 30 to the residual variance. The mixed model
equations for this data were then set up using values 99.9 and 0.1 for individual
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Table IV. Estimates of effective sample size (sum over four Gibbs chains) for heritab-
ilities (bold), genetic (above diagonal) and phenotypic (below diagonal) correlations
of intercept, linear and quadratic regression coefficients for daily feed intake, and
for single measured performance traits: average daily gain (ADG), feed conversion
ratio (FCR), carcass lean content (CLC) and meat quality index (MQI). Model 1 with
covariable “weight at the end of the test” for ADG and FCR.

Trait Intercept Linear  Quadratic ADG FCR CLC MQI
Intercept 88 78 95 104 30 60 63
Linear 2280 70 84 71 49 62 75
Quadratic 1520 2532 59 67 33 50 45
ADG 513 605 433 29 20 34 47
FCR 1273 1388 2376 15 21 34 42
CLC 814 355 280 246 179 29 24
MQI 1645 1140 994 405 717 147 21

Table V. Estimates of effective sample size (sum over four Gibbs chains) for heritab-
ilities (bold), genetic (above diagonal) and phenotypic (below diagonal) correlations
of intercept, linear and quadratic regression coefficients for daily feed intake, and for
single measured performance traits: average daily gain (ADG), feed conversion ratio
(FCR), carcass lean content (CLC) and meat quality index (MQI). Model 2 without a
covariable for ADG and FCR.

Trait Intercept Linear  Quadratic ADG FCR CLC MQI
Intercept 39 22 34 79 35 39 40
Linear 2602 76 46 20 39 68 75
Quadratic 3142 2418 30 56 26 44 63
ADG 772 835 686 28 22 39 17
FCR 1277 1074 1033 197 21 33 26
CLC 629 471 352 106 209 29 33
MQI 598 978 735 213 415 138 26

p.e. and residual variances, respectively, and solved using the Gauss-Seidel
algorithm. The solutions were the same as for the mixed model equations set up
using the true values for variance components, but it took many more rounds to
reach the convergence criteria. On the contrary, convergence was much faster if
individual permanent environmental effects were not fitted explicitly, but only
taken into account by assigning a value of 100 to the residual variance, i.e. the
sum of the true individual p.e. and residual variances. Such a parameterisation
was used by Meyer et al. [9] for a joint analysis of two traits with single
and repeated measurements, respectively. This would certainly also improve
the mixing of the Gibbs sampler for our single measured traits, but does not



72 U. Schnyder et al.

Table VI. Averages (1) and standard deviations (s.d.) over all tested animals for
intercept, linear and quadratic regression coefficients of daily feed intake (coefficients
fitted to records o f each animal separately) and for single measured performance traits,
average daily gain (ADG), feed conversion ratio (FCR), carcass lean content (CLC)
and meat quality index (MQI), together with estimates of posterior mean of phenotypic
standard deviations from the two models with (opn1) and without (o,,2) covariable
“weight at the end of the test” for ADG and FCR.

Trait Intercept Linear Quadratic ADG FCR CLC MQI
Unit kg kg/day kg/day? g kg/kg % -

m 1.344 3.60e—02 —1.47e—04 851.74 2918 56.67 10.734
s.d. 0.364 2.32e—02 3.33e—04 87.85 0.234 3.37 2.565

opnl 0250 1.48e—02 1.94e—04  67.82 0274 2.64  2.449
Oph2 0.256 1.49e—-02 1.96e—04 83.56 0.217 2,64  2.447

allow for residual correlations between random regression coefficients and
single measured performance traits, as explicitly fitting individual permanent
environmental effects for regression coefficients is necessary for a proper
definition of heritability for these artificial traits [11]. Fixing residual variances
to higher values than the ones used in this study would improve mixing of the
Gibbs sampler. One needs to make sure though that estimates of individual
permanent environmental covariances are not affected by the choice of fixed
residual variances (see equation (8)).

The following strategy is recommended for the analysis of a random regres-
sion model combined with single measured traits:

1) run a short Gibbs chain with the residual variance of single measured traits
fixed to a small value (s> ~ 1-10% of phenotypic variance) to get an
indication of the distribution of variance among effects;

2) if necessary, adjust s> based on individual permanent environmental correl-
ations (equation (8), new s> higher if correlation close to zero and lower if
close to (—1) or 1);

3) then run the Gibbs sampler for as many rounds as needed for the desired
accuracy of estimates.

Table VI compares model estimates of phenotypic standard deviations
(Gibbs posterior means) with a simple estimate of standard deviation from
the raw data (not corrected for fixed effects). For regression coefficients of
daily feed intake raw data estimates were obtained by first fitting a quadratic
polynomial to feed intake records of each animal separately and then treating
the resulting regression coefficients like single measured traits. Mean values
(Tab. VI) of intercept and linear regression coefficients for daily feed intake are
positive, while it is negative for the quadratic regression coefficient. Values for
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the linear and especially the quadratic regression coefficient are small, because
they are multiplied with the day of test and squared day of test, respectively, to
yield kilograms of daily feed intake. When comparing estimates of phenotypic
standard deviations in Table VI, another problem in the analysis with covariable
weight at the end of the test included in the model was discovered. Like fixed
effects, covariables are expected to reduce the variance of random effects.
Therefore, estimates of phenotypic standard deviation of ADG and FCR were
expected to be smaller for model 1 than for model 2. This was the case for
ADG, but the estimate of phenotypic standard deviation of FCR obtained with
model 1 was higher than estimates from both, model 2 and raw data. Instead
of reducing variances of random effects, fitting “weight at the end of the test”
as a covariable for FCR seemed to introduce additional variance. The reason
for this erratic behaviour of the Gibbs sampler was found in fixing residual
variances of single measured traits to a very small value and explicitly fitting
residuals as individual permanent environmental effects. Apparently, the Gibbs
sampling algorithm was not able to react appropriately if too high values were
sampled for the solution 8, of the covariable “weight at the end of the test” for
FCR. Explicitly fitted individual permanent environmental effects must have
incorporated the changes of residuals caused by the sample for 8,. Since this
had no influence on the fixed residual variance used to set up the mixed model
equations, the value for 8, was not forced to be reduced in the next round of
Gibbs sampling. For model 2 without the covariable “weight at the end of the
test” for ADG and FCR, no such erratic effects occurred. Cross-classified fixed
and random effects seem to be less affected by the missing feedback from the
fixed residual variance, since the impact of a change in the solution for one
effect on the resulting “phenotypic fit” is much smaller than for covariables.
However, fixing the residual variance of single measured traits to a very small
value had an impact on the mixing of the Gibbs chain for this model too. In
the following, only results from model 2 (without the covariable “weight at
the end of the test” for ADG and FCR) will be reported, since the estimates of
heritabilities and correlations were influenced by the erratic behaviour of the
Gibbs sampler with model 1.

3.2. Heritabilities and correlations
3.2.1. Feed intake curve parameters

The estimate of 0.32 for the heritability of the intercept regression coefficient
of daily feed intake (Tab. VII) is higher than what we found in an earlier
study [11], and is identical with the estimate found by Eissen [2] in a two
step approach. Heritabilities for linear and quadratic regression coefficients
are in the same range as those reported earlier. Phenotypic correlations are
very similar to the ones found earlier, but genetic correlations are different
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Table VII. Estimates of posterior means of heritabilities (bold), genetic (above diag-
onal) and phenotypic (below diagonal) correlations of the intercept, linear and quadratic
regression coefficients for daily feed intake, and for single measured performance traits
the average daily gain (ADG), feed conversion ratio (FCR), carcass lean content (CLC)
and meat quality index (MQI).

Trait Intercept Linear Quadratic ADG FCR CLC MQI
Intercept 032 —-0.02 0.83 0.82 0.50 —-0.33 -0.04
Linear —0.40 0.06 —0.35 0.38 048 —0.55 0.57
Quadratic 028 —0.91 0.03 0.63 0.16 0.13 —-0.24
ADG 0.30 0.29 —0.08 0.45 033 —0.28 0.29
FCR 0.25 0.11 —-0.10 —0.34 021 —0.65 0.04
CLC —-0.13  —-0.24 0.13  —-0.09 —-0.44 079 —0.27
MQI 0.01 0.03 0.01 0.02 0.08 —0.11 0.25

(Tab. VII). The genetic correlation between the intercept and the quadratic
regression coefficient is higher than that reported earlier for another set of
Large White data [11], while the genetic correlation between linear and quad-
ratic regression coefficients is lower. Genetic correlations among regression
coefficients (Tab. VII) indicate that selection for a higher intercept might lead to
flatter feed intake curves. But as heritabilities of linear and quadratic regression
coefficients are low, indirect selection responses are expected to be small. This
confirms that it is easier to change the overall level than the shape of feed intake
curves.

3.2.2. Weekly means of daily feed intake

Figure 1 shows the course of heritability, additive genetic, permanent envir-
onmental and residual variances for weekly means of daily feed intake. Week 14
is not shown, as only three animals had records in this last week of the test
(Tab. I). Course of variances is similar to what we found earlier for Large White
and French Landrace pigs [11], but with increased additive genetic and reduced
permanent environmental variance. Consequently, heritability estimates are
also higher (Fig. 1) than in our previous study [11]. Heritability for weekly
means of daily feed intake increased from 0.20 in the first week of the testing
period to 0.38 in week 10 (Fig. 1), which is in the range of the values reported
by other authors [4-6, 14]. Because of the relatively high variation around feed
intake curves, the heritability for weekly means of daily feed intake is lower in
the first seven weeks of the testing period (Fig. 1) than the heritability of the
intercept regression coefficient (Tab. VII), which should represent very similar
information. Selection for higher feed intake in the beginning of the testing
period should thus rather be based on the intercept regression coefficient than
on weekly means of daily feed intake of early test weeks.
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Figure 1. Course of variances and heritability for weekly means of daily feed intake
(kg) of Large White growing pigs.
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Figure 2. Genetic correlations between weekly means of daily feed intake (kg) of
Large White growing pigs.

Genetic correlations between weekly means of daily feed intake (Fig. 2) were
very high. The lowest estimates were found for genetic correlations between
feed intake in week 1 and feed intake in the second half of the testing period,
which were still higher than 0.8. These values are higher than estimates of Hall
et al. [5], who found values between 0.61 and 0.99 using a covariance function
model for weekly means of daily feed intake of pigs tested between 45 and 95 kg
live body weight. Estimates of genetic correlations of weekly means of daily
feed intake from other studies [6, 14], using conventional multiple trait models,
are also lower than our estimates from a random regression model. These high
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Figure 3. Phenotypic correlations and repeatability (on the diagonal) for weekly means
of daily feed intake (kg) of Large White growing pigs.

genetic correlations indicate that selection on daily feed intake at any point
during the testing period will result in a similar response over the whole period.
Phenotypic correlations between weekly means of daily feed intake (Fig. 3) are
substantially lower than genetic correlations. Because of the influence of the
residual variance around feed intake curves, (hypothetical) repeated measures
of feed intake for the same test week and the same animal need not be the same.
The “phenotypic correlations” between records of weekly means of daily feed
intake of the same test week, shown on the diagonal in Figure 3, thus represent
the repeatability for weekly means of daily feed intake (variance explained
by random regression coefficients divided by the total variance). Compared
to estimates from regression coefficients alone (based on upper left part of
(Cg + Cp + Cg) in equation (11) only, without residual variances), phenotypic
correlations between feed intake records of different test weeks are also reduced
due to residual variances. For consecutive test weeks, our estimates are in the
same range as those of Hall et al. [5], while they are lower for test weeks that are
further apart. Labroue [6] found similar estimates of phenotypic correlations
between weekly means of daily feed intake with a multiple trait model, while
von Felde et al. [14] estimated higher phenotypic correlations between records
in the second part of the testing period.

3.2.3. Single measured performance traits

Heritability estimates (Tab. VII) for single measured performance traits are
very similar to those found by Labroue et al. [7] for Large White pigs. For
model 1 with “weight at the end of the test” included as a covariable for ADG
and FCR, lower heritabilities were estimated for ADG (0.33) and FCR (0.09).
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Phenotypic correlations between single measured performance traits
(Tab. VII) lie in the range of values found in literature [1,2,4,7, 14]. Estimates
of genetic correlations (Tab. VII) between CLC and other traits are similar to
those found by Labroue et al. [ 7], while substantial differences (opposite signs)
were found for genetic correlations between ADG, FCR and MQI. Eissen [2]
estimated genetic correlations between ADG, FCR and CLC, which are similar
to our results (Tab. VII). Estimates of Hall et al. [4] (ADG-FCR) and von Felde
et al. [14] (ADG-FCR, ADG-CLC) are in the same range as those of Labroue
et al. [7]. Genetic correlations between MQI and other traits were closer to
those reported by Labroue et al. [7] for French Landrace pigs than for Large
Whites.

3.2.4. Correlations between feed intake parameters and single
measured performance traits

Estimates of phenotypic correlations between regression coefficients for
daily feed intake and single measured performance traits varied between —0.24
and 0.30 (Tab. VII). Intercept and linear regression coefficients showed positive
phenotypic correlations with ADG and FCR and negative phenotypic correla-
tions with CLC, which are similar to those found by Eissen [2]. Phenotypic cor-
relations of the quadratic regression coefficient with these traits have opposite
signs and for MQI phenotypic correlations to regression coefficients for daily
feed intake are essentially zero. Genetic correlations of all three regression
coefficients with ADG and FCR were positive, while genetic correlations
of CLC with intercept and linear regression coefficients were found to be
negative. Except for his estimate of 0.25 for the genetic correlation between
CLC and the intercept regression coefficient of a linear fit to daily feed intake
records, Eissen [2] estimated similar genetic correlations for intercept and linear
regression coefficients with these performance traits. Because of this difference
(negative correlation with CLC) we are not as optimistic as Eissen [2] about
the possible benefits of the intercept regression coefficient for selection. The
estimate of the genetic correlation between MQI and the linear regression
coefficient was high and positive, while low negative values were found for
other regression coefficients. Labroue et al. [7] estimated genetic correlations
for average daily feed intake and MQI of 0.00 for Large White pigs and 0.21
for the French Landrace.

Genetic and phenotypic correlations between single measured performance
traits and feed intake regression coefficients resulted in almost constant genetic
(Fig. 4) and phenotypic (Fig. 5) correlations between performance traits and
weekly means of daily feed intake over the whole testing period. Phenotypic
and genetic correlations are comparable to the values reported in the literature
for phenotypic and genetic correlations between average daily feed intake
and other performance traits [1,2,4,7,14]. While our phenotypic correlations
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Figure 4. Course of genetic correlations of single measured performance traits with
weekly means of daily feed intake (kg) of Large White growing pigs.
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Figure 5. Course of phenotypic correlations of single measured performance traits
with weekly means of daily feed intake (kg) of Large White growing pigs.

are situated at the lower end of the range of the values reported, our genetic
correlations tend to be slightly higher. Eissen [2] and Hall et al. [4] reported
genetic correlations between average daily feed intake and feed conversion
ratio similar to our results, while Labroue et al. [7] and von Felde et al. [14]
estimated genetic correlations close to zero.

Selection for higher average daily gain and improved meat quality is expected
to result in a higher feed intake over the whole testing period, while selection
for improved feed conversion (lower FCR) and leaner carcasses is expected
to reduce feed intake over the whole testing period. No big differences in the
magnitude of these changes were found during the testing period.
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Table VIII. Estimates of standard errors of posterior means (Monte Carlo errors)
for heritabilities (bold), genetic (above diagonal) and phenotypic (below diagonal)
correlations of the intercept, linear and quadratic regression coefficients for daily feed
intake, and for single measured performance traits: average daily gain (ADG), feed
conversion ratio (FCR), carcass lean content (CLC) and meat quality index (MQI).

Trait Intercept  Linear Quadratic  ADG  FCR CLC  MQI
Intercept 0.039 0.047 0.036 0.047 0.102 0.052 0.030
Linear 0.001 0.002 0.033 0.083 0.033 0.025 0.009
Quadratic 0.003 0.000 0.004 0.105 0.084 0.040 0.052
ADG 0.008 0.006 0.007 0.073 0.103 0.065 0.048
FCR 0.004 0.001 0.002 0.004 0.011 0.017 0.024
CLC 0.002 0.001 0.000 0.005 0.001 0.046 0.025
MQI 0.002 0.001 0.001 0.001 0.002 0.003 0.011

3.3. Monte Carlo errors

Estimates of Monte Carlo errors, i.e. standard errors of posterior means
(Tab. VIII) were quite low compared to low estimates of effective sample size
(Tab. V). This is due to the high number of samples (2 000 000) included in
these posterior means. Generally, estimates of standard error of posterior means
are lower for phenotypic than for genetic correlations. This is partly due to
higher estimates of effective sample size (better mixing of the Gibbs chain), but
also because the interval of values visited by the sampler was quite narrow for
phenotypic correlations compared to genetic correlations. Despite the fact that
estimates of Monte Carlo error (standard deviation of posterior mean) are very
low, estimates of heritabilities and correlations should be considered carefully
due to high autocorrelations between consecutive samples, which result in low
estimates of effective sample size (Tab. V).

4. CONCLUSIONS

Explicitly fitting individual permanent environmental effects together with
fixing residual variances for single measured traits is a possibility to allow
for residual correlations between random regression coefficients and single
measured traits in a joint analysis. Estimates of (co)variance components from
such models have to be analysed carefully, though, especially if covariables
for single measured traits are involved. If no residual correlations between
the two types of traits are required, explicitly fitting individual permanent
environmental effects for regression coefficients only and allowing for residual
correlations between single measured traits should be preferred.
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Heritabilities of random regression coefficients of feed intake curves show
that reasonable selection responses can only be expected from the intercept
regression coefficient. Changes of slope or inflexion of feed intake curves by
direct selection are difficult to achieve. Genetic correlations of feed intake
curve parameters with other performance traits are very similar to genetic
correlations of average daily feed intake with these traits. Therefore no big
advantage is expected from using feed intake regression coefficients instead of
average daily feed intake in selection programmes.
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