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Abstract – Gompertz growth curves were fitted to the data of 137 rabbits from control (C)
and selected (S) lines. The animals came from a synthetic rabbit line selected for an increased
growth rate. The embryos from generations 3 and 4 were frozen and thawed to be contemporary
of rabbits born in generation 10. Group C was the offspring of generations 3 and 4, and group S
was the contemporary offspring of generation 10. The animals were weighed individually twice
a week during the first four weeks of life, and once a week thereafter, until 20 weeks of age.
Subsequently, the males were weighed weekly until 40 weeks of age. The random samples of
the posterior distributions of the growth curve parameters were drawn by using Markov Chain
Monte Carlo (MCMC) methods. As a consequence of selection, the selected animals were
heavier than the C animals throughout the entire growth curve. Adult body weight, estimated
as a parameter of the Gompertz curve, was 7% higher in the selected line. The other parameters
of the Gompertz curve were scarcely affected by selection. When selected and control growth
curves are represented in a metabolic scale, all differences disappear.

growth curves / selection / rabbits / Bayesian analysis

1. INTRODUCTION

Growth curves can describe the entire growth process in terms of a few para-
meters having a biological interpretation. Selection for growth rate can modify
these parameters, but there are some technical difficulties for comparing curves
before and after selection. Typically, growth curves are fitted by nonlinear
regression or by linear regression if the model can be linearized by transform-
ation (e.g., using a logarithmic scale). The logarithmic scale requires some
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assumptions: first, the errors are supposed to be multiplicative instead of addit-
ive, and, second, it is not possible to find the standard errors of the parameters in
the original scale, and approximate standard errors should be used. Moreover,
when a Gompertz or a Richards curve is used, a linear form does not exist.
When nonlinear regression is used, comparisons between growth curves are
not possible because the sampling distribution of the parameters is not known,
and approximate methods should also be used. A further difficulty comes from
the need to account for possible systematic environmental effects or for genetic
relationships between individuals, affecting the structure of the errors. Among
the curves proposed, the Gompertz growth curve is widely used to describe
the growth of mammals, and it fits better than the other curves for describing
the growth of rabbits (Gómez and Blasco [14]). Growth curves have been
fitted in rabbits by Baron et al. [2], Fl’ak [8], Rudolph and Sotto [22], Blasco
et al. [4] and Blasco and Gómez [5], but only Blasco et al. [4] examined the con-
sequences of selection for growth rate in rabbit growth curves. However, this
last study was made without any population control and its results have a limited
validity. Some studies draw predictions about the possible correlated response
to selection from the heritabilities and correlations (Denise and Brinks [7] in
beef cattle; Kachman et al. [15] in mice, Barbato [1] in chickens), but no other
studies compare the effect of selection for growth rate on growth curves.

Piles et al. [19] found a positive response to selection in a population of
rabbits selected for growth rate. The objective of this research is to examine
the effect of selection for an increased growth rate of the rabbit on their growth
curve by using a Bayesian procedure derived from the methodology of Varona
et al. [26], that overcomes all these difficulties. Other approaches based on
linear random regression methods have been suggested (Meyer, [17]), but they
are not based on models constructed from the biological meaning of their
parameters, as growth curves are. We propose here a nested growth model in
which the parameters of the curve are linear functions of environmental and
genetic effects. We used a Bayesian inference to assess the correlated response
on the growth curve parameters, and the marginal posterior distributions of all
unknowns were estimated by Monte Carlo Markov Chain methods. We tested
the goodness of fit by using a method that avoids the problems of methods like
R-square, strongly dependent on the last part of the curve due to a scale effect.
Finally, we expressed the growth curves in Taylor’s metabolic scale to better
understand how selection for growth rate acts on the live weight growth curve.

2. MATERIALS AND METHODS

2.1. Animals

Rabbits come from a synthetic line selected for an increased growth rate.
The genetic composition and selection process have been described by Piles
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et al. [19]. After weaning, rabbits were housed in flat-deck cages, eight rabbits
per cage, until they were 9 weeks old, and they were fed ad libitum with
a commercial diet (16.0% crude protein, 15.5% fiber, 3.4% fat). Then they
were placed in individual cages and the same food was restricted to approx.
140 g per day, since this is the common practice in commercial conditions. At
20 weeks of age they were placed in individual flat-deck reproductive cages,
and a commercial diet (17.5% crude protein, 14.5% of fiber and 3.4%) with the
same restriction was given.

Embryos from generations 3 and 4 were frozen and thawed to be contempor-
ary of rabbits born in the 10th generation. Offspring from these thawed embryos
constituted the control group (C), and were contemporaries to the offspring from
parents born in the 10th generation of selection (selected group, S). A total of
137 animals from these groups were individually weighed twice a week the
first four weeks and once a week until 20 weeks of age. Males were weighed
weekly until 40 weeks of age. The data of the females over 20 weeks of age
were not included because they were later pregnant and this modified their
growth curves. The numbers of animals measured per group were 27 males
and 34 females for group C, and 27 males and 49 females for group S.

2.2. Growth model

We describe here a hierarchical model in which each individual i has ni

longitudinal data (i.e., the weights from birth to the moment in which the animal
died, the individual was eliminated or the experiment stopped). The first stage
of the model is the trajectory, and we assumed that the individual growth curve
is correctly described using the Gompertz function. The second stage describes
how trajectories vary among individuals, and we assumed that growth curve
parameters are suitably described by a linear model that includes environmental
and genetic effects. A third stage is needed, since a Bayesian probability model
requires assigning prior distributions to all unknown quantities.

2.2.1. First stage of the model: the trajectory

We assumed that the weights of each individual follow the Gompertz law:

yij = ai × exp
[−bi × exp

(−ki × tj

)]+ εij;

where yij is the observed weight of the individual i on time j; ai, bi, ki, are
the parameters of the Gompertz function for the ith animal, i = 1, 2, . . . ,N,
and εij the residual. Not all individuals have the same amount of records, thus
j = 1, 2, . . . , ni. We assumed that the residuals were normally distributed
and independent. Other error structures can be proposed; for example, there
may be a first-order autoregressive process with heterogeneous variance across



24 A. Blasco et al.

the times at which the measurements are taken (Sorensen and Gianola, [24]),
and although there is no theoretical difficulty in estimating the parameters in a
Bayesian context, this complicates the MCMC process.

(
yij|ai, bi, ki, σ

2
j

) ∼ N
{
ai × exp

[−bi × exp
(−ki × tj

)]
, σ2

j

}
. (1)

We assumed that all animals have the same residual variance at the same time j,
but because of a scale effect, the residual variance increases with time until
the adult weight is raised, and then remains constant. This can be represented
in several ways. After some exploratory analyses fitting the rough data with
a Gompertz curve, and examining the s.d. of the residuals, we concluded that
the evolution of the standard deviation of the residuals could be represented
following a Gompertz law; i.e.:

σj = a0 × exp
[−b0 × exp

(−k0 × tj

)]
. (2)

2.2.2. Second stage of the model: variation among individuals

Each parameter of the curve that describes the trajectory of the growth of
each animal is determined by an effect of sex (male or female) and group (C
or S), and an environmental component that we assume normally distributed.
Calling a, b, k the vectors containing the growth curve parameters ai, bi, ki of
all individuals,

a = Xβa + ea; b = Xβb + eb; k = Xβk + ek

(a,b,k|βa,βb,βk,R) ∼ N




Xβa

Xβb,R⊗ I
Xβk


 ;

where βa, βb and βk are the sex-group effects for the parameters of the growth
curve, X is an incidence matrix, and R ⊗ I is the (co)variance matrix of the
random environmental effects, where R is the 3×3 (co)variance matrix between
the residuals ea, eb, ek, and I is a N × N identity matrix. This means that, for
each individual i:

cov(eai, ebi) 6= 0; cov(eai, eki) 6= 0; cov(eki, ebi) 6= 0

whereas for two individuals i and j,

cov(eai, eaj) = 0; cov(eai, ebj) = 0; etc.

This assumption is based on the biological meaning of the parameters: if
a describes the adult weight and k is related to the slope of the curve (the
growth rate), it is reasonable to suppose that they will be correlated within
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individuals, but not between individuals, given that the genetic relationships
between individuals are not considered at this stage.

We simplify now the notation, naming β′ = [β′a, β′b, β′k] the vector with
all sex-group effects, and p′ = [a′,b′,k′] the vector with the Gompertz curve
parameters for each animal. We name p′ε = [aε, bε, kε] the vector with the
Gompertz curve parameters for the s.d. of the residuals, thus:

(p|β,R) ∼ N(Xβ,R⊗ I);

and we will call this model, Model 1.

2.2.3. Third stage of the model: uncertainty about the second stage
parameters

We consider that the sex and group effects have a normal prior distribution:

(β|m,V) ∼ N(m,V); (3)

where m and V are the subjective mean and variance for the prior beliefs
about the systematic effects. We propose, according to Sorensen et al. [23], an
inverted Wishart distribution for prior distributions of R:

R = IW(SR, nR); (4)

where (SR, nR) are the hyperparameters of the inverted Wishart function. These
hyperparameters, modify the shape of the function changing the amount of
information of the prior density (see Blasco [3] for a detailed discussion about
the prior information). The prior distributions for the parameters a0, b0, k0 of
the residual standard deviation are assumed to be flat with limits that guarantee
the property of the distribution. We always used proper prior distributions in
order to guarantee all the posterior distributions to be proper.

Model 1 ignores that data are correlated because it does not take into account
the genetic relationships between individuals. This produces an underestim-
ation of the standard deviation of the posterior densities. A model including
all the genetic effects of all animals from the first generation of selection has
been proposed by Varona et al. [27] for dairy cattle. We cannot use this model
here because we only have data for growth curves from the last generation
of selection and from generations 3–4. In order to assess the effect of the
relationships between animals, we fit a model in which the growth curve
parameters of each individual were also determined by a genetic effect. We
will call this model, Model 2:

(p|β,u,R) ∼ N(Xβ+ Zu,R⊗ I); (5)
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where the genetic effects have a normal prior distribution:

(u|G) ∼ N(0,G⊗ A); (6)

where G is the genetic (co)variance matrix between the Gompertz growth
curve parameters and A is the numerator relationship matrix including only the
relationships of the individuals of groups C and S. The prior distribution of G
is also an inverted Wishart distribution:

G ∼ IW(SG, nG). (7)

2.2.4. Bayesian inference

The joint posterior distribution is (Appendix A)

f (p, β,R,pε|y) = f (y|p,pε)f (p|β,R)f (β)f (R)f (pε)/f (y).

Prior distributions represent the state of knowledge before the results of the
experiment become available. For the group effects β we have used vague
priors, taking m and V from a previous experiment of Blasco and Gómez [5],
who estimated the growth curve of this line in the base generation. Since
there is no information on the residual (co)variances for the growth curve in
rabbits, two different priors were used to express a vague knowledge about the
(co)variance matrix R. We can then compare the two possible states of opinion,
and study how the use of the different prior distributions affects the conclusions
from the experiment. We first used flat priors (with limits that guarantee the
property of the distribution) for two reasons: to show an indifference about
their value and to use them as reference priors, since they are usual in Bayesian
analyses. Since prior opinions are difficult to draw in the multivariate case, we
chose the second prior by substituting a (co)variance matrix of the components
in the hyper parameters SR and SG and using nR = nG = 3, as proposed by
Gelman et al. [11] in order to have a vague prior information. These last
priors are based on the idea that S is a scale-parameter of the inverted Wishart
function, thus using for SR and SG prior covariance matrixes with a low value
for n, would be a way of expressing prior uncertainty. We proposed SR and SG

from phenotypic covariances obtained from the data of Blasco and Gómez [5].
Table I shows the hyper parameters of both prior distributions.

The conditional distributions needed to run the Gibbs sampler are derived
in Appendix B. Conditional posterior distributions for ai and βi and u are
Normal distributions, conditional posterior distributions for the (co)variance
components (R and G) are Inverted Wishart distributions and conditional
posterior distributions of bi, ki and pε are non standard statistical distributions.
There are algorithms for the exact random sampling of Normal and Inverted
Wishart distributions, but when the distribution is not a standard one, an
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Table I. Hyperparameters of the prior distributions.

Prior 1

υG = −4 SG = 0

υR = −4 SR = 0

Prior 2

υG = 3 SG =




170 000 3 224 −0.873

3 224 0.025 −0.00046

−0.873 −0.00046 0.00001




υR = 3 SR =




230 000 41.07 −1.113

41.07 0.030 −0.00055

−1.113 −0.00055 0.000012




iterative process, also based on MCMC techniques, should be used. We have
applied a Metropolis-Hastings algorithm with a uniform proposal distribution
centered at the current values b(t)i and k(t)i [11]. After several trials, the proposal
distributions used were:

b(t+1)
i ∼ b(t)i + U[−0.22,0.22];

k(t+1)
i ∼ k(t)i + U[−0.0014,0.0014];

where U is the uniform distribution. The choice of the limits for that distribution
determines the acceptance rate. If the width of such an interval is too small,
the proposed values will be closed to the current ones, the rejection rate will be
low but the process will move slowly throughout the parameter space. On the
contrary, if it is too large, the proposed values are far away from the current ones
and this results in a high rejection rate. The scale of the proposal distribution
was determined in a preliminary analysis. The above choice led to acceptance
rates ranging between 17 and 45%.

For each analysis three chains with different starting values were run. After
several trials, the length of each chain was set to 300 000. The burn-in period
was 150 000 iterations, higher than the minimum burn-in required according to
the method of Raftery and Lewis [20], and the sampling interval was 10, so that
a total of 15 000 samples were kept from each chain. Convergence was tested
for each chain separately using the criterion of Geweke [12]. Convergence was
also assessed by the test of Gelman and Rubin [10]. For each variable, a scale
parameter (

√
R), which involves the variance between and within the chain was

computed. This parameter can be interpreted as the factor by which the scale
of the marginal posterior distribution of each variable would be reduced if the
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chain were run to infinity, and it should be close to 1 to convey convergence.
All these samples were used to estimate the features of posterior distributions.
Autocorrelation between samples and Monte-Carlo error of features of marginal
distributions [13] were also calculated.

2.2.5. Outliers
Preliminary analyses were conducted to detect the presence of outliers or

atypical growth patterns. An observed weight was declared to be an outlier if
the standardized absolute value of the residual posterior mean was larger than
three standard deviations from the standard normal distribution [6]. An atypical
growth pattern was declared when the Mahalanobis distance between the indi-
vidual growth curve parameters and the average of its group was high. Since we
have three parameters, the square of this distance D2 = (pi−Xiβ)

′R−1(pi−Xiβ)
is distributed as a χ2

3. We checked how many individuals had a value of D2

laying in the area of P < 0.01.

2.2.6. Goodness of fit
The goodness of fit was checked by the square of the correlation coefficient

between the predicted and observed values r[E(Yr|y−r), yr]. This global cri-
terion, like the coefficient of determination of the fit, has the disadvantage of
depending more on the last part of the curve than on the first part due to a
scale problem because the absolute value of the errors are higher at the adult
weight than at the beginning of growth. Moreover, nonlinear models require
to examine the whole growth trajectory, since a growth curve can fit well in
some parts but not in others. Due to this, we used cross-validation predictive
densities to asses the goodness of fit of the model. The observed values yr were
compared with their prediction Yr obtained using all the other data y−r. We
used one of the checking functions proposed by Gelfand et al. [9]:

g = 1 if Yr < yr;

g = 0 if Yr ≥ yr.

We obtained E(g|y−r) for each observed value r. This expectation shows the
probability of a predicted value of being higher or lower than the observed one.
If the model fits the data properly, E(g|y−r) should be close to 0.5, thus a global
criterion for goodness of fit is to calculate the average of these expectations for
all individuals in each point tj of the growth curve. A graph with these averages
shows whether the fit is good along the curve or whether there are parts of the
curve that fit better than others. This technique has the advantage of being
free of the scale effect. The expectation of the checking function E(g|y−r)

is computed using the MCMC methods. These methods are very computing
demanding, thus we applied an importance sampling procedure as suggested
by Rekaya et al. [21].
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 Figure 1. Weekly averages of live weight of males (M) and females (F) of the control
(C) and selected (S) groups.

3. RESULTS

Figure 1 shows the weekly averages of live weight of males (M) and females
(F) of the control (C) and selected (S) groups. Nine observations were declared
to be outliers and were removed. No animals presented an atypical growth
pattern. Group S showed a higher live weight for both males and females along
the whole growth curve. No sexual dimorphism was observed at slaughter time
(9 weeks of age), but this dimorphism appeared at later ages, females being
heavier than males, as in rabbits and not in other domestic species.

The analyses of growth curves made with two different priors gave very
similar results, showing that the information of these analyses come essentially
from the data and not from the priors used. Since the results from both priors
were almost the same, only the results obtained using the flat prior will be
commented. Tables II and III show the means and standard deviations of the
posterior densities of the curve parameters for the flat prior, as well as the
Monte Carlo standard errors and convergence tests of the Gibbs sampler for the
growth curves. The autocorrelation was generally low, in the model without
genetic effects, but it was higher in the model with genetic effects, leading to
higher estimates of Monte Carlo standard errors. All chains gave very similar
results, the difference between chains being of the same size of the Monte Carlo
Standard error, thus they were blended to give the estimates of the means and
s.d. The convergence was good, the z-score of the Geweke test in the model
without genetic effects was generally low, and never higher than 1.96, and the
scale parameter of the Gelman and Rubin test was always close to 1. The model
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Table II. Means and standard deviations (sd) of the posterior densities of the curve
parameters. Model 1, without genetic effects.

Parameter Mean sd Pr > 0 r MCse B-in Z
√

R

CM 4 320 113 0.10 0.9 2 −1.73 1.00

CF 4 520 108 0.19 1.1 2 −0.61 1.00

SM 4 820 108 0.05 0.7 2 −0.28 1.00

a SF 4 650 92 0.22 1.2 3 −0.23 1.00

SM-CM 503 135 1 0.05 1.0 2 1.11 1.00

SF-CF 126 155 0.83 0.14 0.9 2 0.39 1.00

S-C 315 103 1 0.09 0.7 2 1.13 1.00

CM 4.49 0.07 0.35 0.001 3 0.20 1.00

CF 4.54 0.07 0.46 0.001 4 1.03 1.00

SM 4.40 0.07 0.34 0.002 2 0.05 1.00

b SF 4.69 0.09 0.72 0.001 8 0.42 1.02

SM-CM −0.09 0.09 0.14 0.06 0.0005 2 −0.29 1.00

SF-CF 0.15 0.08 0.88 0.23 0.0009 2 −0.60 1.00

S-C 0.03 0.06 0.70 0.14 0.0006 2 −0.70 1.00

CM 0.0300 0.0008 0.28 0.00001 3 0.95 1.00

CF 0.0295 0.0008 0.39 0.00001 3 0.84 1.00

SM 0.0287 0.0008 0.25 0.00001 2 0.55 1.00

k SF 0.0321 0.0008 0.56 0.00001 6 0.39 1.00

SM-CM −0.0013 0.0010 0.11 0.08 0.000007 2 −0.57 1.00

SF-CF 0.0025 0.0009 0.99 0.18 0.000008 2 −0.58 1.00

S-C 0.0007 0.0007 0.84 0.13 0.000005 2 −0.90 1.00

CM: males of group C; CF: females of group C; SM: males of group S; SF: females
of group S; Pr > 0: probability of the difference being higher than 0; r: correlation
between two successive samples; MCse: Monte Carlo standard error; ESS: effective
sample size; B-in: burn-in of the Raftery and Lewis test; Z: z-score of the Geweke
test;
√

R: scale factor of the Gelman and Rubin test.

with genetic effects showed one case in which the z-score was higher than 1.96,
but the results of the Gelman and Rubin test were good. The burn-in period
used was much higher than the minimum recommended by the procedure of
Raftery and Lewis. Thus no pathologies were detected in the sampling process.

The square of the correlation coefficient between the predicted and observed
values was 0.99. Figure 2 shows the averages of the expectations of the Gelfand
checking function for each point of the growth curve. Although all of them lay
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Table III. Means and standard deviations (sd) of the posterior densities of the curve
parameters. Model 2, with genetic effects.

Parameter Mean sd Pr > 0 r MCse B-in Z
√

R

CM 4 340 233 0.94 10.9 140 0.98 1.00

CF 4 530 233 0.95 10.6 56 0.15 1.00

SM 4 820 161 0.89 5.7 45 −1.55 1.01

a SF 4 640 154 0.92 5.5 54 −0.78 1.01

SM-CM 472 282 0.92 0.92 12.1 64 −1.70 1.01

SF-CF 100 275 0.55 0.94 11.7 64 −0.56 1.00

S-C 286 262 0.80 0.96 11.7 78 −1.17 1.00

CM 4.50 0.11 0.89 0.004 35 2.17 1.00

CF 4.57 0.11 0.91 0.004 42 1.48 1.00

SM 4.42 0.09 0.81 0.003 15 −0.05 1.02

b SF 4.70 0.10 0.90 0.003 42 −0.23 1.02

SM-CM −0.08 0.14 0.39 0.84 0.0046 36 −1.76 1.00

SF-CF 0.12 0.13 0.80 0.88 0.0047 42 −1.41 1.00

S-C 0.06 0.12 0.70 0.91 0.0045 42 -1.63 1.01

CM 0.0301 0.0014 0.91 0.00006 60 0.54 1.01

CF 0.0296 0.0014 0.93 0.00006 42 0.75 1.01

SM 0.0288 0.0010 0.84 0.00003 42 0.66 1.01

k SF 0.0322 0.0010 0.90 0.00003 49 0.59 1.02

SM-CM −0.0011 0.0017 0.26 0.88 0.000066 60 −0.11 1.00

SF-CF 0.0026 0.0016 0.96 0.91 0.000065 84 −0.33 1.00

S-C 0.0009 0.0015 0.73 0.93 0.000064 70 −0.23 1.00

CM: males of group C; CF: females of group C; SM: males of group S; SF: females
of group S; Pr > 0: probability of the difference being higher than 0; r: correlation
between two successive samples; MCse: Monte Carlo standard error; ESS: effective
sample size; B-in: burn-in of the Raftery and Lewis test; Z: z-score of the Geweke
test;
√

R: scale factor of the Gelman and Rubin test.

near 0.5 (none of the predicted values showed a high probability of being lower
or higher than the observed value), it can be seen that at the beginning there is
a trend of obtaining predictions higher than the observations, and at the end of
the growth curve there is a certain trend of obtaining predictions that are lower
than the observations. Adult weight is raised very slowly and the asymptotes
of the growth curves tend to slightly underestimate the final adult weight.
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Figure 2. Goodness of fit: average of the expectations of the Gelfand checking function
for all individuals in each point of the growth curve.

Figure 3 shows the posterior distributions for the differences between the
curve parameters of lines S and C. All the distributions were approximately
normal, similar to the ones shown in this figure. The parameters for males
were estimated with a higher accuracy, since they have more individual data.
Tables II and III also show the differences between growth curve parameters of
groups S and C for males and females. Although the estimated means generally
agree, standard deviations were, as before, higher for the model including the
genetic effects. Group S showed a higher parameter a but the differences found
for parameters k and b were very small. The effect of selection seems to be
a scale effect, increasing all weights along the growth curve but not changing
the shape of the curve, as predicted by Taylor [25]. Figure 4 shows the fitted
growth curves for males in their original scale and in the metabolic scale of
Taylor [25]. All the selection effects disappear when the curves are represented
in Taylor’s metabolic scale.

4. DISCUSSION

The Bayesian inference makes use of prior information. In the multivariate
case, it is almost impossible to define with some accuracy this previous know-
ledge, because of the difficulty of expressing prior opinions in a multidimen-
sional space (see Blasco, [3] for a detailed discussion about prior information
in a Bayesian context). We have compared here two prior opinions for the
dispersion parameters, one expressing indifference, and the other based on prior
univariate information derived from the experiments from another data base
of the same breed. Although both were constructed from different bases, they
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Figure 3. Posterior densities of the differences between groups S and C for the
Gompertz growth curve parameters a, b, k.
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Figure 4. Fitted growth curves of control and selected groups for males in the original
scale and in Taylor’s metabolic scale. cm: control males. sm: selected males.

give virtually the same results, which means that the experiment had enough
data and the prior information was rather irrelevant to the results obtained.

Monte Carlo Markov chain techniques have solved the difficult operative
problems that have prevented the application of Bayesian techniques in genetics
for many years. One of the advantages of the use of these chains is that new
samples of marginal posterior distributions of new variables can be derived
from the chains obtained in the Gibbs sampling process. Thus, to compare
parameters from two different growth curves, the marginal posterior density
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of the difference between parameters can be obtained just by calculating the
difference between chains in each sample.

Model 1 has less information than model 2, but it does not depend on the
genetic estimation of the variance components, which are necessarily inaccurate
given the reduced amount of data common in this type of experiment. Since
genetic effects are not included in model 1, this tends to underestimate the s.d. of
the marginal posterior distribution. Model 2 has the advantage of considering
the relationships between individuals, however this model depends on the
estimates of the genetic parameters. These estimates cannot be very accurate
given the limited amount of data, and there is very little in the literature that can
help (few experiments, also with few data). Including the whole relationship
matrix and having data of individuals in all generations, the correlated response
to selection for growth rate on the curve parameters could have been estimated
without the need of a control population. However, we only had data in the
last generation of selection, not in the other ones, and the lack of data in all the
other generations makes this task particularly difficult. Due to this, we used a
relationship matrix that only included the individuals of groups C and S and
their parents. This takes into account the main relationships, which permits to
calculate more accurately the s.d. of the marginal posterior distributions, but
avoids to estimate all parameters of all individuals from the first generation of
selection. The results of model 1 and model 2 are remarkably similar, showing
that including or not the genetic effect has a small effect in the estimation of
the means of the marginal posterior distributions.

No other authors have studied hitherto the effect of selection for growth rate
on the growth curve in rabbits. Blasco et al. [4] fitted rabbit growth curves
in an unselected population, and in the same population ten generations later,
but the absence of a control population makes their results merely indicative.
Even in other species, the studies of the effect of selection on the growth curve
has been approached only indirectly, based on the estimation of the genetic
parameters of the growth curve more than in the direct comparisons of the
effect of selection in these parameters [15,18]. We have exemplified here a
way of comparing growth curves between populations by using a procedure to
assess the differences between the growth curve parameters.

An undesirable consequence of selection for growth rate is the increment
of the adult weight because it augments the costs of maintaining a parent
population. Adult weight (a-parameter of the Gompertz curve) increased with
selection, whereas the parameters related to the slope of the curve did not
practically change (Fig. 4). This result is more clear when comparing males
of group S and C than when comparing females, probably due to the limited
amount of records in the females side. When curves are represented in the
Taylor’s metabolic scale all the effect of selection disappears (Fig. 4). This
was predicted by Taylor [25], who stressed that all weights are correlated and a
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selection for growth rate can easily lead to an increase in adult weight with no
changes in the curve slope. Changes in the curve slope have been produced by
McCarthy and Baker [16] in mice, but the selection process was very inefficient,
since the remaining genetic variation after restricting adult weight is very small
due to the genetic correlations between all weights along the growth curve. In
this circumstance, it can be predicted that male lines will become giant lines
and the management of reproduction will be more difficult, unless artificial
insemination is used.
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APPENDIX A

To construct the posterior distribution we need, according to Bayes Theorem,
the likelihood and the prior distribution. Since we have considered the residuals
εij independent, the likelihood is a product of normal functions:

f (y|p, β,u,G,R,pε) = f (y|p,pε) =
N∏

i=1

ni∏

j=1

f
(
yij|ai, bi, ki, σ

2
j

)
.

The notation of the likelihood can be simplified, since given the parameters p
implies that β, u, G and R are also given. For the prior distributions, we
first consider that prior for pε is independent from the other priors. Then we
consider that G and R are independent, and β and u are also independent. We
also take into account that given u implies that G is given and the notation can
be simplified. The posterior distribution is:

f (p, β,u,G,R,pε|y) = f (y|p,pε)f (p, β,u,G,R)f (pε)/f (y)
= f (y|p,pε)f (p|β,u,R)f (β)f (u|G)f (G)f (R)f (pε)/f (y).

If the genetic values are not taken into account, this becomes:

f (p, β,R,pε|y) = f (y|p,pε)f (p|β,R)f (β)f (R)f (pε)/f (y).

We can put this function in an explicit form, since f (G) and f (R) are Inverted
Wishart distributions, f (pε) is a uniform distribution, and the other functions
are normal distributions. The likelihood is, from (1)

f (y|p,pε) =
N∏

i=1

ni∏

j=1

1√
2πσj

exp
− {

yij − ai exp
(−bi exp(−kitij)

)}2

2σ2
j

where σj has the expression (2) function of the components of pε. Calling

hi = exp
(−bi exp(−kitij)

)

the likelihood of the data of individual i is:

f (yi|p,pε) ∝ exp

[
−1

2
(yi − aihi)

′Σ−1
i (yi − aihi)

]
(A.1)

where Σi is the (co)variance matrix corresponding to individual i. The prior
distributions are, from (3), (4), (5), (6) and (7):

f (p|β,u,R) ∝ |R|−N
2 exp

[
−1

2
(p− Xβ− Zu)′ (R⊗ I)−1 (p− Xβ− Zu)

]
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where N is the number of animals with data;

f (β) ∝ |V|− 1
2 exp

[
−1

2
(β−m)′V−1 (β−m)

]

f (u|G) ∝ |G|− q
2 exp

[
−1

2
u′ (G⊗ A)−1 u

]

where q is the number of animals in the genealogy;

f (G) ∝ |G|− nG+c+1
2 exp

[
−1

2
tr

(
nGG−1SG

)]

where c is the number of parameters of the growth curve (in our case, c = 3);

f (R) ∝ |R|− nR+c+1
2 exp

[
−1

2
tr

(
nRR−1SR

)]

f (pε) = constant.

APPENDIX B: CONDITIONAL POSTERIOR DISTRIBUTIONS

Conditional posterior distributions for Growth curve
parameters ai, bi, ki

We name p−i the vector with all parameters of the Gompertz curve for all
individuals except the parameters for animal i.

f (ai|bi, ki,p−i, β,u,pε,R, y) ∝ f (y|p,pε) · f (p|β,u,R)
∝ f (yi|ai, bi, ki,pε) · f (ai, |bi, ki, β,u,R).

From (A.1), in Appendix A,

ai|bi, ki,pε, yi ∼ N

(
h′iΣ

−1
i yC

i

h′iΣ−1
i hi

,
(
h′iΣ

−1
i hi

)−1
)

thus

ai|bi, ki, β,u,R ∼ N

(
ma − rab

raa
(bi − mb)− rak

raa
(ki − mk), 1/raa

)
;

being raa, rab, rak, rbb, rbk, rkk the corresponding elements of R−1 and ma, mb,
mk the corresponding means for a, b, k given β, u and R. Then,

ai|bi, ki, β,u,pε,R, y ∼ N
(

âi,
(
h′iΣ

−1
i hi + raa

)−1
)

where:

âi =
(
h′iΣ

−1
i hi + raa

)−1 [
h′iΣ

−1
i yi + raama − rab(bi − mb)− rak(ki − mk)

]
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and for bi and ki

f (bi|ai, ki,p−i, β,u,pε,R, y) ∝ f (yi|ai, bi, ki,pε)× f (bi, |ai, ki, β,u,R)

where:

bi|ai, ki, β,u,R ∼ N

(
mb − rab

rbb
(ai − ma)− rbk

rbb
(ki − mk), 1/rbb

)

and

f (ki|ai, bi,p−i, β,u,pε,R, y) ∝ f (yi|ai, bi, ki,pε)× f (ki, |ai, ki, β,u,R)

where:

ki|ai, bi, β,u,R ∼ N

(
mk − rak

rkk
(ai − ma)− rbk

rkk
(bi − mb), 1/rkk

)
.

The likelihood has the same expression for the three parameters but in the cases
of bi and ki it is not possible to arrive to a normal distribution or other distribution
with a known algorithm for extracting random samples. A Metropolis-Hastings
method was used for sampling these distributions.

Conditional posterior distributions for a0, b0, k0

f (a0|b0, k0,p, β,u,R, y) ∝ f (y|p,pε)

where:

f (y|p,pε) =
N∏

i=1

ni∏

j=1

1√
2πa0 exp

(−b0 exp(−k0tij)
)

× exp
− [

yij − ai exp
(−bi exp(−kitij)

)]2

2
[
a0 exp

(−b0 exp(−k0tij)
)]2

but this function of a0 is not a standard distribution. The same expression comes
for b0 and k0 and it is also required to use Metropolis-Hastings sampling, since
there is no direct sampling method for these distributions.

Conditional posterior distributions for the location parameters

f (β,u|p,pε,G,R, y) ∝ f (p|β,u,R)× f (β)× f (u|G)

gi|g−i,p,pε,R,G, y,ma,mb,mk,V, nG, nR,SG,SR

∼ N




RHSi −
∑

i6=j

cijgi

cii
,

1

cii



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where g−i is the vector g′ = [β′,u′] with the ith element excluded, RHSi is
the corresponding element of the Right Hand Side and cij the corresponding
coefficient of the mixed model equations constructed as if the observed traits
were the Gompertz curve parameters:

[
X′R−1X+mV−1 X′R−1Z

Z′R−1X Z′R−1Z+G−1
0 ⊗ A−1

] [
β
u

]
=

[
X′R−1p
Z′R−1p

]
.

Conditional distributions for the (co)variance matrixes

f (R|p,pε, β,u, y) ∝ f (p|β,u,R)× f (R)

thus

R ∼ IW
(
N+ nR, (p− Xβ− Zu)′ (p− Xβ− Zu)+ nRSR

)

f (G|p,pε, β,u,R, y) ∝ f (u|G)× f (G)

thus:
G ∼ IW

(
q+ nG,UA−1U+ nGSG

)

where U = [ua,ub,uk], where ua, ub, uk are vectors with the genetic values of
the growth curve parameters for all individuals of the genealogy.
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