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Abstract – In this paper, we consider selection based on the best predictor of animal additive
genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and
log normal frailty models for survival data (including models with time-dependent covariates
with associated fixed or random effects). In the different models, expressions are given (when
these can be found - otherwise unbiased estimates are given) for prediction error variance,
accuracy of selection and expected response to selection on the additive genetic scale and on
the observed scale. The expressions given for non Gaussian traits are generalisations of the
well-known formulas for Gaussian traits - and reflect, for Poisson mixed models and frailty
models for survival data, the hierarchal structure of the models. In general the ratio of the
additive genetic variance to the total variance in the Gaussian part of the model (heritability
on the normally distributed level of the model) or a generalised version of heritability plays a
central role in these formulas.
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1. INTRODUCTION

For binary threshold characters heritability has been defined on the under-
lying scale (liability scale) and on the observed scale (outward scale) (see [4]
and [14]), and the definitions were generalised to ordered categorical traits by
Gianola [9]. For Poisson mixed models a definition of heritability can be found
in [8], and for survival traits we find several definitions of heritability, see
e.g. [5,10,11] and [16]. In this paper we consider selection based on the best
predictor and the goal is to find out, whether heritability (and which one) plays
a central role in formulas for prediction error variance, accuracy of selection
and for expected response to selection in mixed models frequently used in
animal breeding.

For the Gaussian linear mixed model, the best predictor of individual
breeding values, â bp

i , is linear, i.e. a linear function of data, yi, and under
certain conditions given by â bp

i = h2 (yi − xiβ), where h2 is the heritability
of the trait, given by the ratio of the additive genetic variance to the total
phenotypic variance, σ2

a/σ
2
p . In this model accuracy of selection, defined by

the correlation between ai and â bp
i , is equal to the square root of heritability,

i.e. ρ(ai, â bp
i ) = h; and prediction error variance is σ2

a(1 − h2). The joint
distribution of (ai, â bp

i ) is a bivariate normal distribution that does not depend
on fixed effects. Furthermore, if parents of the next generation are chosen
based on the best predictor of their breeding values, then the expected response
to selection, that can be obtained on the phenotypic scale in the offspring
generation (compared to a situation with no selection) is equal to the expected
response that can be obtained on the additive genetic scale. The expected
response that can be obtained on the additive genetic scale is 1

2 h2Sf + 1
2 h2Sm,

where Sf and Sm are expected selection differentials in fathers and mothers,
respectively. The expected selection differential does not depend on fixed
effects. These results are all very nice properties of the Gaussian linear mixed
model with additive genetic effects. We observe (or know) that heritability
plays a central role.

In general, if U and Y denote vectors of unobservable and observable random
variables, then the best predictor of U is the conditional mean of U given
Y, Û

bp = E (U|Y). The observed value of Û
bp

is û bp = E (U|Y = y) (a
predictor is a function of the random vector, Y, associated with observed data).
This predictor is best in the sense that it has minimum mean square error of
prediction, it is unbiased (in the sense that E(Û

bp
) = E (U)), and it is the

predictor of Ui with the highest correlation to Ui. Furthermore, by selecting
any upper fraction of the population on the basis of ûi

bp, then the expected
value of Ui (in the selected proportion) is maximised. These properties, which
are reasons for considering selection based on the best predictor, and a lot of
other results on the best predictor are summarised in [12] (see also references
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in [12]). In this paper U will be associated with animal additive genetic values
and we consider selection based on the best predictor of animal additive genetic
values.

The purpose of the paper is to give expressions for the best predictor,
prediction error variance, accuracy of selection, expected response to selection
on the additive genetic and on the phenotypic scale in a series of models
frequently used in animal breeding, namely the Gaussian linear mixed model,
threshold models, Poisson mixed models and models for survival traits. The
models for survival traits include Weibull and Cox log normal frailty models
with time-dependent covariates with associated fixed and random effects. Part
of the material in this paper can be found in the literature (mainly results for the
Gaussian linear mixed model), and has been included for comparison. Some
references (not exhaustive) are given in the discussion. The models we consider
are animal models. We will work under the assumptions of the infinitesimal,
additive genetic model, and secondly that all parameters of the different models
are known.

The structure of the paper is as follows: in Section 2, the various models
(four models) we deal with are specified. Expressions for the best predictor, for
prediction error variance and accuracy of selection, and for expected response
to selection in the different models are given in Sections 3, 4 and 5 respectively.
These chapters start with general considerations, next each of the four models
are considered and each chapter ends with its own discussion and conclusion.
The paper ends with a general conclusion.

2. THE MODELS

Notation 1 Usually capital letters (e.g. Ui and U) are used as the notation
for a random variable or a random vector; and lower case letters (e.g. ui

and u) are used as the notation for a specific value of the random variable
or the random vector. In this paper we will sometimes use lower case letters
(e.g. ai and a) for a random variable or a random vector, and sometimes for a
specific value of the random variable or the random vector. The interpretation
should be clear from the context.

2.1. Linear mixed model

The animal model is given by

Yi = xiβ + ai + ei

for i = 1, . . . , n, with a ∼ Nn

(
0, Aσ2

a

)
and e ∼ Nn

(
0, Inσ

2
e

)
; furthermore a

and e are assumed to be independent.
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2.2. Threshold model

The animal model, for an ordered categorical threshold character with K ≥ 2
categories, is given by

Yi =





1 if − ∞ < Ui ≤ τ1

2 if τ1 < Ui ≤ τ2
...

K − 1 if τK−2 < Ui ≤ τK−1

K if τK−1 < Ui < ∞

(1)

where −∞ < τ1 < τ2 < · · · < τK−1 < ∞, Ui = xiβ+ ai + ei, for i = 1, . . . , n
and a ∼ Nn

(
0, Aσ2

a

)
, e ∼ Nn

(
0, Inσ

2
e

)
, a and e are assumed to be independent.

Let X denote the design matrix associated with fixed effects on the underlying
scale, the U-scale (or the liability scale). For reasons of identifiability and
provided that the vector of ones, 1, belongs to the span of the columns of X,
then without loss of generality we can assume that τ1 = 0 and σ2

a + σ2
e = 1 (or

instead of a restriction on σ2
a + σ2

e we could have put a restriction on only σ2
a or

σ2
e or one of the thresholds, τ2, . . . , τK−1 (the latter only in case K ≥ 3)).

2.3. Poisson mixed model

The Poisson animal model is defined by Yi|η ∼ Po (λi), where λi = exp (ηi)
with ηi given by

ηi = log (λi) = xiβ + ai + ei (2)

for i = 1, . . . , n, where a ∼ Nn

(
0, Aσ2

a

)
and e ∼ Nn

(
0, Inσ

2
e

)
, furthermore a

and e are assumed to be independent, and conditional on η (the vector of η′
is)

then all of the Y ′
i s are assumed to be independent.

2.4. Survival model

Consider the Cox log normal animal frailty model with time-dependent
covariates for survival times (Ti)i=1,...,n. The time-dependent (including time-
independent) covariates of animal i are xi (t) = (

xi1, xi2 (t)
)
, with associated

fixed effects, β = (β1,β2), and zi (t), with associated random effects, u2. The
dimension of β1 (β2) is p1 (p2), and the dimension of u2 is q2. The hazard
function for survival time Ti is, conditional on random effects, (u1, u2, a, e),
given by

λi (t|u1, u2, a, e) = λ0 (t) exp
{
xi (t)β + zi (t) u2 + u1l(i) + ai + ei

}
(3)

for i = 1, . . . , n; l (i) ∈ {1, . . . , q1}. The baseline hazard, λ0: [0,∞) →
[0,∞) is assumed to satisfy Λ0 (t) < ∞ for all t ∈ [0,∞), with
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limt→∞ Λ0 (t) = ∞, where Λ0 (t) = ∫ t
0 λ0 (s) ds is the integrated baseline

hazard function. Besides this, λ0 (·) is completely arbitrary. The time-
dependent covariates, xi (t) and zi (t), are assumed to be left continuous and
piecewise constant. Furthermore, the time-dependent covariate, zi (t), is, for
t ∈ [0,∞), assumed to be a vector with exactly one element zik′ (t) = 1, and
zik (t) = 0 for k 6= k′. Let u1 = (

u1j

)
j=1,...,q1

, a = (ai)i=1,...,n and e = (ei)i=1,...,n,

then with regards to the random effects it is assumed that u1 ∼ Nq1

(
0, Iq1σ

2
u1

)
,

u2 ∼ Nq2

(
0, Iq2σ

2
u2

)
, a ∼ Nn

(
0, Aσ2

a

)
and e ∼ Nn

(
0, Inσ

2
e

)
. Furthermore u1,

u2, a and e are assumed to be independent. In this model and conditional
on (u1, u2, a, e), then all of the T ′

i s are assumed to be independent. In the
following we let η = (ηi)i=1,...,n with ηi = u1l(i) + ai + ei.

Notation 2 We introduce the following partitioning of R+ defined by jumps
in the covariate processes

(
xi (·) , zi (·)

)
i=1,...,n

: R+ = ∪P
m=1 (lm, rm], with 1 ≤

P ≤ ∞; the subsets are disjoint (but not necessarily ordered in the sense that
rm = lm+1 for m = 1, . . . , P − 1).

With Λ0 (·) and β2 known, let the function hu2
i (t), conditional on u2, be

defined by

hu2
i (t) =

∫ t

0
λ0 (s) exp {xi2 (s)β2 + zi (s) u2} ds.

We note that for t ∈ (lm′, rm′] with m′ ∈ {1, . . . , P}, then

hu2
i (t) =

P∑

m=1
m:rm<t

exp {xi2 (rm)β2 + zi (rm) u2}
(
Λ0 (rm) − Λ0 (lm)

)

+ exp {xi2 (t)β2 + zi (t) u2}
(
Λ0 (t) − Λ0 (lm′)

)
.

With Λ0 (·) and β2 known, then, conditional on u2, it can be shown (see
Appendix or a minor generalisation of the proof in Appendix) that the model
in (3) is equivalent to a linear model on the log

(
hu2

i (·))-scale, i.e.

Ỹ i = log
(
hu2

i (Ti)
) = −xi1β1 − u1l(i) − ai − ei + εi

where εi follows an extreme value distribution, with E (εi) = −γE, where γE

is the Euler constant, and Var (εi) = π2/6; all of the ε′
is are independent, and

independent of u1, u2, a and e. Note that the scale is specific for each animal
(or groups of animals with the same time-dependent covariates). Next let gu2

i ,
still conditional on u2, be an inverse of log hu2

i (i.e. gu2
i

(
log hu2

i (Ti)
) = Ti with

probability one) then

Ti = gu2
i

(−xi1β1 − u1l(i) − ai − ei + εi

)
.
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Note the following special cases: Without time-dependent covariates (with
associated fixed or random effects) the model in (3) is equivalent to a linear
model on the log

(
Λ0 (·))-scale, i.e. the linear scale is the same for all animals.

Furthermore, without time-dependent covariates, and if the baseline hazard is
that of a Weibull distribution (Λ0 (t) = (γt)α), then the model in (3) is a log
linear model for Ti given by

Ỹ i = log (Ti) = − log (γ) − 1

α
xi1β1 − 1

α
u1l(i) − 1

α
ai − 1

α
ei + 1

α
εi

where εi follows an extreme value distribution; all of the ε′
is are independent

and independent of u1, a and e.

3. BEST PREDICTOR

Assume that we have a population of unrelated and noninbred potential
parents, the base population, i.e. it is assumed that the vector of breeding
values of potential parents is multivariate normally distributed with mean zero
and co(variance) matrix Inσ

2
a , where n is the number of animals in the base

population. The trait, which we want to improve by selection is either a
normally distributed trait, a threshold character, a character following a Poisson
mixed model or a survival trait. The models are animal models and assumed
to be as described in Section 2, except that a ∼ Nn

(
0, Inσ

2
a

)
. For each trait,

and based on a single record per animal, we will give the best predictor of the
breeding values of the potential parents.

First some general considerations which will mainly be used for Poisson
mixed models and models for survival data: Let a = (ai)i=1,...,n denote the
vector of breeding values of animals in the base population (potential parents)
then the best predictor of ai is given by E (ai|data). If we can find some vector
v = (vi)i=1,...,N , with (ai, v) following a multivariate normal distribution and
with the property that ai and data are conditionally independent given v (i.e.
p (ai|v,data) = p (ai|v)) then the best predictor of ai is

E (ai|data) = Ev|data

(
E (ai|v,data)

)

= Ev|data

(
E (ai|v)

)

= Ev|data

(
Cov(ai, v)Var (v)−1

(
v − E (v)

))
(4)

The last equation follows because the conditional distribution of ai given v is
normal. A further simplification can be obtained if the dimension of v is n, i.e.
N = n, and p (ai|v) = p (ai|vi), in which case (4) simplifies to

E (ai|data) = Ev|data

(
Cov (ai, vi) Var (vi)

−1
(
vi − E (vi)

))

= Cov (ai, vi) Var (vi)
−1

(
E (vi|data) − E (vi)

)
. (5)
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The best predictor of the breeding values of potential parents is given below
for each of the four models.

3.1. Linear mixed model

In the linear mixed model we have the well-known formula

â bp
i = h2 (yi − xiβ)

where yi is the phenotypic value of animal i, and h2 = σ2
a/

(
σ2

a + σ2
e

)
.

3.2. Threshold model

The best predictor of ai is

â bp
i = E (ai|Yi = yi)

=
∫

E (ai|Ui = ui) p (ui|Yi = yi) dui

where E (ai|Ui = ui) = h2
nor (ui − xiβ) and

p (ui|Yi = yi) = p (ui)

P (τk−1 < Ui ≤ τk)
if yi = k and τk−1 < ui ≤ τk

for k = 1, . . . , K, with τ0 = −∞, τ1 = 0 and τK = ∞. The heritability, h2
nor, on

the normally distributed liability scale, the U-scale, is h2
nor = σ2

a/
(
σ2

a + σ2
e

) =
σ2

a because σ2
a +σ2

e = σ2
u = 1 and p (ui) is the density function of Ui. It follows

that the best predictor of ai is, for Yi = k, given by

â bp
i = h2

nor

(
E (Ui|Yi = k) − xiβ

)

= h2
nor

ϕ (τk−1 − xiβ) − ϕ (τk − xiβ)

P (Yi = k)

= h2
nor

ϕ (τk−1 − xiβ) − ϕ (τk − xiβ)

Φ (τk − xiβ) − Φ (τk−1 − xiβ)

where ϕ (Φ) is the density function (distribution function) of a N (0, 1)-
distribution.

Note, in particular, for binary threshold characters (K = 2) we have

â bp
i = h2

norϕ (−xiβ)

Φ (xiβ) (1 − Φ (xiβ))
[Yi − E (Yi)]

i.e. the best predictor of ai is linear in yi; E (Yi) = 1 + P (Yi = 2)
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3.3. Poisson mixed model

In the Poisson mixed model we may use (4) and (5) with v = η = (ηi)i=1,...,n,
where ηi is given by (2). Realising that the conditional density of ηi given data
is equal to the conditional density of ηi given yi (i.e. p (ηi|data) = p (ηi|Yi = yi))
then

â bp
i = h2

nor

[
E (ηi|Yi = yi) − xiβ

]

where h2
nor = σ2

a/
(
σ2

a + σ2
e

)
and the conditional density of ηi given Yi = yi is

given by

p (ηi|Yi = yi) = P (Yi = yi|ηi) p (ηi)∫ ∞

−∞
P (Yi = yi|ηi) p (ηi) dηi

·

3.4. Survival model

Notation 3 Let Ti and Ci denote the random variables associated with the
survival time and the censoring time of animal i. We observe Yi = min {Ti, Ci}
and δi = 1 {Ti ≤ Ci}. For all of the survival traits we let datai = (yi, δi),
where yi is the observed value of the survival time (censoring time) of animal i,
depending on the observed value of the censoring indicator. Furthermore we
let data = (datai)i=1,...,n denote data on all animals.

Assumption 1: For all of the survival traits we will assume that conditional
on random effects, then censoring is non-informative of random effects.

For survival traits we will use (4) with v given as described in the fol-
lowing: For each animal i, we introduce the following mi random variables:
{u2l + ηi}l∈Bi

, where Bi consist of those coordinates of the vector zi (·), which
are equal to 1 for some t ≤ yi ; i.e. mi = |Bi|.

Next we let m = ∑n
i=1 mi, and introduce the random vector v = (

v′
1, . . . , v′

n

)′

with
vij = u2li(j)

+ ηi

for i = 1, . . . , n and j = 1, . . . , mi where li
(1) < · · · < li

(mi)
are the ordered

elements of Bi. The joint distribution of v is given by

v ∼ Nm
(
0, Var (v)

)

with
Var (v) = ZVar (u2) Z′ + M

where M is a matrix with blocks Mik, M = (Mik)i,k=1,...,n, and with Mik given by

Mik =
{

1mi×mi

(
σ2

u1
+ σ2

a + σ2
e

)
for i = k

1mi×mk

(
1 {l (i) = l (k)} σ2

u1

)
for i 6= k
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and the (i, j)’th row of the matrix Z, is the vector with all elements equal to
zero except for the li

(j)’th coordinate, which is equal to one.
Using (4) with v given as described above, then the best predictor of ai is

â bp
i = Cov (ai, v)

(
Var (v)

)−1
E (v|data)

where p (v|data) = p (data|v) p (v)
/

p (data) (using the Bayes formula). It
follows, under Assumption 1, that p (v|data) up to proportionality is given by

p (v|data) ∝
n∏

i=1

[(
λi (yi|v) Si (yi|v)

)δi
(
Si (yi|v)

)1−δi
] × p (v)

∝
n∏

i=1

(
λ0 (yi) exp {xi (yi)β + zi (yi) u2 + ηi}

)δi

× exp



−




n∑

i=1

P∑

j=1

kij exp
{
xi2

(
rj

)
β2 + zi

(
rj

)
u2 + ηi

}







× exp

{
−1

2
v′Var(v)−1v

}

= f (v)

where

kij = exp {xi1β1} ×





(
Λ0

(
rj

) − Λ0
(
lj

))
if rj < yi(

Λ0 (yi) − Λ0
(
lj

))
if yi ∈ (

lj, rj

]

0 if yi ≤ lj

.

It follows that p (v|data) = f (v)
/∫

f (v) dv with f (v) as given above.
Note, in the Cox frailty model without time-dependent covariates and with u1

absent, i.e. the special case of (3) with λi (t|a, e) = λ0 (t) exp {xi1β1 + ai + ei},
then we could use (5) with v = η = (ai + ei)i=1,...,n. And because, in this
model, p (ηi|data) = p (ηi|datai), then we obtain â bp

i = h2
norE (ηi|datai) where

h2
nor = σ2

a/
(
σ2

a + σ2
e

)
and

p (ηi|datai) ∝ (exp {xi1β1 + ηi})δi exp
{−Λ0 (yi) exp {xi1β1 + ηi}

}

× exp

{
− 1

2
(
σ2

a + σ2
e

)η2
i

}
·

Example 1. Consider two unrelated and noninbred animals, 1 and 2, and three
time periods (0, r1], (l2, r2] and (l3,∞], with r1 = l2 and r2 = l3 and with
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associated random effects u21, u22 and u23. Animal 1 is born in period 1 (spent
t11 units of time in this period) and died or was censored in period 2 (observed
to spend y1 − t11 units of time in period 2). Animal 2 is born in period 2 (spent
t21 units of time in this period) and died or was censored in period 3 (observed
to spend y2 − t21 units of time in period 3). Assume that the hazard functions
of animal 1 and 2, conditional on random effects are given by

λ1 (t|u2,η) =





λ0 (t) exp {x1β + u21 + η1} for t ≤ t11

λ0 (t) exp {x1β + u22 + η1} for t11 < t ≤ t11 + (r2 − l2)

λ0 (t) exp {x1β + u23 + η1} for t11 + (r2 − l2) < t

and

λ2 (t|u2,η) =
{

λ0 (t) exp {x2β + u22 + η2} for t ≤ t21

λ0 (t) exp {x2β + u23 + η2} for t21 < t

respectively; here η1 = a1 +e1 and η2 = a2 +e2. In this example m1 = m2 = 2
and

v11 = u21 + η1

v12 = u22 + η1

v21 = u22 + η2

v22 = u23 + η2

with Var (v) given by

Var (v) =




σ2
u2

+ σ2
a + σ2

e σ2
a + σ2

e 0 0
σ2

a + σ2
e σ2

u2
+ σ2

a + σ2
e σ2

u2
0

0 σ2
u2

σ2
u2

+ σ2
a + σ2

e σ2
a + σ2

e

0 0 σ2
a + σ2

e σ2
u2

+ σ2
a + σ2

e


 .

3.5. Discussion and conclusion

For all of the (animal) models considered it was realised or found that
heritability, h2

nor (the ratio between the additive genetic variance and the total
variance at the normally distributed level of the model) or a generalised version
of heritability, Cov (ai, v)

(
Var (v)

)−1
, plays a central role in formulas for the

best predictor.

4. PREDICTION ERROR VARIANCE AND ACCURACY
OF SELECTION

Having derived the best predictor of breeding values in different models, then

we may want to find the prediction error variance, PEV = E

((
â bp

i − ai

)2
)

.
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Remembering that the best predictor, â bp
i = E (ai|data), is an unbiased pre-

dictor in the sense that E(â bp
i ) = E (ai), then it follows that Cov(ai, â bp

i ) =
Var(â bp

i ) and that

PEV = Var (ai) − Var
(

â bp
i

)
.

Furthermore, the reliability of â bp
i , i.e. the squared correlation, ρ2(ai, â bp

i ), is
given by

ρ2
(

ai, â bp
i

)
=

Var
(

â bp
i

)

Var (ai)
= 1 − PEV

Var (ai)
·

Using the formula Var(â bp
i ) = Var (ai) − E

(
Var (ai|data)

)
(follows from

Var (ai) = Var
(
E (ai|data)

)+E
(
Var (ai|data)

)
) and inserting in the expression

for PEV , it follows that

PEV = E
(
Var (ai|data)

)

so that an unbiased estimate, PEVunbiased, of PEV is given by

PEVunbiased = Var (ai|data)

(i.e. E (PEVunbiased) = PEV) and an unbiased estimate, ρ2
unbiased(ai, â bp

i ), of the
squared correlation is given by

ρ2
unbiased

(
ai, â bp

i

)
= 1 − PEVunbiased

Var (ai)
· (6)

In both of Poisson mixed models and log normal frailty models for survival
data we can find a vector v = (vi)i=1,...,N with (ai, v) following a multivariate
normal distribution and with the property that ai and data are conditionally
independent given v. Therefore, in the following expression for PEVunbiased

PEVunbiased = Var (ai|data)

= Ev|data

(
Var (ai|v, data)

) + Varv|data

(
E (ai|v, data)

)

the first term

Ev|data

(
Var (ai|v, data)

) = Ev|data

(
Var (ai|v)

)

(because p (ai|v, data) = p (ai|v), which follows from the conditional inde-
pendence of ai and data given v). And because (ai, v) follows a multivariate
normal distribution then Var (ai|v) (= σ2

a − Cov (ai, v) Var (v)−1 Cov (v, ai))

does not depend on v and therefore Ev|data

(
Var (ai|v)

) = Var (ai|v). With
regards to the second term:

E (ai|v, data) = E (ai|v) = Cov (ai, v) Var (v)−1
(
v − E(v)

)
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(because p (ai|v, data) = p (ai|v) and (ai, v) follows a multivariate normal
distribution). It follows that the second term

Varv|data

(
E (ai|v, data)

)

= Cov (ai, v) Var (v)−1 Var (v|data) Var (v)−1 Cov (v, ai) .

Finally we obtain the following expression for PEVunbiased

PEVunbiased = σ2
a − Cov (ai, v) Var (v)−1 Cov (v, ai)

+ Cov (ai, v) Var (v)−1 Var (v|data) Var (v)−1 Cov (v, ai)

= σ2
a − Cov (ai, v) Var (v)−1 [Var (v) − Var (v|data)]

× Var (v)−1 Cov (v, ai) . (7)

Again, a further simplification can be obtained if the dimension of v is n, i.e.
N = n, and p (ai|v) = p (ai|vi), in which case the expression for PEVunbiased

simplifies to

PEVunbiased

= σ2
a − Cov (ai, vi) Var (vi)

−1 [Var (vi) − Var (vi|data)] Var (vi)
−1 Cov (vi, ai) .

(8)

In the following, either expressions for PEV or PEVunbiased will be given.

Accuracy of selection, ρ
(

ai, â bp
i

)
, the correlation between ai and â bp

i is

given by

ρ
(

ai, â bp
i

)
=

√
1 − PEV

Var (ai)
·

If we approximate accuracy of selection by
√

ρ2
unbiased(ai, â bp

i ), then we obtain
an estimate, which approximately is an unbiased estimate for accuracy.

4.1. Linear mixed model

PEV = PEVunbiased = σ2
a

(
1 − h2

)

and
ρ

(
ai, â bp

i

)
= h

see e.g. Bulmer [2].
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4.2. Threshold model

Var
(

â bp
i

)
= h4

nor

K∑

k=1

(
ϕ (τk−1 − xiβ) − ϕ (τk − xiβ)

)2

P (Yi = k)

= h2
norσ

2
a

K∑

k=1

(
ϕ (τk−1 − xiβ) − ϕ (τk − xiβ)

)2

Φ (τk − xiβ) − Φ (τk−1 − xiβ)

PEV = σ2
a

(
1 − h2

nor

K∑

k=1

(
ϕ (τk−1 − xiβ) − ϕ (τk − xiβ)

)2

Φ (τk − xiβ) − Φ (τk−1 − xiβ)

)

so that

ρ2
(

ai, â bp
i

)
= h2

nor

K∑

k=1

(
ϕ (τk−1 − xiβ) − ϕ (τk − xiβ)

)2

Φ (τk − xiβ) − Φ (τk−1 − xiβ)
·

PEVunbiased = Var (ai|yi)

= Var (ai|ui) + h4
norVar (Ui|yi)

= σ2
a

(
1 − h2

nor

) + h4
norVar (Ui|yi)

and

ρ2
unbiased

(
ai, â bp

i

)
= h2

nor

(
1 − h2

nor

Var (Ui|yi)

σ2
a

)

with

Var (Ui|Yi = k) =
(

1 + bk−1ϕ (bk−1) − bkϕ (bk)

P (Yi = k)
−

(
ϕ (bk) − ϕ (bk−1)

P (Yi = k)

)2
)

,

where bk = τk − xiβ, k = 0, ...K with τ0 = −∞, τ1 = 0, τK = ∞ and
P (Yi = k) = Φ (bk) − Φ (bk−1) for k = 1, . . . , K.

4.3. Poisson mixed model

In the Poisson mixed model we may use (8) with v = η = (ηi)i=1,...,n, where
ηi is given by (2). Furthermore, because p (ηi|data) = p (ηi|yi), then we obtain

PEVunbiased = σ2
a

(
1 − h2

nor

) + h4
norVar (ηi|yi) .

It follows that

ρ2
unbiased

(
ai, â bp

i

)
= h2

nor

(
1 − h2

nor

Var (ηi|yi)

σ2
a

)
·
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4.4. Survival model

For survival traits we will use (7) with v given in Section 3.4 for calculating
PEVunbiased, thereafter ρ2

unbiased(ai, â bp
i ) is found from (6).

4.5. Discussion and conclusion

Again, heritability, h2
nor, or a generalised version of heritability, Cov (ai, v)

Var (v)−1, plays a central role in the formulas for PEV or PEVunbiased, and
therefore also in formulas for reliability (or ρ2

unbiased) and accuracy of selection
(which are derived from formulas for PEV or PEVunbiased).

Dempster and Lerner [4] and Robertson [14] gave a formula relating her-
itability on the observed scale, h2

obs, with heritability on the underlying scale
(liability scale) h2

nor for binary threshold characters. In [4] and [14] h2
obs has

the interpretation of being reliability, ρ2(ai, â blp
i ) of the best linear predictor of

ai, â blp
i . The work by [4] and [14] was generalised by Gianola [9], who gave a

formula relating heritability on the observed scale, h2
obs, with heritability on the

liability scale, h2
nor, for threshold characters with K ≥ 2 categories. Also here

h2
obs has the interpretation of being reliability of the best linear predictor of ai.

The best predictor of ai in the binary threshold model is linear (linear in yi as we
saw in Section 3.2) and therefore equal to the best linear predictor. It follows
that reliability of â bp

i , ρ2(ai, â bp
i ), in the binary threshold model is equal to h2

obs
found in [4,14] and [9]. (Note that [4,14] and [9] used another parameterisation
of the threshold model). For threshold characters with K ≥ 3 categories the best
predictor of ai is no longer linear in yi and therefore expressions for reliability
of the best predictor and the best linear predictor are different.

Foulley and Im [8], in the Poisson mixed model with ηi = log (λi) = xiβ+ai,
presented a heritability in the narrow sense,

h2
narrow = E (Yi)

2 σ2
a/

(
E (Yi) + E (Yi)

2
[
exp

{
σ2

a

} − 1
])

,

which has the interpretation of being reliability, ρ2(ai, â blp
i ), of the best linear

predictor of ai, â blp
i = E (ai) + Cov(ai, Yi)Var(Yi)

−1
(
Yi − E (Yi)

)
.

In order to calculate prediction error variance, PEV , then PEVunbiased should
be averaged over the distribution of data. For survival models, we have
only partially specified the model of the data, i.e. we have only specified
the distribution of survival times and not the joint distribution of survival and
censoring times. This implies, that we are not able to calculate PEV for survival
models, unless a joint distribution for survival and censoring times has been
specified (or censoring is absent). In principle we are able to calculate PEV
in the remaining models considered — however the calculations may involve
integrals without closed form expressions and approximations are required.
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For survival traits, a lot of different expressions for heritability have been
presented (see e.g.[5,10,11] and [16]), some of these do have the interpret-
ation of being reliability of a linear predictor of a random effect (a linear
predictor based on survival data or transformed survival data) others are just
ratios of variances and others are more difficult to interpret. Most of the
heritabilities presented for survival traits have been derived for models without
time-dependent covariates.

5. EXPECTED RESPONSE TO SELECTION

For any of the traits under consideration, we will assume that parents of the
next generation will be chosen so that the best predictor of breeding values
among fathers (mothers) is greater than (or equal to) t1 (t2) (or less than (or
equal to) t1 (t2) for survival traits). Then the expected response to selection on
the additive genetic scale, <a, is defined by the expected additive genetic value
of an offspring, given that the parents of the next generation are selected, and
the selected parents are mated at random, minus, the expected additive genetic
value obtained without selection (and under the assumption of random mating).
Let F and M denote the sets of potential fathers and mothers, respectively, i.e.
F = {i : i is a male} and M = {i : i is a female}, then expected response to
selection on the additive genetic scale, <a, is

<a =
∑

A1:A1⊆F

∑

A2:A2⊆M

P (A1 × A2)

×

 ∑

(f,m)∈A1×A2

1
|A1| |A2|E

(
ao|â bp

f ≥ t1, â bp
m ≥ t2

)

 − E (ao) (9)

where P (A1 × A2) is the probability that exactly those males in A1 and exactly
those females in A2 are selected, that is, the probability that â bp

i ≥ t1 for all
i ∈ A1, and â bp

i < t1 for all i ∈ F\A1, and â bp
i ≥ t2 for all i ∈ A2 and â bp

i < t2

for all i ∈ M\A2. Let |A1| (|A2|) denote the number of elements in A1 (A2),
then conditional on A1 and A2 being the sets of selected males and females
respectively, the probability of a given mating (assuming random mating

among selected parents) is 1/ (|A1| |A2|). And E
(

ao|â bp
f ≥ t1, â bp

m ≥ t2

)
is

the expected value of ao given that (f, m) ∈ A1 × A2 are the parents (subscripts
f, m and o are used for the father, mother and offspring). It follows that

∑

(f,m)∈A1×A2

1
|A1| |A2|E

(
ao|â bp

f ≥ t1, â bp
m ≥ t2

)



322 I.R. Korsgaard et al.

is the expected additive genetic value of an offspring, conditional on A1 and
A2 being the sets of selected males and females, and under the assumption of
random mating among selected animals.

If we let
R(f,m)

a = E
(

ao|â bp
f ≥ t1, â bp

m ≥ t2

)
− E (ao) (10)

denote the expected response to selection on the additive genetic scale, given
that (f, m) ∈ A1 × A2 are the randomly chosen parents among the selected
animals, then it is easily seen that (9) is equal to

<a =
∑

A1:A1⊆F

∑

A2:A2⊆M

P (A1 × A2) ×

 ∑

(f,m)∈A1×A2

1

|A1| |A2|R
(f,m)
a


 . (11)

If
(

ao, â bp
f , â bp

m

)
, for all (f, m) ∈ F×M, are identically distributed, then (11)

simplifies to
<a = R(f,m)

a .

In general then R(f,m)
a may depend on covariates of both parents, and in general

then other mating strategies among selected parents may result in a higher (or
lower) expected response to selection on the additive genetic scale, compared
to a random mating strategy among selected parents.

Expected response to selection on the phenotypic scale, <o
p, is defined

similarly; i.e. <o
p is the expected phenotypic value of an offspring to be raised

in a given environment (given covariates of the offspring) given that parents
of the next generation are selected, and selected parents are mated at random,
minus the expected phenotypic value obtained without selection. i.e.

<o
p =

∑

A1:A1⊆F

∑

A2:A2⊆M

P (A1 × A2)

×

 ∑

(f,m)∈A1×A2

1

|A1| |A2|E
(

Yo|â bp
f ≥ t1, â bp

m ≥ t2

)

 − E (Yo) (12)

If we let
R(o|f,m)

p = E
(

Yo|â bp
f ≥ t1, â bp

m ≥ t2

)
− E (Yo) (13)

denote the expected response to selection on the phenotypic scale, given that
(f, m) ∈ A1 × A2 are the randomly chosen parents among the selected animals,
then it is easily seen that (12) is equal to

<o
p =

∑

A1:A1⊆F

∑

A2:A2⊆M

P (A1 × A2) ×

 ∑

(f,m)∈A1×A2

1

|A1| |A2|R
(o|f,m)
p


 (14)



Selection based on the best predictor 323

And again, if
(

Yo, â bp
f , â bp

m

)
, for all (f, m) ∈ F × M, are identically distrib-

uted, then (14) simplifies to

<o
p = R(o|f,m)

p .

In general, then R(o|f,m)
p may depend on covariates of the offspring, as well

as on covariates of both parents, and in general then other mating strategies
among selected parents may result in a higher (or lower) expected response
to selection on the phenotypic scale, compared to a random mating strategy
among selected parents.

If we want the expected response to selection on the phenotypic scale across
all environments, then we must also know the number of offspring to be placed
in the different environments.

In the following we give formulas for the expected response to selection
on the additive genetic scale conditional on (f, m) being the randomly chosen
parents among the selected animals, R(f,m)

a , and for the expected response
to selection on the phenotypic scale of an offspring to be raised in a given
environment, and conditional on (f, m) being the randomly chosen parents
among the selected animals, R(o|f,m)

p .

5.1. Linear mixed model

For Gaussian traits we have

R(o|f,m)
p = E

(
xoβ + ao + eo|â bp

f ≥ t1, â bp
m ≥ t2

)
− E (xoβ + ao + eo)

= E
(

ao|â bp
f ≥ t1, â bp

m ≥ t2

)

= R(f,m)
a

and it follows that
<o

p = <a

i.e. the expected response to selection on the phenotypic scale is here equal to
the expected response on the additive genetic scale. The joint distribution of
(af, â bp

f )′ is given by:

(
af

â bp
f

)
∼ N2

((
0
0

)
,

(
σ2

a h2σ2
a

h2σ2
a h4Var(Yf)

))

so that af|â bp
f ∼ N

(
â bp

f , σ2
a

(
1 − h2

))
(and similarly for the distribution of

am given â bp
m : am|â bp

m ∼ N
(

â bp
m , σ2

a

(
1 − h2

))
), therefore it follows that
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R(o|f,m)
p = R(f,m)

a is given by:

E
(

ao|â bp
f > t1, â bp

m > t2

)
= 1

2
E

(
af|â bp

f ≥ t1

)
+ 1

2
E

(
am|â bp

m ≥ t2

)

= 1

2
E

(
â bp

f |â bp
f ≥ t1

)
+ 1

2
E

(
â bp

m |â bp
m ≥ t2

)

= 1

2
h2Sf + 1

2
h2Sm

= 1

2
h2σpif + 1

2
h2σpim

= 1

2
hσaif + 1

2
hσaim

= 1

2
ρ

(
â bp

f , af

)
σaif + 1

2
ρ

(
â bp

m , am

)
σaim

where h2 = σ2
a/σ

2
p , with σ2

p = σ2
a + σ2

e , and the expected selection differential
in fathers, Sf , is given by

Sf = E
(

Yf − E (Yf) |â bp
f ≥ t1

)
= σp

ϕ

(
t1

h2σp

)

P

(
Yf − E (Yf)

σp
≥ t1

h2σp

)

The intensity of selection in fathers if , is defined as Sf/σp, i.e. the expected
selection differential expressed in phenotypic standard deviations and is here

given by if = ϕ
(

t1
h2σp

) /
P

(
Yf−E(Yf)

σp
≥ t1

h2σp

)
. The expected selection differen-

tial and intensity of selection in mothers, Sm and im, are defined similarly. Note
that the accuracy of selection, ρ(â bp

f , af) = h in this context.
Furthermore, for Gaussian traits, we have

R(o|f,m)
p = R(f,m)

a = <a = <o
p.

5.2. Threshold model

Let â bp
i (k) denote the best predictor of ai, conditional on Yi = k, i.e.

â bp
i (k) = h2

nor

(
E (Ui|Yi = k) − xiβ

) = h2
nor

ϕ (τk−1 − xiβ) − ϕ (τk − xiβ)

P (Yi = k)

for k = 1, . . . , K. It is easy to see that â bp
i (1) < â bp

i (2) < · · · < â bp
i (K)

for i = 1, . . . , n. For t1 > â bp
f (K) or t2 > â bp

m (K), then the pair (f, m)
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will never be selected as parents of a future offspring; i.e. (f, m) will never
belong to a A1 × A2 with P (A1 × A2) > 0. Let â bp

f (0) = â bp
m (0) = −∞,

then for â bp
f (k1 − 1) < t1 ≤ â bp

f (k1) and â bp
m (k2 − 1) < t2 ≤ â bp

m (k2) with

k1, k2 = 1, . . . , K, the event
{

â bp
f ≥ t1, â bp

m ≥ t2

}
is equivalent to the event

{
Yf ∈ {k1, . . . , K} , Ym ∈ {k2, . . . , K}}. This case corresponds to a situation

with possible selection on males if t1 > â bp
f (1) for some f ∈ F (and possible

selection on females if t2 > â bp
m (1) for some m ∈ M). It follows that

R(f,m)
a =

∫
aop (ao|Yf ∈ {k1, . . . , K} , Ym ∈ {k2, . . . , K}) dao

=
∫∫∫

aop
(
ao, uf, um|Uf > τk1−1, Um > τk2−1

)
daodufdum

=
∫∫

E (ao|uf, um) p
(
uf, um|Uf > τk1−1, Um > τk2−1

)
dufdum

=
∫∫

1

2
h2

nor

(
(uf − xfβ) + (um − xmβ)

)

× p
(
uf|Uf > τk1−1

)
p
(
um|Um > τk2−1

)
dufdum

= 1

2
h2

nor

[
ϕ

(
τk1−1 − xfβ

)

P
(
Uf > τk1−1

) + ϕ
(
τk2−1 − xmβ

)

P
(
Um > τk2−1

)
]

= 1

2
σahnori

nor
f + 1

2
σahnori

nor
m

= 1

2
h2

norS
nor
f + 1

2
h2

norS
nor
m

where Snor
f is defined as the expected selection differential on the liability scale

obtained by selection on the best predictor, i.e.

Snor
f = E

(
Uf − E (Uf) |â bp

f ≥ t1

)
= ϕ

(
τk1−1 − xfβ

)

P
(
Uf > τk1−1

)

and inor
f is defined by Snor

f divided by σu. For categorical threshold characters we
have assumed that σ2

u = 1 (for reasons of identifiability), therefore inor
f = Snor

f .
Snor

m and inor
m are defined similarly. Note, if t1 ≤ â bp

f (1) (t2 ≤ â bp
m (1)) then

Snor
f = 0 (Snor

m = 0).
The expected response to selection on the phenotypic scale given that

(f, m) ∈ A1×A2 are the randomly chosen parents among the selected animals, is

R(o|f,m)
p = E

(
Yo|Uf > τk1−1, Um > τk2−1

) − E (Yo)
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for k1, k2 = 1, . . . , K, where E (Yo) = ∑K
k=1 kP (Yo = k) and

E
(
Yo|Uf > τk1−1, Um > τk2−1

)

= 1

P
(
Uf > τk1−1, Um > τk2−1

)
K∑

k=1

kP
(
Yo = k, Uf > τk1−1, Um > τk2−1

)

with

P
(
Yo = k, Uf > τk1−1, Um > τk2−1

)

=
∫∫∫

P
(
τk−1 < Uo ≤ τk, Uf > τk1−1, Um > τk2−1|ao, af, am

)

× p (ao, af, am) daodafdam

=
∫∫∫

P (τk−1 < Uo ≤ τk|ao) P
(
Uf > τk1−1|af

)
P

(
Um > τk2−1|am

)

× p (ao|af, am) p (af, am) daodafdam

= E(af ,am)

[[
Eao|(af ,am)

(
Φ

(
τk − xoβ − ao

σe

)
− Φ

(
τk−1 − xoβ − ao

σe

))]

(
1 − Φ

(
τk1−1 − xfβ − af

σe

))(
1 − Φ

(
τk2−1 − xmβ − am

σe

))]

= E(af ,am)





Φ




τk − xoβ − 1

2
(af + am)

√
1
2σ

2
a + σ2

e




− Φ




τk−1 − xoβ − 1

2
(af + am)

√
1

2
σ2

a + σ2
e







(
1 − Φ

(
τk1−1 − xfβ − af

σe

))(
1 − Φ

(
τk2−1 − xmβ − am

σe

))



where (in obtaining the last equality) we use the formula (from Curnow [3])

∫ ∞

−∞
ϕ (x)Φ (a + bx) dx = Φ

(
a√

1 + b2

)

for a, b ∈ R.
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Example 2. Consider the trait “diseased within the first month of life” and
assume that a binary threshold model can be used for analysing data. Diseased
is coded 0, and not diseased is coded 1. To avoid complications we assume
a situation where all animals are observed and alive during the first month of
life. Assuming that the base population, which we are going to select from,
is in two different environments (herds), say 500 males and 500 females in
each herd. The model is given by (1) (except that observable values are 0
and 1, instead of 1 and 2) with h2

nor = 0.2, and with xiβ for animals in herd 1
(herd 2) determined so that the probability of being diseased is 0.98 (0.5); i.e.
xiβ ≈ −2.054 (xiβ = 0) for animals in herd 1 (herd 2). The best predictor
of ai for “not diseased” (diseased) animals in herd 1 is 0.48 (−0.0099). The
best predictor of ai for “not diseased” (diseased) animals in herd 2 is 0.16
(−0.16). For animals in herd 1 (herd 2) accuracy of selection is 0.15 (0.36).
Next, selecting all “not diseased” animals (i.e. all animals with a best predictor
greater than or equal to 0), then

R(f,m)
a =





0.48 if both of f and m are from herd 1

0.32 if f and m are from different herds

0.16 if both of f and m are from herd 2

and

R(o|f,m)
p =





0.187 if both of f and m are from herd 1, and the offspring, o,

is going to be raised in herd 2

0.127 if f and m are from different herds, and the offspring, o,

is going to be raised in herd 2

0.064 if both of f and m are from herd 2, and the offspring, o,

is going to be raised in herd 2

0.037 if both of f and m are from herd 1, and the offspring, o,

is going to be raised in herd 1

0.020 if f and m are from different herds, and the offspring, o,

is going to be raised in herd 1

0.008 if both of f and m are from herd 2, and the offspring, o,

is going to be raised in herd 1

In this example we observe that the highest expected response to selection
on the additive genetic scale, given that both parents are selected, R(f,m)

a , is
obtained when both parents are from herd 1. Similarly, the highest expected
response to selection on the phenotypic scale, given that both of the parents are
selected, and given covariates of the offspring, R(o|f,m)

p , is obtained when both
parents are from herd 1.
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5.3. Poisson mixed model

R(f,m)
a = 1

2
h2

norE
(
ηf − E (ηf) |â bp

f ≥ t1

)
+ 1

2
h2

norE
(
ηm − E (ηm) |â bp

m ≥ t2

)

= 1

2
h2

norS
nor
f + 1

2
h2

norS
nor
m

where Snor
f = E

(
ηf − E (ηf) |â bp

f ≥ t1

)
(Snor

m is defined similarly).

R(o|f,m)
p = E

(
exp {ηo} |â bp

f ≥ t1, â bp
m ≥ t2

)
− E (exp {ηo})

= E
(

exp {xoβ + ao + eo} |â bp
f ≥ t1, â bp

m ≥ t2

)

− E (exp {xoβ + ao + eo})
= exp

{
xoβ + 1

2
σ2

e

}

×
[

E
(

exp {ao} |â bp
f ≥ t1, â bp

m ≥ t2

)
− exp

{
1

2
σ2

a

}]
.

5.4. Survival model

With v as described in Section 3.4 then

R(f,m)
a = E

(
ao|â bp

f ≤ t1, â bp
m ≤ t2

)
− E (ao)

=
∫∫

aop
(

ao, v|â bp
f ≤ t1, â bp

m ≤ t2

)
daodv

=
∫

E (ao|v) p
(

v|â bp
f ≤ t1, â bp

m ≤ t2

)
dv

= Cov (ao, v) [Var (v)]−1 E
(

v|â bp
f ≤ t1, â bp

m ≤ t2

)
.

Next assume that Λ0 (·) and β2 are known and let hu2
i (t) be as described in

Section 2.4, then (as we have seen) the model is, conditional on u2, a linear
model for Ỹ i = log

(
hu2

i (Ti)
)
. Then the expected response (given that (f, m)

are the selected parents) on this (linear) log hu2
i (·)-scale is equal to minus the

expected response (given that (f, m) are the selected parents) obtained on the
additive genetic scale, i.e.

R(o|f,m)

log
(

h
u2
o (·)

) = −R(f,m)
a .

If we want the expected response to selection on the untransformed time scale,
then we proceed as follows: Let gu2

o , still conditional on u2, denote an inverse
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function of log hu2
o (as specified in Sect. 2.4), then

To = gu2
o (Ỹo) = gu2

o (−xo1β1 − ao − eo + εo) .

Using a first order Taylor series expansion of gu2
o (Ỹo) around the mean of Ỹo

(E(Ỹo) = −xoβ − γE) then we obtain

T0 ≈ gu2
o

(
E(Ỹo)

)
+ gu2(1)

o

(
E(Ỹo)

) (
Ỹo − E(Ỹo)

)
.

It follows that the expected response (given that (f, m) are the selected parents)
on the time scale, R(o|f,m)

T , can be approximated by

R(o|f,m)
T = E

(
To|â bp

f ≤ t1, â bp
m ≤ t2

)
− E (To)

≈ gu2(1)
o

(
E(Ỹo)

)
R(o|f,m)

log
(

h
u2
0 (·)

)

= −gu2(1)
o

(
E(Ỹo)

)
R(f,m)

a .

As pointed out by a reviewer, this formula should be used cautiously, because it
is based on a Taylor series expansion of gu2

o (Ỹo) around the mean of Ỹo, E(Ỹo).
For non-linear functions the Taylor series expansion generally only works well
if Ỹo is close to E(Ỹo) - and this is not generally true.

Example 3. In the Weibull frailty model without time-dependent covariates
(with associated fixed or random effects), the formulas are even simpler: Let
Ỹ i = log (Ti) = − log (γ) − 1

α
xiβ − 1

α
ηi + 1

α
εi, with ηi = u1l(i) + ai + ei.

It follows that the expected response to selection (given that (f, m) are the
selected parents) on the (linear) log time scale is given by

R(o|f,m)
log(·) = −1

α
R(f,m)

a .

If we want the expected response to selection (given that (f, m) are the selected
parents) on the untransformed time scale, then we obtain, using a first order
Taylor series expansion of To = exp(Ỹo) around the mean of Ỹo (E(Ỹo) =
− log (γ) − 1

α
xoβ − 1

α
γE), that the expected response to selection on the time

scale (given that (f, m) are the selected parents) can be approximated by

R(o|f,m)
T ≈ − exp

{
− log (γ) − 1

α
xoβ − 1

α
γE

}
1

α
R(f,m)

a .
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5.5. Discussion and conclusion

Again heritability (or a generalised version of heritability) is seen to play a
central role in the formulas for the expected response to selection.

For Gaussian traits, then the joint distribution of (ai, â bp
i ) is bivariate normal,

this is not the case for any of the other traits studied. Anyhow this assumption
has been used (and noted to be critical) in Foulley (1992) and Foulley (1993)
for the calculation of response to selection for threshold dichotomous traits
and for traits following a Poisson animal mixed models (without a normally
distributed error term included), respectively.

For survival traits, note that in order to calculate the expected response
to selection, <a in (9) (or <o

p (12)) requires that we either know the joint
distribution for survival and censoring times, or censoring is absent.

6. CONCLUSION

All of the models considered are mixed models, where the mixture dis-
tribution is the normal distribution. We have observations on the normally
distributed scale only in Gaussian mixed linear models. For ordered categorical
traits using a threshold model, the observed value is uniquely determined by a
grouping on the normally distributed liability scale. In Poisson mixed models
we have, conditional on the outcome of the normally distributed random vector,
observations from a Poisson distribution. In survival models, and conditional
on random effects, then log

(
Λi (Ti|random effects)

)
follows an extreme value

distribution with mean −γE and variance π2/6.
We have considered selection based on the best predictor of animal additive

genetic values. For each trait and based on a single record per animal we
have given expressions for the best predictor of breeding values of potential
parents (best in the sense that it has minimum mean square error of prediction
(PEV), and is the predictor of ai with the highest correlation to ai). Furthermore
we have given expressions for PEV and/or an unbiased estimate for PEV. We
have chosen to select those males (females) with the observed value of the
best predictor greater than (or equal to) t1 (t2) (or less than (or equal to) t1

(t2) for survival traits). Based on this selection criterion we considered the
expected response to selection that can be obtained on the additive genetic and
the phenotypic scale. Expected response to selection on the additive genetic
scale, <a, was defined by the expected additive genetic value of an offspring,
given that parents of the next generation are selected, and selected parents are
mated at random, minus, the expected additive genetic value obtained without
selection (and under the assumption of random mating). Expected response
to selection on the phenotypic scale, <o

p, of an offspring, o, to be raised in a
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given environment (given covariates of the offspring) was defined similarly.
Note that in general the expected response to selection on the phenotypic scale
will depend on covariates of the offspring (in the linear mixed model, this
is not the case). In defining the expected response to selection (on both of
the additive genetic and the phenotypic scale) note that we have chosen a
random mating strategy among selected parents as well as a random mating
strategy when there is no selection. Another selection criterion, as well as
other mating strategies among selected and/or unselected animals may give
other results.

In conclusion, for Gaussian linear mixed models, heritability defined as the
ratio between the additive genetic variance and the phenotypic variance plays a
central role in formulas for the best predictor, accuracy, reliability, and expected
response to selection. Similarly does h2

nor, the ratio between the additive genetic
variance and the total variance at the normally distributed level of the model
(or a generalised version of heritability, Cov (ao, v) [Var (v)]−1), in all of the
other models considered.

Having obtained expressions for the best predictor and related quantities in
animal models, then it is relatively easy to generalise and find expressions,
in a progeny testing scheme for example. Progeny testing for all-or-none
traits was considered by Curnow [3]. In most of the literature for binary
traits the mean on the liability scale has been assumed to be the same for all
animals. Here, we considered formulas allowing for a more general mean
structure.

In this paper we have assumed that all parameters are known. If the
parameters are unknown they should be estimated, and for that purpose it is
important to ensure the identifiability of the parameters. For all of the models
considered in this paper, the theorems concerning identifiability of parameters
are given in Andersen et al. [1].

In the linear mixed model the best predictor is linear, i.e. the best predictor
equals the best linear predictor. If the variance components are known, but
fixed effects are unknown, then most often BLUP-values for breeding values
are presented. These are the expressions for the BLP (equal to the BP in the
linear mixed model) with fixed effects substituted by their generalised least
square estimates (see e.g. [15]). If variance components are unknown as well
as fixed effects then “BLUP”-values are presented with estimated variance
components inserted for true values. Variance components are often estimated
using REML (see [13]). For models other than the linear mixed model the
best predictor of breeding values is not necessarily linear and properties of
the BP, when estimated values are inserted for true parameter values, are
unknown, and will depend on the method of estimation. This topic needs
further research.
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APPENDIX

Let Ti denote the random variable representing survival time of animal i. In
the frailty model without time-dependent covariates (with associated fixed or
random effects), it is assumed that conditional on the vector of log frailties,
W = w, the hazard function of animal i, is given by

λi (t|w) = λ0 (t) exp {xiβ + wi} (A.1)

where λ0 (t) is a common baseline hazard function, xi is a vector of time-
independent covariates of animal i, and β is the corresponding vector of
regression parameters. Furthermore, conditional on (Wi)i=1,...,n, then all of
the T ′

i s are assumed to be independent. In the model specified by (A.1), the
conditional integrated hazard function is

Λi (t|w) = Λ0 (t) exp {xiβ + wi}
and the conditional survival function is

Si (t|w) = exp {−Λi (t|w)} .

Because Si (Ti|w) = exp {−Λi (Ti|w)} is uniformly distributed on the interval
(0; 1), the transformed random variable, Yi = Λi (Ti|W), conditional on W =
w, is exponentially distributed with parameter 1. In turn, εi, the logarithm of
Yi, given by

εi = log (Yi) = log
(
Λi (Ti|W)

) = log
(
Λ0 (Ti)

) + xiβ + Wi (A.2)

conditional on W = w, follows an extreme value distribution. Because the
density of εi in the conditional distribution given W = w does not depend on w,
then it follows that εi and W are independent and that the marginal distribution
of εi is the extreme value distribution. By rearranging terms in (A.2) it follows,
that the model in (A.2), is equivalent to a linear model on the log

(
Λ0 (·)) scale:

log
(
Λ0 (Ti)

) = −xiβ − Wi + εi.

The unconditional mean and variance of log
(
Λ0 (Ti)

)
are −xiβ − E (Wi) − γE

and Var (Wi) + π2

6 , respectively, where γE is the Euler constant.
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