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Abstract – In the case of the mixed linear model the random effects are usually assumed to be
normally distributed in both the Bayesian and classical frameworks. In this paper, the Dirichlet
process prior was used to provide nonparametric Bayesian estimates for correlated random
effects. This goal was achieved by providing a Gibbs sampler algorithm that allows these
correlated random effects to have a nonparametric prior distribution. A sampling based method
is illustrated. This method which is employed by transforming the genetic covariance matrix
to an identity matrix so that the random effects are uncorrelated, is an extension of the theory
and the results of previous researchers. Also by using Gibbs sampling and data augmentation a
simulation procedure was derived for estimating the precision parameter M associated with the
Dirichlet process prior. All needed conditional posterior distributions are given. To illustrate
the application, data from the Elsenburg Dormer sheep stud were analysed. A total of 3325
weaning weight records from the progeny of 101 sires were used.

Bayesian methods / mixed linear model / Dirichlet process prior / correlated random
effects / Gibbs sampler

1. INTRODUCTION

In animal breeding applications, it is usually assumed that the data follows
a mixed linear model. Mixed linear models are naturally modelled within the
Bayesian framework. The main advantage of a Bayesian approach is that it
allows explicit use of prior information, thereby giving new insights in problems
where classical statistics fail.

In the case of the mixed linear model the random effects are usually assumed
to be normally distributed in both the Bayesian and classical frameworks.
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According to Bush and MacEachern [3] the parametric form of the distribution
of random effects can be a severe constraint. A larger class of models would
allow for an arbitrary distribution of the random effects and would result in
the effective estimation of fixed and random effects across a wide variety of
distributions.

In this paper, the Dirichlet process prior was used to provide nonparametric
Bayesian estimates for correlated random effects. The nonparametric Bayesian
approach for the random effects is to specify a prior distribution on the space
of all possible distribution functions. This prior is applied to the general prior
distribution for the random effects. For the mixed linear model, this means that
the usual normal prior on the random effects is replaced with a nonparametric
prior. The foundation of this methodology is discussed in Ferguson [9], where
the Dirichlet process and its usefulness as a prior distribution are discussed.
The practical applications of such models, using the Gibbs sampler, has been
pioneered by Doss [5], MacEachern [16], Escobar [7], Bush and MacEach-
ern [3], Lui [15] and Müller, Erkani and West [18]. Other important work in
this area was done by West et al. [24], Escobar and West [8] and MacEachern
and Müller [17]. Kleinman and Ibrahim [14] and Ibrahim and Kleinman [13]
considered a Dirichlet process prior for uncorrelated random effects.

Escobar [6] showed that for the random effects model a prior based on a
finite mixture of the Dirichlet processes leads to an estimator of the random
effects that has excellent behaviour. He compared his estimator to standard
estimators under two distinct priors. When the prior of the random effects is
normal, his estimator performs nearly as well as the standard Bayes estimator
that requires the estimate of the prior to be normal. When the prior is a two
point distribution, his estimator performs nearly as well as a nonparametric
maximum likelihood estimator.

A mixture of the Dirichlet process priors can be of great importance in animal
breeding experiments especially in the case of undeclared preferential treatment
of animals. According to Strandén and Gianola [19,20] it is well known that
in cattlebreeding the more valuable cows receive preferential treatment and
to such an extent that the treatment cannot be accommodated in the model,
this leads to bias in the prediction of breeding values. A “robust” mixed
effects linear model based on the t-distribution for the “preferential treatment
problem” has been suggested by them. The t-distribution, however, does
not cover departures from symmetry while the Dirichlet process prior can
accommodate an arbitrarily large range of model anomalies (multiple modes,
heavy tails, skew distributions and so on). Despite the attractive features
of the Dirichlet process, it was only recently investigated. Computational
difficulties have precluded the widespread use of Dirichlet process mixtures of
models until recently, when a series of papers (notably Escobar [6] and Escobar
and West [8]) showed how Markov Chain Monte Carlo methods (and more
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specifically Gibbs sampling) could be used to obtain the necessary posterior
and predictive distributions.

In the next section a sampling based method is illustrated for correlated
random effects. This method which is employed by transforming the numerator
relationship matrix A to an identity matrix so that the random effects are uncor-
related, is an extension of the theory and results of Kleinman and Ibrahim [14]
and Ibrahim and Kleinman [13] who considered uncorrelated random effects.
Also by using Gibbs sampling and data augmentation a simulation procedure is
derived for estimating the precision parameter M associated with the Dirichlet
process prior.

2. MATERIALS AND METHODS

To illustrate the application, data from the Elsenburg Dormer sheep stud
were analysed. A total of 3325 weaning records from the progeny of 101 sires
were used.

2.1. Theory

A mixed linear model for this data structure is thus given by

y = Xβ + Z̃γ + ε (1)

where y is a n × 1 data vector, X is a known incidence matrix of order n × p,
β is a p × 1 vector of fixed effects and uniquely defined so that X has a full
column rank p, γ is a q×1 vector of unobservable random effects, (the breeding
values of the sires). The distribution of γ is usually considered to be normal
with a mean vector 0 and variance–covariance matrix σ2

γA. Z̃ is a known, fixed
matrix of order n × q and ε is a n × 1 unobservable vector of random residuals
such that the distribution of ε is n-dimensional normal with a mean vector 0
and variance-covariance matrix σ2

ε In. Also the vectors ε and γ are statistically
independent and σ2

γ and σ2
ε are unknown variance components. In the case of a

sire model, the q × q matrix A is the relationship (genetic covariance) matrix.
Since A is known, equation (1) can be rewritten as

y = Xβ + Zu + ε . . .

where Z = Z̃B−1, u = Bγ and BAB′ = I.
This transformation is quite common in animal breeding. A reference is

Thompson [22]. The reason for making the transformation u = Bγ is to
obtain independent random effects ui(i = 1, . . . , q) and as will be shown
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later the Dirichlet process prior for these random effects can then be easily
implemented. The model for each sire can now be written as

yi = Xiβ + Ziu + εi (i = 1, . . . , q) (2)

where yi is ni × 1, the vector of weaning weights for the lambs (progeny) of the
ith sire. Xi is a known incidence matrix of order ni × p, Zi = 1niz(i) is a matrix
of order ni × q where 1ni is a ni × 1 vector of ones and z(i) is the ith row of B−1.

Also εi ∼ N(0, σ2
ε Ini) and

q∑

i=1

ni = n.

The model defined in (2) is an extension of the model studied by Kleinman
and Ibraham [14] and Ibrahim and Kleinman [13] where only one random
effect, ui and the fixed effects have an influence on the response yi. This
difference occurs because A was assumed an identity matrix by them.

In model (2) and for our data set, “flat” or uniform prior distributions are
assigned to σ2

ε and β which means that all relevant prior information for these
two parameters have been incorporated into the description of the model.

Therefore:
p(β, σ2

ε ) = p(β)p(σ2
ε) ∝ constant

i.e. σ2
ε is a bounded flat prior [0,∞] and β is uniformly distributed on the

interval [−∞,+∞]. Furthermore, the prior distribution for the uncorrelated
random effects ui (i = 1, . . . , q) is given by

ui ∼ G

where
G ∼ DP(M·G0).

Such a model assumes that the prior distribution G itself is uncertain, but has
been drawn from a Dirichlet process. The parameters of a Dirichlet process are
G0, the probability measure, and M, a positive scalar assigning mass to the real
line. The parameter G0, called the base measure or base prior, is a distribution
that approximates the true nonparametric shape of G. It is the best guess of
what G is believed to be and is the mean distribution of the Dirichlet process
(see West et al. [24]). The parameter M on the contrary reflects our prior belief
about how similar the nonparametric distribution G is to the base measure G0.
There are two special cases in which the mixture of the Dirichlet process (MDP)
models leads to the fully parametric case. As M → ∞, G → G0 so that the
base prior is the prior distribution for ui. Also if the true values of the random
effects are identical, the same is true. The use of the Dirichlet process prior
can be simplified by noting that when G is integrated over its prior distribution,
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the sequence of ui’s follows a general Polya urn scheme, (Ferguson [9]), that is

u1 ∼ G0

uq|u1, . . . , uq−1





= uj with probability
1

M + q − 1
; j = 1, . . . , q − 1;

∼ G0 with probability
M

M + q − 1
·

(3)

In other words, by analytically marginalising over this dimension of the model
we avoid the infinite dimension of G. So marginally, the ui’s are distributed as
the base measure along with the added property that p(ui = uj i 6= j) > 0. It is
clear that the marginalisation implies that random effects (ui; i = 1, . . . , q) are
no longer conditionally independent. See Ferguson [9] for further details. Spe-
cifying a prior on M and the parameters of the base distribution G0 completes
the Bayesian model specification. In this note we will assume that

G0 = N(0, σ2
γ).

Marginal posterior distributions are needed to make inferences about the
unknown parameters. This will be achieved by using the Gibbs sampler.
The typical objective of the sampler is to collect a sufficiently large enough
number of parameter realisations from conditional posterior densities in order
to obtain accurate estimates of the marginal posterior densities, see Gelfand
and Smith [10] and Gelfand et al. [11].

If “flat” or uniform priors are assigned to β and σ2
ε , then the required

conditionals for β and σ2
ε are

β|u, σ2
ε , y ∼ Np

{
β̂, σ2

ε(X
′X)−1,

}
(4)

where

β̂ = (X′X)−1X′(y − Zu)

and

p(σ2
ε |β, u, y) ∝

{
q∏

i=1

(
1

σ2
ε

)ni/2
}

exp

{
− 1

2σ2
ε

(y − Xβ − Zu)′(y − Xβ − Zu)

}
·

(5)

The proof of the following theorem is contained in Appendix A.
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Theorem 1

The conditional posterior distribution of the random effect u` is

p(u`|β, σ2
ε , σ

2
γ, u(`), y, M)

∝
q∑

j6=`





q∏

i=1

φ


yi|Xiβ + zi`uj1ni +

q∑

m6=`

zimum1ni; σ2
ε Ini






 .δuj

+ J`





q∏

i=1

φ


yi|Xiβ + zi`u`1ni +

q∑

m6=`

zimum1ni; σ2
ε Ini






φ(u`|0, σ2

γ) (6)

where φ(.|µ, σ2) denotes the normal density with mean µ and variance σ2, u(`)

denotes the vector of random effects for the subjects (sires) excluding subject `,
δs is a degenerate distribution with point mass at s and

J` = M

∞∫

−∞





q∏

i=1

φ


yi|Xiβ + zi`u`1ni +

q∑

m6=`

zimum1ni; σεIni






φ(u`|0, σ2

γ)du`

= M(2π)− 1
2 n(σ2

ε)
− 1

2 n(σ2
γ)

− 1
2




q∑

i=1

z2
i`ni

σ2
ε

+ 1

σ2
γ




− 1
2

× exp





− 1

2

1

σ2
ε

×




q∑

i=1


yi − Xiβ −

q∑

m6=`

zimum1ni




′ 
yi − Xiβ −

q∑

m6=`

zimum1ni




−
(

1

σ2
ε

)



q∑

i=1

z2
i`ni

σ2
ε

+ 1

σ2
γ




−1





q∑

i=1

zi`1′
ni


yi − Xiβ −

q∑

m6=`

zimum1ni








2








.

(7)

Each summand in the conditional posterior distribution of u` given in (6) is
therefore separated into two elements. The first element is a mixing probab-
ility, and the second is a distribution to be mixed. The conditional posterior
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distribution of u` can be sampled according to the following rule:

p{u`|β, σ2
ε , σ

2
γ, u(`), y, M}





= uj( j = 1, 2, . . . , ` − 1, ` + 1, . . . , q) with probability

q∏

i=1

φ


yi|Xiβ + zi`uj1ni +

q∑

m6=`

zimum1ni; σ2
ε Ini




J` +
q∑

j6=`

q∏

i=1

φ


yi|Xiβ + zi`uj1ni +

q∑

m6=`

zimum1ni; σ2
ε Ini




∼ h(u`|β, σ2
ε , σ

2
γ, u(`), y) with probability

J`

J` +
q∑

j6=`

q∏

i=1

φ


yi|Xiβ + zi`uj1ni +

q∑

m6=`

zimum1ni; σ2
ε Ini




(8)

where

h(u`|β, σ2
ε , σ

2
γ, u(`), y)

= N








(
q∑

i=1

z2
i`ni

)

σ2
ε

+ 1

σ2
γ




−1

1

σ2
ε





q∑

i=1

zi`1′
ni


yi − Xiβi −

q∑

m6=`

zimum1ni






 ;




(
q∑

i=1

z2
i`ni

)

σ2
ε

+ 1

σ2
γ




−1


· (9)

Note that the function h(u`|β, σ2
γ, σ

2
ε , u(`), y) is the conditional posterior density

of u` if G0 = N(0, σ2
γ) is the prior distribution of u`. For the procedure described

in equation (8),the weights are proportional to

q∏

i=1

φ


yi|Xiβ + zi`uj +

q∑

m6=`

zimum; σ2
ε Ini


 and J`.
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From the above sampling rule (equation (8)) it is clearer that the smaller the
residual of the subject (sire) `, the larger the probability that its new value
will be selected from the conditional posterior density h(u`|β, σ2

γ, σ
2
ε , u(`), y).

On the contrary, if the residual of subject ` is relatively large, larger than the
residual obtained using the random effect of subject j, then uj is more likely to
be chosen as the new random effect for subject `.

The Gibbs sampler for p(β, u, σ2
ε |σ2

γ, y, M) can be summarised as follows:

(0) Select starting values for u(0) and σ2(0)
ε . Set ` = 0.

(1) Sample β(`+1) from p(β|u(`), σ2(`)
ε , y) according to equation (4).

(2) Sample σ2(`+1)
ε from p(σ2

ε |β(`+1), u(`), y) according to equation (5).
(3.1) Sample u(`+1)

1 from p{u1|β(`+1), σ2(`+1)
ε , σ2

γ, u(`)
(1), y, M} according to equa-

tion (8).
...

(3.q) Sample u(`+1)
q from p{uq|β(`+1), σ2(`+1)

ε , σ2
γ, u(`+1)

(q) , y, M} according to
equation (8).

(4) Set ` = ` + 1 and return to step (1).

The newly generated random effects for each subject (sire) will be grouped
into clusters in which the subjects have equal u`’s. That is, after selecting a new
u` for each subject ` in the sample, there will be some number k, 0 < k ≤ q, of
unique values among the u`’s. Denote these unique values by δr, r = 1, . . . , k.
Additionally let r represent the set of subjects with a common random effect δr.
Note that knowing the random effects is equivalent to knowing k, all of the
δ’s and the cluster membership r. Bush and MacEachern [3], Kleinman and
Ibrahim [14] and Ibrahim and Kleinman [13] recommended one additional
piece of the model as an aid to convergence for the Gibbs sampler. To speed
mixing over the entire parameter space, they suggest moving around the δ’s after
determining how the u`’s are grouped. The conditional posterior distribution
of the location of the cluster given the cluster structure is

δ|β, σ2
γ, y ∼ N



δ̂,

(
˜̃Z
′ ˜̃Z + Ik

σ2
ε

σ2
γ

)−1

σ2
ε



 (10)

where

δ = [δ1, δ2 . . . , δk]′, Ik is a k × k identity matrix,

δ̂ =
(

˜̃Z
′ ˜̃Z + Ik

σ2
ε

σ2
γ

)−1

˜̃Z
′
(y − Xβ)

and the matrix ˜̃Z(n × k) is obtained by adding the row values of these columns
of Z that correspond to the same cluster. After generating δ(`+1) these cluster
locations are then assigned to the u(`+1) according to the cluster structure.
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When the algorithm is implemented without this step, we find that the locations
of the clusters may not move from a small set of values for many iterations,
resulting in very slow mixing over the posterior and leading to poor estimates
of posterior quantities.

For the Gibbs procedure described above, it is assumed that σ2
γ and M are

known. Typically the variance σ2
γ in the base measure of the Dirichlet process

is unknown and therefore a suitable prior distribution must be specified for
it. Note that once this has been accomplished the base measure is no longer
marginally normal.

For convenience, suppose p(σ2
γ) ∝ constant to present lack of prior know-

ledge about σ2
γ . The posterior distribution of σ2

γ is then an inverse gamma
density

p(σ2
γ|δ, y) ∝

(
1

σ2
γ

)k/2

exp

{
− 1

2σ2
γ

δ′δ

}
σ2

γ > 0 (11)

The Gibbs sampling scheme is modified by sampling δ from (10) and σ2
γ

from (11).
The precision or total mass parameter M of the mixing Dirichlet process

directly determines the prior distribution for k, the number of additional normal
components in the mixture, and thus is a critical smoothing parameter for the
model. The following theorem can now be stated.

Theorem 2

If the noninformative prior p(M) ∝ M−1 is used, then the posterior of M
can be expressed as a mixture of two gamma posteriors, and the conditional
distribution of the mixing parameter x given M and k is a simple beta. Therefore

p(M|x, k) ∝ Mk−1 exp
{−M

(
log(x)

)} + qMk−2 exp
{−M

(− log(x)
)}

(12)

and
p(x|M, k) ∝ xM(1 − x)q−1 0 < x < 1. (13)

The proof is given in the Appendix.
On completion of the simulation, we will have a series of sampled values

of k, M, x and all the other parameters. Suppose that the Monte Carlo sample
size is N, and denote the sampled values k(`), x(`), etc, for ` = 1, . . . , N. Only
the sampled values k(`) and x(`) are needed in estimating the posterior p(M|y)
via the usual Monte Carlo average of conditional posteriors, viz.

p(M|y) ' N−1
N∑

`=1

p(M|x(`), k(`))

where the summands are simply the conditional gamma mixtures in equa-
tion (12).
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Finally the correlated random effects γ as defined in equation (1) can be
obtained from the simulated u’s by making the transformation γ = B−1u.

Convergence was studied using the Gelman and Rubin [12] method. Mul-
tiple chains of the Gibbs sampler were run from different starting values and
the scale reduction factor which evaluates between and within chain variation
was calculated. Values of this statistic near one for all the model parameters
was confirmation that the distribution of the Gibbs simulation was close to the
true posterior distribution.

2.2. Illustration

Example: Elsenburg Dormer sheep stud

An animal breeding experiment was used to illustrate the nonparametric
Bayesian procedure. The data are from the Dormer sheep stud started at
the Elsenburg College of Agriculture near Stellenbosch, Western Cape, South
Africa in 1940. The main object in developing the Dormer was the establish-
ment of a mutton sheep breed which would be well adapted to the conditions
prevailing in the Western Cape (winter rainfall) and which could produce the
desired type of ram for crossbreeding purposes, Swart [21]. Single sire mating
was practised with 25 to 30 ewes allocated to each ram. A spring breeding
season (6 weeks duration) was used throughout the study. The season therefore
had to be included as a fixed effect as a birth year-season concatenation.
During lambing, the ewes were inspected daily and dam and sire numbers,
date of birth, birth weight, age of dam, birth status (type of birth) and size of
lamb were recorded. When the first lamb reached an age of 107 days, all the
lambs 93 days of age and older were weaned and live weight was recorded.
The same procedure was repeated every two weeks until all the lambs were
weaned. All weaning weights were adjusted to a 100 day equivalent before
analysis by using the following formula

(
Weaning weight − Birth weight

Age at weaning

)
100 + Birth weight.

As mentioned, a total of 3 325 weaning records from the progeny of 101 sires
were used. In other words only a sample from the Elsenburg Dormer stud
was used for calculation and illustration purposes. The model in this case is a
sire model and the breeding values of the related sires are the random effects.
Whenever appropriate, comparisons will be drawn in Section 3 between the
Bayes estimates (using Gibbs sampling) obtained from a Matlab® programme,
as well as the restricted maximum likelihood (REML) estimates. The clas-
sical (REML) estimates were obtained by using the MTDFREML programme
developed by Boldman et al. [2].
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For our example β(p × 1) = (β0, β
′
1, . . . , β

′
4)

′

where β′
1=β1 : sex of lamb effect;

β′
2=(β2,β3) : birth status effects;

β′
3=(β4, . . . ,β8) : age of dam effects;

and β′
4=(β9, . . . ,β27) : year (season of birth) effects.

The sex of the lamb was male and female, birth status was individual, twins
and triplets, age of dams were from 2 to 7 years and older and the years (season
of birth) from 1980–1999.

The Gibbs sampler constructed to draw from the appropriate conditional pos-
terior distributions is described in Section 2.1. Five different Gibbs sequences
of length 404 000 were generated. The burn in period for each chain was
4000 and then every 250th draw was saved, thus giving a sample of 8000
uncorrelated draws. By examination of the scale reduction factor it was clear
that convergence has been obtained. Draws 500 apart were also considered but
no differences in the corresponding posterior distributions, parameter estimates
or random effects could be detected.

3. RESULTS

3.1. Variance components

The estimates of the variance components obtained from REML, traditional
and nonparametric Bayesian procedures are reported in Table I. Also given

in Table I is h2 = 4σ2
γ

σ2
γ + σ2

ε

, the heritability coefficient. In Table II the 95%

credibility intervals are given and in Figures 1 and 2 the marginal posterior
densities of σ2

γ and h2 are illustrated.
From Tables I and II, it is clear that the point estimates and 95% credibility

intervals of σ2
ε using REML or Bayesian methods are for all practical purposes

the same. This comes as no surprise since the posterior density of the error
variance is not directly influenced by the Dirichlet process prior.

Table I. REML and Bayesian estimates (posterior values) for the variance components
and h2.

REML Traditional Bayes Nonparametric Bayes –
Dirichlet process prior

Parameter Mean Mode Mean Mode

σ2
ε 18.81 18.83 18.80 18.73 18.71

σ2
γ 0.54 0.63 0.54 0.85 0.70

h2 0.11 0.13 0.12 0.17 0.15
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Figure 1. Estimated marginal posterior densities of σ2
γ (sire variance) for the traditional

Bayes (solid) and non parametric method (- -).
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Figure 2. Estimated marginal posterior densities of h2 (heritability) for the traditional
Bayes (solid) and non parametric method (- -).
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Table II. 95% credibility intervals for the variance components and h2.

Parameter Traditional Bayes Nonparametric Bayes –
Dirichlet process prior

σ2
ε 17.87 ; 19.70 17.77 ; 19.71

σ2
γ 0.26 ; 1.16 0.29 ; 1.69

h2 0.06 ; 0.22 0.07 ; 0.33

The situation for the sire variance was however, somewhat different. The
posterior distributions of σ2

γ are displayed in Figure 1. The differences in the
densities are evident from the figure. These differences were expected, since
the sire variance component is directly affected by the relaxation of the normal
assumption.

The posterior densities of h2 are given in Figure 2. The differences in the
spread of these densities are similar to those of Figure 1, i.e. the posterior
density in the case of the nonparametric Bayes method is more spread out than
the corresponding density for the traditional Bayes procedure.

3.2. Fixed effects

The emphasis in breeding experiments is on the variance components and on
the prediction of particular random effects, but estimation of the fixed effects is
also important. Once estimates of the variance components have been obtained,
they can be used to derive estimates of the fixed effects. These estimates are
given in the REML/BLUE column of Table III where the estimates of the
first ten fixed effects are given. The “Traditional Bayes” and “Nonparametric
Bayes” estimates as well as the 95% credibility intervals were calculated using
the Gibbs sampler. As expected the estimates of the fixed effects for the
different methods are for all practical purposes the same. The Dirichlet process
prior did not directly influence the posterior distributions of the fixed effects to
the same extent as that for the random effects.

The fixed effect β1 for example measures the expected difference in average
weaning weight between male and female lambs, β2 the expected difference
between “single births” and “triplets” and β3 between “twins” and triplets.
β6, however, measures the expected difference in average weaning weight of
lambs for dams 4 and 7 years of age and β9 measures the expected difference
in average weaning weight between the lambs born in 1980 and 1999.

3.3. Random effects

Rather than reporting the results for all 101 sires, we will focus our discussion
on the worst five and best five sires. The rankings of these ten sires were the
same for the REML and traditional Bayes procedures but differed somewhat
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Table III. REML and Bayesian estimates (modes of the posterior densities) as well
as the 95% credibility intervals.

REML/ Traditional Bayes Nonparametric Bayes –
BLUE Dirichlet process prior

Parameter Mode 95% Credibility Mode 95% Credibility
interval interval

β0 18.83 18.80 17.30 ; 20.21 18.83 17.28 ; 20.26
β1 2.09 2.08 1.78 ; 2.39 2.09 1.74 ; 2.42

β2 7.29 7.29 6.61 ; 7.99 7.21 6.59 ; 8.01
β3 2.08 2.09 1.40 ; 2.72 1.99 1.39 ; 2.76

β4 0.01 0.02 −0.69 ; 0.68 0.03 −0.68 ; 0.71
β5 1.73 1.72 1.08 ; 2.44 1.72 1.01 ; 2.45

β6 2.29 2.29 1.62 ; 2.94 2.28 1.60 ; 2.95
β7 2.06 2.05 1.38 ; 2.74 2.03 1.29 ; 2.79

β8 0.94 0.90 0.21 ; 1.67 0.91 0.20 ; 1.69
β9 7.16 7.18 5.85 ; 8.65 7.23 5.81 ; 8.70

from the rankings of the nonparametric Bayesian method. For example sire
No. 63 had the fifth best ranking according to the traditional Bayes method
but was only ranked eighth using the Dirichlet process prior method. On
the contrary, sire No. 59 was ranked the fifth best using the nonparametric
procedure but was only the seventh best according to REML and traditional
Bayes. The breeding values and 95% credibility intervals are listed in Table IV
while the estimated posterior densities of the breeding values for sires No. 35
(“best sire”) and 36 (“worst sire”) are illustrated in Figures 3 and 4.

Unlike the densities of the fixed effects, the Dirichlet process prior had a
large effect on the posterior densities of the different breeding values. Also
from the posterior distributions of the selected breeding values, different facts
were revealed. Not only were the credibility intervals wider in the case of the
nonparametric Bayesian procedure, but the central values (modes and means)
were different as well. A key difference between REML/BLUP prediction and
Bayesian inference is the treatment of the variance components. To obtain the
BLUP estimates, the variance components are fixed at a single value, ignoring
uncertainty associated with estimating their values. The Bayesian analysis
incorporates this uncertainty by averaging over the plausible values of the
variance components.

3.4. Precision parameter

Let us now turn to the important parameter of the Dirichlet process, M.
Recall that the parameter M, a type of dispersion parameter for the Dirichlet
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Figure 3. Estimated marginal posterior densities of γ35 – breeding values of “best sire”
for the traditional Bayes (solid) and non parametric method (- -).
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Figure 4. Estimated marginal posterior densities of γ36 – breeding value of “worst
sire” for the traditional Bayes (solid) and non parametric method (- -).
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Table IV. Breeding values (modes of the posterior densities) for the worst and best
five sires between 1980 and 1999.

REML/ REML/ Traditional Bayes Nonparametric Bayes Non-
Trad BLUP Dirichlet process prior parametric
Bayes Bayes

Sire Mode Mode 95% credibility Mode 95% credibility Sire
No. interval interval No.

36 −1.22 −1.26 −2.66 ; −0.12 −2.06 −3.70 ; −0.48 36

34 −1.04 −1.07 −2.32 ; −0.03 −1.69 −3.33 ; −0.01 34

23 −0.99 −1.01 −2.08 ; −0.08 −1.51 −2.84 ; −0.21 23

89 −0.92 −0.98 −2.25 ; 0.12 −1.35 −3.09 ; 0.41 9

9 −0.86 −0.96 −2.40 ; 0.22 −1.33 −3.00 ; 0.25 89

63 0.78 0.82 −0.24 ; 2.01 1.28 0.03 ; 2.66 59

24 0.81 0.84 −0.23 ; 1.88 1.32 −0.34 ; 3.06 92

92 0.81 0.87 −0.33 ; 2.17 1.33 −0.34 ; 3.06 43

43 1.14 1.17 0.19 ; 2.24 1.83 0.11 ; 3.93 55

35 1.50 1.56 0.40 ; 2.81 2.10 0.55 ; 3.64 35

process prior, is a measure of the strength in the belief that G is G0. Although it
may be hard to quantify, M is a positive scalar that is related to how “clumpy”
the data are (often called a precision parameter). Clumpy data occur when
the different subjects (sires) are concentrated into a few clusters. Ibrahim
and Kleinman [13] chose a range of values for the parameter M to reflect
small, moderate and large departures from normality for the distribution of
the random effects. In practice it is, however, difficult to select appropriate
values for this parameter. In this example, we extended the results of Ibrahim
and Kleinman [13] by placing a vague prior on M and simulating its posterior
distribution. Recall also that M determines the prior distribution of k, the
number of additional normal components in the mixture and is a critical
smoothing parameter for the mixed linear model.

In Figure 5, the posterior distribution of k, the number of “sire clusters”
for the Nonparametric Bayesian method is illustrated. The mean value is
k̄ = 70 and the mode of the posterior distribution of M is M0 = 110.5. As
mentioned, large values of M favour the base measure G0 as our prior, i.e. the
traditional Bayes procedure. For this example M0 is relatively small which is
an indication that the nonparametric Bayes procedure will give better estimates
and predictions than the traditional method. The posterior distribution of M is
given in Figure 6.
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Figure 5. Observed histogram for k, number of groups. k̄ = 70.
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4. DISCUSSION

There is a general feeling among many statisticians that it is desirable in many
contexts to make fewer assumptions about the underlying populations from
which the data are obtained than is required for a parametric analysis. It is of
practical interest, therefore, to study models that are less sensitive than Gaussian
ones to departures from assumptions. For example, in dairy cattle breeding, it is
known that more valuable cows receive preferential treatment (better housing,
hormonal treatment, better feeding, etc.) and to such an extent that the treatment
cannot be accommodated in the model, this leads to bias in the prediction of
breeding values. Not much work so far has been undertaken on how to cope
with a preferential treatment in practice. Strandén and Gianola [19,20] applied
a Bayesian approach to fit mixed linear models with t-distributed random and
residual terms both in the univariate and multivariate forms. The problem
with the t-distribution, however, is that it does not cover departures from
symmetry. It might also be that no single parametric model could fully capture
the variability inherent in the response variable, suggesting that we average over
a collection of densities (see Carlin and Louis [4]). Unfortunately inference
using mixture distributions is sometimes difficult since the parameters of the
models are often not fully identified by the data. An appealing alternative
to discrete finite mixtures would be continuous mixtures but this creates the
problem of choosing an appropriate mixing distribution.

In this note and for our example, the mixing distribution was specified
nonparametrically by using the Dirichlet process prior, in fact we allowed the
data to suggest the appropriate mixing distribution. The Dirichlet process prior
for the random effects is a more flexible prior than the t-distribution because
it can accommodate an arbitrarily large range of model anomalies (multiple
modes, heavy tails, skew distributions and so on).

In our opinion the best solution (for the preferential treatment of the animals
problem) will be to combine the t-distribution and the Dirichlet process prior,
i.e. the student t-distribution for the errors and the Dirichlet process prior for
the random effects. This will result in a model that is also robust to outlying
observations. At the moment, it is not yet possible to apply these robust methods
to large data sets in animal breeding. Hence, if it is established that such a
nonparametric model improves the estimation of variance components and
fixed effects and the prediction of random effects, simpler and faster computer
programmes should be developed.

We must, however, state that the discussion of the “preferential treatment of
animal problems” has no linkage to our particular data set problem. The data
from the Elsenburg Dormer sheep stud was mainly included for illustration and
comparison purposes: i.e. to illustrate the application of the Dirichlet process
prior for correlated random effects (which as far as we know has never been
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done before) and to compare the corresponding results of the REML, traditional
Bayes and nonparametric Bayesian procedures. We are, however, quite sure
that the Dirichlet process prior will in the future play an important role in cases
where undeclared preferential treatment of animals occurs.

5. CONCLUSION

In this note we have applied a Bayesian nonparametrics method to the mixed
linear model. A Gibbs sampling procedure to calculate posterior distributions
for the genetic parameters of this model has been presented. The important
contribution of this paper revolves around the nonparametric prior distribution,
the Dirichlet process prior, for the random effects and to correctly model and
interpret the estimated effects and variance components.

It is clear from the example that the error variance and fixed effects are
not directly influenced by the Dirichlet process prior. The situation for the
sire variance and breeding values is, however, quite different. The posterior
densities for the nonparametric Bayes method are more spread out. These
differences are to be expected, since the sire variance component and random
effects are directly affected by the relaxation of the normal assumption.

It is also well known that the value of the precision parameter M largely
influences the posterior distribution of the random effects, the sire variance and
the heritability coefficient. The value of M will further determine whether the
estimates from the Dirichlet process behave like the standard Bayes estimate
or like a nonparametric likelihood estimator. Further research and simulation
experiments should be done to determine if the Dirichlet process prior can be
used for solving the “undeclared preferential treatment of animals” problem.
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APPENDIX

A.1 Proof of Theorem 1

From equation (3) it follows (see also Ferguson [9], p. 217), that the prior of
the random effect uq given u1, . . . , uq−1 is

p(uq|u1, . . . , uq−1) = 1

M + q − 1

q−1∑

j=1

δuj + M

M + q − 1
G0.

By exchangeability it follows that

p(u`|u(`)) = 1

M + q − 1

q∑

j6=`

δuj + M

M + q − 1
G0.

The conditional likelihood of u`, is given by

L(u`|β, σ2
ε , σ

2
γ, u(`), y, M) =

q∏

i=1


yi|Xiβ + zi`u`1ni +

q∑

m6=`

zimum1ni; σ2
ε Ini


 .

Now the Bayes’theorem gives

p(u`|β, σ2
ε , σ

2
γ, u(`), y, M) = p(u`|u(`))L(u`|β, σ2

ε , σ
2
γ, u(`), y, M)

∞∫

−∞
p(u`|u(`))L(u`|β, σ2

ε , σ
2
γ, u(`), y, M)du`

·

(A.1)
Equation (A.1) is proportional to (6) and proves the theorem.

Furthermore,

∞∫

−∞
p(u`|u(`))L(u`|β, σ2

ε , σ
2
γ, u(`), y, M)du

= 1

M + q − 1


∑

j6=`





q∏

i=1


yi|Xiβ + zi`uj1ni +

q∑

m6=`

zimum1ni; σ2
ε Ini






 + J`




where J` is defined in equation (7).
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A.2 Proof of Theorem 2

In Antoniak [1] it is shown that the prior distribution of k may be written as

p(k|M, q) = cq(k)q!Mk Γ (M)

Γ (M + q)
(k = 1, 2, . . . , q). (A.2)

West [23] mentioned that if required, the factors cq(k) can be easily computed
using recurrence formulae for Stirling numbers. He also showed that the
conditional posterior distribution of M,

p(M|k, β, u, σ2
ε , σ

2
γ, y) = p(M|k) ∝ p(M)p(k|M) (A.3)

where p(M) is the prior for M and p(k|M) is defined in (A.2). West [23]
assumed M ∼ G(a, b), a Gamma prior with shape a > 0 and scale b > 0
(which we may extend to include a reference prior (Uniform for log(M)) by
letting a → 0 and b → 0). In this note we will use the latter which means that

p(M) ∝ M−1 M > 0.

For M > 0, the gamma functions in (A.2) can be written as

Γ (M)

Γ (m + q)
= (M + q)B(M + 1, q)

MΓ (q)

where B(·, ·) is the beta function. Then in (A.3) and for any k = 1, 2, . . . q, the
posterior

p(M|k) ∝ p(M)Mk−1(M + q)B(M + 1, q)

∝ Mk−2(M + q)

1∫

0

xM(1 − x)q−1dx, (A.4)

using the definition of the beta function. From (A.3), it also follows that the
joint posterior density of M and x is

p(M, x|k) ∝ Mk−2(M + q)xM(1 − x)q−1 (0 < M, 0 < x < 1).

The conditional posteriors p(M|x, k) and p(x|M, k) can be determined as fol-
lows. Firstly

p(M|x, k) ∝ Mk−2(M + q)e−M(− log(x)).

For M > 0, the latter reduces easily to a mixture of two gamma densities, viz.

M|x, k ∼ πxG
(
k,− log(x)

) + (1 − πx)G
(
k − 1,− log(x)

)
(A.5)

with weights πx defined by
πx

1 − πx
= k − 1

q(− log(x))
·

Secondly
p(x|M, k) ∝ xM(1 − x)q−1 0 < x < 1 (A.6)

so that x|M, k ∼ B(M+1, q), a beta distribution with mean (M+1)/(M+q+1).
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