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Abstract – A fully Bayesian analysis using Gibbs sampling and data augmentation in a mul-
tivariate model of Gaussian, right censored, and grouped Gaussian traits is described. The
grouped Gaussian traits are either ordered categorical traits (with more than two categories) or
binary traits, where the grouping is determined via thresholds on the underlying Gaussian scale,
the liability scale. Allowances are made for unequal models, unknown covariance matrices and
missing data. Having outlined the theory, strategies for implementation are reviewed. These
include joint sampling of location parameters; efficient sampling from the fully conditional
posterior distribution of augmented data, a multivariate truncated normal distribution; and
sampling from the conditional inverse Wishart distribution, the fully conditional posterior
distribution of the residual covariance matrix. Finally, a simulated dataset was analysed to
illustrate the methodology. This paper concentrates on a model where residuals associated with
liabilities of the binary traits are assumed to be independent. A Bayesian analysis using Gibbs
sampling is outlined for the model where this assumption is relaxed.

categorical / Gaussian / multivariate Bayesian analysis / right censored Gaussian

1. INTRODUCTION

In a series of problems, it has been demonstrated that using the Gibbs sampler
in conjunction with data augmentation makes it possible to obtain sampling-
based estimates of analytically intractable features of posterior distributions.
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Gibbs sampling [9,10] is a Markov chain simulation method for generating
samples from a multivariate distribution, and has its roots in the Metropolis-
Hastings algorithm [11,19]. The basic idea behind the Gibbs sampler, and other
sampling based approaches, is to construct a Markov chain with the desired
density as its invariant distribution [2]. The Gibbs sampler is implemented
by sampling repeatedly from the fully conditional posterior distributions of
parameters in the model. If the set of fully conditional posterior distri-
butions do not have standard forms, it may be advantageous to use data
augmentation [26], which as pointed out by Chib and Greenberg [3], is a
strategy of enlarging the parameter space to include missing data and/or latent
variables.

Bayesian inference in a Gaussian model using Gibbs sampling has been
considered by e.g. [8] and with attention to applications in animal breeding,
by [14,23,28,30,31]. Bayesian inference using Gibbs sampling in an ordered
categorical threshold model was considered by [1,24,34]. In censored Gaussian
and ordered categorical threshold models, Gibbs sampling in conjunction with
data augmentation [25,26] leads to fully conditional posterior distributions
which are easy to sample from. This was demonstrated in Wei and Tanner [33]
for the tobit model [27], and in right censored and interval censored regression
models. A Gibbs sampler for Bayesian inference in a bivariate model with
a binary threshold character and a Gaussian trait is given in [12]. This was
extended to an ordered categorical threshold character by [32], and to several
Gaussian, binary and ordered categorical threshold characters by [29]. In [29],
the method for obtaining samples from the fully conditional posterior of the
residual (co)variance matrix (associated with the normally distributed scale of
the model) is described as being “ad hoc in nature”.

The purpose of this paper was to present a fully Bayesian analysis of an
arbitrary number of Gaussian, right censored Gaussian, ordered categorical
(more than two categories) and binary traits. For example in dairy cattle,
a four-variate analysis of a Gaussian, a right censored Gaussian, an ordered
categorical and a binary trait might be relevant. The Gaussian trait could be milk
yield. The right censored Gaussian trait could be log lifetime (if log lifetime is
normally distributed). For cattle still alive, it is only known, that (log) lifetime
will be higher than their current (log) age, i.e. these cattle have right censored
records of (log) lifetime. The categorical trait could be calving ease score and
the binary trait could be the outcome of a random variable indicating stillbirth
or not. In general, allowances are made for unequal models and missing
data. Throughout, we consider two models. In the first model, residuals
associated with liabilities of the binary traits are assumed to be independent.
This assumption may be relevant in applications where the different binary traits
are measured on different groups of (related) animals. An example is infection
trials, where some animals are infected with one pathogen and the remaining
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animals with another pathogen. The two binary traits could be dead/alive three
weeks after infection. (See e.g. [13] for a similar assumption in a bivariate
analysis of two quantitative traits). In other applications and for a number of
binary traits greater than one, however, the assumption of independence may
be too restrictive. Therefore we also outline a Bayesian analysis using Gibbs
sampling in the more general model where residuals associated with liabilities
of the binary traits are correlated. (The two models are only different if the
number of binary traits is greater than one).

The outline of the paper is the following: in Section 2, a fully Bayesian
analysis of an arbitrary number of Gaussian, right censored Gaussian, ordered
categorical and binary traits is presented for the particular case where all
animals have observed values for all traits, i.e. no missing values. In Section 3,
we extend the fully Bayesian analysis to allow for missing observations of the
different traits. Strategies for implementation of the Gibbs sampler are given
and/or reviewed in Section 4. These include univariate and joint sampling
of location parameters, efficient sampling from a multivariate truncated nor-
mal distribution – necessary for sampling the augmented data, and sampling
from an inverted Wishart distribution and from a conditional inverted Wishart
distribution. Note that the conditional inverted Wishart distribution of the
residual covariance matrix in the model assuming that residuals associated with
liabilities of the binary traits are independent, is different from the conditional
inverted Wishart distribution in the model where this assumption has been
relaxed (if the number of binary traits is greater than one). The methods
presented for obtaining samples from the fully conditional posterior of the
residual covariance matrix are different from the method presented in [29]. To
illustrate the developed methodology, simulated data are analysed in Section 5
which also outlines a way of choosing suitable starting values for the Gibbs
sampler. The paper ends with a conclusion in Section 6.

2. THE MODEL WITHOUT MISSING DATA

2.1. The sampling model

Assume that m1 Gaussian traits, m2 right censored Gaussian traits,
m3 categorical traits with response in multiple ordered categories and m4 binary
traits are observed on each animal; mi ≥ 0, i = 1, . . . , 4. The total number of
traits is m = m1 + m2 + m3 + m4. In general, the data on animal i are (yi, δi),
i = 1, . . . , n, where yi = (

yi1, . . . , yim1, yim1+1, . . . , yim1+m2, yim1+m2+1, . . .

. . . , yim1+m2+m3, yim−m4+1, . . . , yim

)
, and where δi is a m2 dimensional vec-

tor of censoring indicators of the right censored Gaussian traits. The
number of animals with records is n and the data on all animals with
records are (y, δ). The observed vector of Gaussian traits of the animal i



162 I.R. Korsgaard et al.

is
(
yi1, . . . , yim1

)
. For j ∈ {m1 + 1, . . . , m1 + m2}, yij is the observed value

of Yij = min
{
Uij, Cij

}
, where Uij is normally distributed and Cij is the

point of censoring of the jth trait of animal i. The censoring indicator δij

is one iff Uij is observed
(
Uij ≤ Cij

)
and zero otherwise. ∆oj and ∆1j will

denote the sets of animals with δij equal to zero and one, respectively,
j = m1+1, . . . , m1+m2. The observed vector of categorical traits with response
in three or more categories is

(
yim1+m2+1, . . . , yim1+m2+m3

)
. The outcome yij,

j ∈ {m1 + m2 + 1, . . . , m1 + m2 + m3}, is assumed to be determined by a
grouping in an underlying Gaussian scale, the liability scale. The underlying
Gaussian variable is Uij, and the grouping is determined by threshold values.
That is, Yij = k iff τjk−1 < Uij ≤ τjk; k = 1, . . . , Kj, where Kj

(
Kj ≥ 3

)
is the

number of categories for trait j and −∞ = τj0 ≤ τj1 ≤ · · · ≤ τjKj−1 ≤ τjKj = ∞.
The observed vector of binary traits is

(
yim1+m2+m3+1, . . . , yim

)
. As for the

ordered categorical traits, the observed value is assumed to be determined by a
grouping in an underlying Gaussian scale. It is assumed that Yij = 0 iff Uij ≤ 0
and Yij = 1 iff Uij > 0.

Let Uij = Yij for j = 1, . . . , m1, that is for the Gaussian traits, and let
Ui = (Ui1, . . . , Uim)′ be the vector of Gaussian traits observed or associated
with the right censored Gaussian traits, ordered categorical traits and binary
traits of animal i. Define U = (Ui)i=1,...,n as the nm-dimensional column vector
containing the U′

is. It is assumed that:

U| (a, b, R = r, R22 = Im4

) ∼ Nnm

(
Xb + Za, In ⊗

(
r11 r12

r21 Im4

))
(1)

where b is a p-dimensional vector of “fixed” effects. The vector ai =
(ai1, . . . , aim)′ represents the additive genetic values of Ui, i = 1, . . . , N;
a = (ai)i=1,...,N , is the Nm dimensional column vector containing the a′

is. N is
the total number of animals in the pedigree; i.e. the dimension of the additive

genetic relationship matrix, A, is N×N, and

(
r11 r12

r21 Im4

)
is the residual covariance

matrix of Ui in the conditional distribution given
(
a, b, R = r, R22 = Im4

)
. The

usual condition that Rkk = 1 (e.g. [5]) has been imposed in the conditional probit
model of Yik given b and a, k = m − m4 + 1, . . . , m. Furthermore it is assumed
that liabilities of the binary traits are conditionally independent, given b and a.
Note that we (in this section) carefully distinguish between the random (matrix)
variable, R, and an outcome, r, of the random (matrix) variable, R (contrary to
the way in which e.g. b and a are treated).

With two or more binary traits included in the analysis, however, the assump-
tion of independence between residuals associated with liabilities of the binary
traits may be too restrictive. Therefore we also considered the model where it
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is assumed that:

U| (a, b, R = r, (Rkk = 1)k=m−m4+1,...,m

) ∼ Nnm

(
Xb + Za, In ⊗

(
r11 r12

r21 r̃22

))

(2)
with

(
r̃22

)
kl

= (r22)kl for k, l = m − m4 + 1, . . . , m with k 6= l, and
(
r̃22

)
kk

= 1
for k, l = m − m4 + 1, . . . , m.

In the following, first, the model associated with (1) is treated; second, the
necessary modifications related to the model in (2) are outlined.

2.2. Prior distribution

Let the elements of b be ordered so that the first p1 elements are regression
effects and the remaining p2 = p−p1 elements are “fixed”classification effects.

It is assumed, a priori, that b| (σ2
1, σ

2
2

) ∼ Np

(
0,

(
Ip1σ

2
1 0

0 Ip2σ
2
2

))
, where σ2

1

and σ2
2 are known (alternatively, it can be assumed, that some elements of b

follow a normal distribution and the remaining elements follow an improper
uniform distribution). The a priori distribution of the additive genetic values
is a|G ∼NNm (0, A ⊗ G), where G is the m × m additive genetic covariance
matrix of Ui, i = 1, . . . , N. A priori, G is assumed to follow an m-dimensional
inverted Wishart distribution: G ∼ IWm (ΣG, fG). Assuming, for the model
associated with (1), that R follows an inverted Wishart distribution: R ∼
IWm (ΣR, fR), then the prior distribution of R, in the conditional distribution
given R22 = Im4 , is the conditional inverted Wishart distributed. All of ΣG,
fG, ΣR and fR are assumed known. A priori, it is assumed that the elements
of τj = (

τj2, . . . , τjKj−2
)

are distributed as order statistics from a uniform
distribution in the interval

[
τj1; τjKj−1

] = [0; 1], i.e.: p
(
τj2, . . . , τjKj−2

) =(
Kj − 3

)!1 (
τj ∈ =j

)
, where

=j = {(
s2, . . . , sKj−2

) |0 ≤ s2 ≤ · · · ≤ sKj−2 ≤ 1
}

([20]).
Concerning prior independence, the following assumption was made:

(a) A priori b, (a, G), R and τj, j = m1 + m2 + 1, . . . , m1 + m2 + m3 are
mutually independent, and furthermore, the elements of b are mutually
independent.

In the model associated with (2), the prior assumptions were similar except
that, a priori, R conditional on (Rkk = 1)k=m−m4+1,...,m is assumed to follow a
conditional inverse Wishart distribution (which for m4 > 1 is different from
the prior given in the model associated with (1)).
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2.3. Joint posterior distribution

For each animal, the augmented variables are U ′
ijs of right censored(

δij = 0
)

Gaussian traits and liabilities of ordered categorical and bin-
ary traits. The following notation will be used: URC

0 = {
Uij : i ∈ ∆0j ;

j = m1 + 1, . . . , m1 + m2}, this is the set of U′
ijs of the censored observations

from the right censored Gaussian traits. UCAT and UBIN will denote the sets of
liabilities of ordered categorical and binary traits, respectively. The following
will be assumed concerning the censoring mechanism:

(b) Random censoring conditional on

ω = (
b, a, G, R, τm1+m2+1, . . . , τm1+m2+m3

)
,

i.e., C = (Ci)i=1,...,n, where Ci = (
Cim1+1, . . . , Cim1+m2

)
is the m2 dimen-

sional random vector of censoring times of animal i, is stochastically
independent of U, given ω.

(c) Conditional on ω, censoring is noninformative on ω.

Having augmented with URC
0 , UCAT and UBIN , it then follows that the joint

posterior distribution of parameters and augmented data

ψ = (
ω, URC

0 , UCAT , UBIN
)

is given by

p (ψ |y, δ, R22 = Im4

)

∝ p
(
y, δ|ψ, R22 = Im4

)
p
(
ψ|R22 = Im4

)

= p
(
y, δ, URC

0 , UCAT , UBIN |ω, R22 = Im4

)

p
(
URC

0 , UCAT , UBIN |ω, R22 = Im4

)

× (
p
(
URC

0 , UCAT , UBIN |ω, R22 = Im4

)
p
(
ω|R22 = Im4

))

= p
(
y, δ, URC

0 , UCAT , UBIN |ω, R22 = Im4

)

× p
(
ω|R22 = Im4

)
.

By assumption (a), it follows that the prior distribution of ω, conditional on
R22 = Im4 , is given by

p
(
ω|R22 = Im4

) = p (b) p (a|G) p (G) p
(
R|R22 = Im4

)



m1+m2+m3∏

j=m1+m2+1

p
(
τj

)

 .

Let xi (m × p) and zi (m × Nm) be the submatrices of X and Z associated with
animal i. Then, by assumptions (b) and (c), it follows that

p
(
y, δ, URC

0 , UCAT , UBIN |ω, R22 = Im4

)
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is given, up to proportionality, by:

n∏

i=1




m1+m2∏

j=m1+1

[
1
(
uij > yij

)]1−δij




×
n∏

i=1




m1+m2+m3∏

j=m1+m2+1





Kj∑

k=1

[
1
(
τjk−1 < uij ≤ τjk

)
1
(
yij = k

)]







×
n∏

i=1




m∏

j=m1+m2+m3+1

[
1
(
uij ≤ 0

)
1
(
yij = 0

) + 1
(
0 < uij

)
1
(
yij = 1

)]



×
n∏

i=1

[
(2π)−m/2 |R|−1/2 exp

{
−1

2
(ui − xib − zia)′ R−1 (ui − xib − zia)

}]
.

(Here the convention is adopted that, e.g.,

[
1
(
uij > yij

)]0 = 1 and
[
1
(
uij > yij

)]1 = [
1
(
uij > yij

)]
).

In the model associated with (2) the joint posterior is derived similarly, with
obvious modifications.

2.4. Marginal posterior distributions, Gibbs sampling
and fully conditional posterior distributions

From the joint posterior distribution of ψ, the marginal posterior distribution
of ϕ, a single parameter or a subset of parameters of ψ, can be obtained
integrating out all the other parameters, ψ\ϕ, including the augmented data.
The notation ψ\ϕ denotes ψ excluding ϕ. Here, we wish to obtain samples from
the joint posterior distribution of ω = (

b, a, G, R, τm1+m2+1, . . . , τm1+m2+m3

)

conditional on R22 = Im4 . One possible implementation of the Gibbs sampler
is as follows: Given an arbitrary starting value ψ(0), then (b, a)(1) is generated
from the fully conditional posterior distribution of (b, a) given data, (y, δ),
ψ\(b,a) and R22 = Im4 . Superscript (1) (and later (t)) refer to the sampling round

of the implemented Gibbs sampler. Next,
(
uRC

0 , uCAT , uBIN
)(1)

is generated
from the fully conditional posterior distribution of

(
URC

0 , UCAT , UBIN
)

given
data, ψ\(URC

0 ,UCAT ,UBIN) and R22 = Im4 , and so on up to τ
(1)
m1+m2+m3,Km1+m2+m3−2,

which is generated from the fully conditional posterior distribution of
τm1+m2+m3,Km1+m2+m3−2 given data, (y, δ), ψ\

(
τKm1+m2+m3 −2

) and R22 = Im4 . This

completes one cycle of the Gibbs sampler. After t cycles (t large) Geman and
Geman [10] showed that ψ(t), under mild conditions, can be viewed as a sample
from the joint posterior distribution of ψ conditional on R22 = Im4 .
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The fully conditional posterior distributions that define one possible imple-
mentation of the Gibbs sampler are: Let θ = (

b′, a′)′
, W = (X, Z), and

D−1 =
(

Ip1

(
σ2

1

)−1
0

0 Ip2

(
σ2

2

)−1

)
; then

θ| ((y, δ) ,ψ\θ, R22 = Im4

) ∼ Np+Nm (µθ,Λθ) ,

where

µθ = ΛθW′ (In ⊗ R)−1 u (3)

and

Λ−1
θ =

(
X′ (In ⊗ R)−1 X + D−1 X′ (In ⊗ R)−1 Z

Z′ (In ⊗ R)−1 X Z′ (In ⊗ R)−1 Z + A−1 ⊗ G−1

)
(4)

= W′ (In ⊗ R)−1 W +
(

D−1 0
0 A−1 ⊗ G−1

)
.

Define aM as the N × m matrix, where the jth row is a′
j, j = 1, . . . , N. Then,

G| ((y, δ) ,ψ\G
) ∼ IWm

([
Σ−1

G + a′
MA−1aM

]−1
, fG + N

)
,

and the fully conditional posterior distribution of R conditional on data, ψ\R

and R22 = Im4 is obtained from

R| ((y, δ) ,ψ\R
)

∼ IWm




[
Σ−1

R +
n∑

i=1

(ui − xib − zia) (ui − xib − zia)′
]−1

, fR + n


 (5)

by conditioning on R22 = Im4 .

The following notation will be used for augmented data of the animal i:
Uaug

i is the vector of those U′
ijs where j is the index of a censored observation(

δij = 0
)

from a right censored Gaussian trait, an ordered categorical or a
binary trait. Therefore, Uaug

i may differ in dimension for different animals,
depending on whether the observations for the right censored Gaussian traits
are censored values. The dimension of Uaug

i is naug
i . The fully conditional

posterior distribution of Uaug
i given data, ψ\Uaug

i
and R22 = Im4 follows a
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truncated naug
i -dimensional multivariate normal distribution on the interval

m1+m2∏

j=m1+1

[
1
(
uij > yij

)]1−δij (6)

×
m1+m2+m3∏

j=m1+m2+1





Kj∑

k=1

[
1
(
τjk−1 < uij ≤ τjk

)
1
(
yij = k

)]




×
m∏

j=m1+m2+m3+1

[
1
(
uij ≤ 0

)
1
(
yij = 0

) + 1
(
0 < uij

)
1
(
yij = 1

)]
.

The mean and variance of the corresponding normal distribution before trun-
cation are given by

(
xi(aug)b + zi(aug)a

) + Ri(aug)(obs)R−1
i(obs)

(
ui(obs) − (

xi(obs)b + zi(obs)a
))

(7)

and

Ri(aug) − Ri(aug)(obs)R−1
i(obs)Ri(obs)(aug), (8)

respectively. xi(obs) and xi(aug) are the nobs
i × p and naug

i × p dimensional
submatrices of xi containing the rows associated with observed and uncensored
continuous traits, and those associated with the augmented data of animal i,
respectively. Similar definitions are given for zi(obs) and zi(aug). The dimension
of observed and uncensored Gaussian traits, uobs

i , is nobs
i = m − naug

i . Ri(aug)

is naug
i × naug

i and is the part of R associated with augmented data of animal i.
Similar definitions are given for Ri(aug)(obs), Ri(obs) and Ri(obs)(aug).

The fully conditional posterior distribution of τjk for k = 2, . . . , Kj − 2 is
uniform on the interval

[
max

{
max

{
uij : yij = k

}
, τjk−1

} ; min
{
min

{
uij : yij = k + 1

}
, τjk+1

}]
,

for j = m1 + m2 + 1, . . . , m1 + m2 + m3.

Detailed derivations of the fully conditional posterior distributions can be
found in, e.g., [15].

In the model associated with (2) the fully conditional posterior distribution
of the residual covariance matrix is also conditional inverse Wishart distributed,
however the conditioning is on (Rkk = 1)k=m−m4+1,...,m.
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3. MODEL INCLUDING MISSING DATA

In this section allowance is made for missing data. First the notation
is extended to deal with missing data. Let J (i) = (J1(i), . . . , Jm(i))′ be
the vector of response indicator random variables on animal i defined by
Jk(i) = 1 if the kth trait is observed on animal i and Jk(i) = 0 other-
wise, k = 1, . . . , m. The observed data on animal i is (yi, δi)J(i), where
(yi, δi)J(i) denotes the observed Gaussian, observed right censored Gaussian
traits, with their censoring indicators, observed categorical and binary traits
of animal i. An animal with a record is now defined as an animal with
at least one of m traits observed of the Gaussian, right censored Gaussian,
ordered categorical or binary traits. The vector of observed y′s of animal i is
yi(obs) = (yi)J(i), with 1 ≤ dim

(
yi(obs)

) ≤ m. Data on all animals are (y, δ)J,
where J = (J(i))i=1,...,n.

For missing data, the idea of augmenting with residuals [32] is invoked. It
is assumed that




Ui(obs)

Ui(aug)

Ei(mis)


 | (b, a, R, R22 = Im4

)

∼ Nm







(
xi(obs)b + zi(obs)a

)
(
xi(aug)b + zi(aug)a

)

0


 ,




Ri(obs) Ri(obs)(aug) Ri(obs)(mis)

Ri(aug)(obs) Ri(aug) Ri(aug)(mis)

Ri(mis)(obs) Ri(mis)(aug) Ri(mis)





 .

The dimensions of Ui(obs), Ui(aug) and Ei(mis) are nobs
i , naug

i and nmis
i , respectively,

and m = nobs
i + naug

i + nmis
i . Ui(obs) is associated with observed and uncensored

Gaussian traits, Ui(aug) is associated with augmented data of observed, censored
right censored Gaussian and observed ordered categorical and binary traits.
Ei(mis) is associated with residuals on the Gaussian scale of traits missing
on animal i. The following will be assumed concerning the missing data
pattern:

(d) Conditional on ω, data are missing at random, in the sense that J is
stochastically independent of (U, C) conditional on ω.

(e) Conditional on ω, J is noninformative of ω.

Under the assumptions (a)–(e), and having augmented with Ui(aug) and
Ei(mis) for all animals (i.e. with

(
URC

0 , UCAT , UBIN , EMIS
)
), it then follows

that the joint posterior distribution of parameters and augmented data
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ψ = (
ω, URC

0 , UCAT , UBIN, EMIS
)

is given by:

p
(
ψ| (y, δ)J , R22 = Im4

)

∝ p
(
(y, δ)J |ψ, R22 = Im4

)
p
(
ψ|R22 = Im4

)

= p
(
(y, δ)J , URC

0 , UCAT , UBIN, EMIS|ω, R22 = Im4

)
p
(
ω|R22 = Im4

)

= p
(
(y, δ)J , URC

0 , UCAT , UBIN, EMIS|ω, R22 = Im4

)
p
(
ω|R22 = Im4

)

∝
n∏

i=1




m1+m2∏

j=m1+1

([
1
(
uij > yij

)]1−δij
)Jj(i)




×
n∏

i=1




m1+m2+m3∏

j=m1+m2+1





Kj∑

k=1

[
1
(
τjk−1 < uij ≤ τjk

)
1
(
yij = k

)]




Jj(i)



×
n∏

i=1




m∏

j=m1+m2+m3+1

[
1
(
uij ≤ 0

)
1
(
yij = 0

) + 1
(
0 < uij

)
1
(
yij = 1

)]Jj(i)




×
n∏

i=1

[
(2π)−m/2 |R|−1/2 exp

{
−1

2
(ui − xib − zia)′ R−1 (ui − xib − zia)

}]
,

where those rows of xi and zi associated with missing data are zero, and where
uij, for j associated with missing data on animal i, is a residual, eij.

Deriving the fully conditional posterior distributions defining a Gibbs
sampler proceeds as in the model with no missing data and with modifications
according to the missing data pattern. (This is also true for the model associated
with (2)).

Further details related to the derivation of the fully conditional posterior
distributions can be found in, e.g., [15].

4. STRATEGIES FOR IMPLEMENTATION OF THE GIBBS
SAMPLER

Strategies for implementation are first outlined for the model associated
with (1) for the case without missing data, and where, a priori, b conditional
on σ2

1 and σ2
2 follows a multivariate normal distribution. The strategy is similar

for the model associated with (2) except in obtaining samples from the fully
conditional posterior of the residual covariance matrix.

4.1. Univariate sampling of location parameters

The fully conditional posterior distribution of θ given data, ψ\θ and
R22 = Im4 is p + Nm dimensional multivariate normal distributed with mean
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µ = µθ and covariance matrix Λ = Λθ given in (3) and (4) respectively. Let
β = (1, . . . , i − 1, i + 1, . . . , p + Nm), then using properties of the multivari-
ate normal distribution and relationships between a matrix and its inverse, it
follows, that the fully conditional posterior distribution of each element in θ is:

θi| ((y, δ) , ψ\θi, R22 = Im4

)

∼ N1
(
µi + ΛiβΛ

−1
ββ

(
θβ − µβ

)
,Λii − ΛiβΛ

−1
ββ Λβi

)

= N1
(
C−1

ii

(
ri − Ciβθβ

)
, C−1

ii

)

where ri is the ith element of r = W′ (I ⊗ R−1
)

u and C = Λ−1 is the coefficient
matrix of the mixed model equations given by Cµ = r. The solution to these
equations is µ = Λr and Ciβθβ = Ciθ − Ciiθi, where Ci is the ith row of the
coefficient matrix and Cii is the ith diagonal element.

4.2. Joint sampling of location parameters

Sampling univariately from the fully conditional posterior distribution of
each location parameter in turn, may give poor mixing properties. García-
Cortés and Sorensen [7] described a method to sample from the joint fully
conditional posterior distribution of θ given data, ψ\θ and R22 = Im4 , that can
avoid inverting the coefficient matrix C = Λ−1

θ of the mixed model equations.
The idea behind this joint sampling scheme is that a linear combination of nor-
mally distributed random variables again is normally distributed and proceeds
as follows: Let b∗

1, b∗
2, a∗ and e∗ be sampled independently from Np1

(
0, Ip1σ

2
1

)
,

Np2

(
0, Ip2σ

2
2

)
, NNm (0, A ⊗ G) and Nnm (0, In ⊗ R) distributions, respectively.

Next let b∗ = (
b∗′

1 , b∗′
2

)′
and θ∗ = (

b∗′, a∗′)′
and define u∗ as Wθ∗ + e∗, then it

follows that the linear combination of θ∗ and e∗ given by:

θ∗ + ΛθW′ (In ⊗ R−1
) (

u − u∗)

= ΛθW′ (In ⊗ R−1
)

u+(
Ip − ΛθW′ (In ⊗ R−1

)
W

)
θ∗ −ΛθW′ (In ⊗ R−1

)
e∗

follows a Np+Nm (µθ,Λθ)-distribution. This is the fully conditional posterior
distribution of location parameters, θ, given data and ψ\θ. That is, having
sampled θ∗ and e∗, then θ̃ = ΛθW′ (In ⊗ R−1

)
(u − u∗) can be found solving

a set of mixed model equations given by: Λ−1
θ θ̃ = W′ (In ⊗ R−1

)
(u − u∗).

Finally θ∗ is added to θ̃ and the resulting value, θ∗ + θ̃, is a sampled vector from
the fully conditional posterior distribution of θ given data, ψ\θ and R22 = Im4 .

4.3. Sampling of augmented data

The fully conditional posterior distribution of augmented Gaussian traits,
(
URC

0 , UCAT , UBIN
)
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given data, ψ\(URC
0 ,UCAT ,UBIN) and R22 = Im4 will be sampled jointly. The

dimension of
(
URC

0 , UCAT , UBIN
)

is
∑n

i=1 naug
i . Realising that Uaug′

i s of different
animals are independent conditional on “fixed” and random effects, it follows
that joint sampling of augmented Gaussian traits can be decomposed into n
steps. One step is to sample from the fully conditional posterior distribution of
Uaug

i given (yi, δi), ω and R22 = Im4 . This is a naug
i -dimensional multivariate

truncated Gaussian distribution on the interval given in (6). Before truncation,
mean and variance are given by (7) and (8), respectively.

Let ξ and Σ be shorthand notation for the mean and variance of the fully
conditional posterior distribution of Uaug

i before truncation. Then first uaug
i1

is sampled from a N1 (ξ1,Σ11)-distribution, truncated at the relevant interval.
Next uaug

i2 is sampled from the fully conditional posterior distribution of Uaug
i2

given Uaug
i1 = uaug

i1 ; this is from a truncated N1
(
ξ2 + Σ21Σ

−1
11

(
uaug

i1 − ξ1
)
,Σ22·1

)

-distribution. Finally, proceeding in this way, uaug
inaug

i
is sampled from a truncated

univariate normal distribution with mean and variance before truncation given
by

ξnaug
i

+ Σnaug
i (1:naug

i −1)Σ
−1
(1:naug

i −1)







uaug
i1
...

uaug
i(naug

i −1)


 −




ξ1
...

ξ(naug
i −1)







and

Σnaug
i naug

i
− Σnaug

i (1:naug
i −1)Σ

−1
(1:naug

i −1)
Σ(1:naug

i −1)naug
i

respectively.

Different ways can be chosen to sample from a univariate truncated
N1

(
µ, σ2

)
-distribution on the interval I = ]s1; s2]. One possibility is to

sample independently from the untruncated N1
(
µ, σ2

)
-distribution and then

only accept sampled values that belong to the interval I. Let Y ∼ N1
(
µ, σ2

)
, if

P (Y ∈ I) is very small this procedure is inefficient. The following procedure
(e.g. [6]) that avoids rejections is implemented. First x is sampled from a
R (0, 1)-distributed random variable, X. Let FY denote the distribution function
of Y , then z given by:

z = F−1
Y

(
FY (s1) + x

(
FY (s2) − FY (s1)

))

is a realised value from the truncated N1
(
µ, σ2

)
-distribution on I. The proof

follows from (9) given below, where Z is the random variable from which z is
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generated; z is a value between s1 and s2:

P (Z ≤ z) = P
(
F−1

Y [FY (s1) + X (FY (s2) − FY (s1))] ≤ z
)

(9)

= P (FY (s1) + X (FY (s2) − FY (s1)) ≤ FY (z))

= P

(
X ≤ FY (z) − FY (s1)

FY (s2) − FY (s1)

)

= FY (z) − FY (s1)

FY (s2) − FY (s1)
·

4.4. Sampling of covariance matrices

The strategy, for obtaining samples from the fully conditional posterior of
the residual covariance matrix in the model associated with (1), is presented
in Section 4.4.1. For the model associated with (2), the strategy is slightly
different and is presented in Section 4.4.2.

4.4.1. Model associated with (1)

The fully conditional posterior distribution of the residual covariance mat-
rix, R, of Ui, is conditional inverse Wishart distributed. The condition-
ing is on a block diagonal submatrix, R22, equal to the identity matrix

of the inverse Wishart distributed matrix, R =
(

R11 R12

R21 R22

)
. Note that if

the number of binary traits is equal to zero, the fully conditional posterior
of R is inverse Wishart distributed. In order to obtain samples from the
conditional inverse Wishart distribution, the approach described in [16] is
implemented. The method relies on well-known relationships between a
partitioned matrix and its inverse, and properties of Wishart distributions.
The method is as follows: Let R ∼ IWm (Σ, f ) and let V = R−1, where
V by definition is Wishart distributed, V ∼ Wm (Σ, f ). Next R is expressed

in terms of V: R =
(

V−1
11 + (

V−1
11 V12

)
V−1

22·1
(
V−1

11 V12
)′ − (

V−1
11 V12

)
V22·1

−V22·1
(
V−1

11 V12
)′

V−1
22·1

)
,

where V22·1 = V22 − V21V−1
11 V12 = R−1

22 . From properties of the Wis-
hart distribution, it is known that V11 ∼ Wm−m4 (Σ11, f ),

(
V−1

11 V12
) |V11 =

v11 ∼ N(m−m4)×m4

(
Σ−1

11 Σ12, v−1
11 ⊗ Σ22·1

)
, where Σ22·1 = Σ22 − Σ21Σ

−1
11 Σ12

and that V22·1 ∼ Wm4 (Σ22·1, f − (m − m4)). Furthermore
(
V11, V−1

11 V12
)

is
stochastically independent of V22·1. Realising that R22 = Im4 , is equivalent
to V22·1 = Im4 , it follows that a matrix sampled from the conditional inverse
Wishart distribution of R given R22 = Im4 can be obtained in the following
way: First v11 is sampled from the marginal distribution of V11. Next t2

is sampled from the conditional distribution of
(
V−1

11 V12
)

given V11 = v11.
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The matrix r =
(

v−1
11 + t2t′2 −t2

−t′2 Im4

)
is then a realised matrix from the conditional

inverse Wishart distribution of R given R22 = Im4 .
In order to obtain samples from a Wishart distribution, the algorithm of

Odell and Feiveson [21] is implemented. The basic idea in their algorithm
can be summarised as follows: Let V ∼ Wm (Σ, f ) and let LL′ be a Cholesky
factorisation of Σ, i.e. Σ = LL′. A realised matrix, v, can be generated from
the distribution of V, by sampling w from a Wm (Im, f )-distribution, then v
given by LwL′ is a realised matrix from the desired Wishart distribution.

Using successively the properties already given of the Wishart distribution,
a realised matrix, w, from W ∼ Wm (Im, f ) can be generated as follows:

w11 is sampled from W11 ∼ W1 (1, f ) = χ2( f );
t2 is sampled from W−1

11 W12|W11 = w11 ∼ N1
(
0, w−1

11

)
;

w22·1 is sampled from a W1 (1, f − 1)-distribution;

w22 given by

(
w11 w11t2

(w11t2)
′ w22·1 + t′2w11t2

)
is then a realised matrix from the

distribution of W22 ∼ W2 (I2, f ).
For i = 3 and up to m, the dimension of W, we proceed as follows:
ti is sampled from

Ti = W−1
(i−1)(i−1)W(1:i−1)i|W(i−1)(i−1) = w(i−1)(i−1) ∼ Ni−1

(
0, w−1

(i−1)(i−1)

)
.

W(1:i−1)i is used as the notation for the
(
(i − 1) × 1

)
-dimensional vector of

elements
(
Wji

)
j=1,i−1

of W and W(i−1)(i−1) is the (i − 1)-dimensional square

matrix of W, with elements
(
Wjk

)
j,k=1,i−1

;

wii·(i−1) is sampled from a W1
(
1, f −(i − 1)

) = χ2
(

f −(i − 1)
)
-distribution;

wii given by

(
w(i−1)(i−1) w(i−1)(i−1)ti(

w(i−1)(i−1)ti

)′
wii·(i−1) + t

′
iw(i−1)(i−1)ti

)
is then a realised mat-

rix from the distribution of Wii ∼ Wi (Ii, f ).
Finally, w = wmm is a realised matrix from the distribution of W ∼

Wm (Im, f ).

4.4.2. Model associated with (2)

In the following we outline a method for sampling from the fully conditional
posterior distribution of R in the model associated with (2) for m4 ≥ 1. (Note,
if the number of binary traits is equal to zero or one, m4 = 0 or m4 = 1, then the
model associated with (2) is identical to the model described by (1). Thus for
m4 = 1 we end up with two different methods for obtaining samples from the
fully conditional posterior distribution of R). Now consider the partitioning of
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R described earlier in this section. Because

p
(
r| (Rkk = 1)k=m−m4+1,...,m

)

= p
(
r|R22 = r22, (Rkk = 1)k=m−m4+1,...,m

)
p
(
r22| (Rkk = 1)k=m−m4+1,...,m

)

it follows that a matrix r̃, from the conditional distribution of R given
(Rkk = 1)k=m−m4+1,...,m, can be sampled as follows. First r̃22 is sampled from
the conditional distribution of R22 given (Rkk = 1)k=m−m4+1,...,m, i.e. from a
conditional inverse Wishart distribution conditional on all diagonal elements
equal to one (i.e. r̃22 is a correlation matrix). Second, v11 is sampled from
the marginal distribution of V11 and t2 from the conditional distribution of
(
V−1

11 V12
)

given V11 = v11. Finally, the matrix r̃ =
(

v−1
11 + t2r̃22t′2 −t2r̃−1

22

−r̃−1
22 t′2 r̃22

)

is a realised matrix from the conditional inverse Wishart distribution of R given
(Rkk = 1)k=m−m4+1,...,m.

Obtaining samples from the fully conditional posterior of R22 given
(Rkk = 1)k=m−m4+1,...,m is not trivial. Therefore, inspired by Chib and
Greenberg [4], we suggest the following Metropolis-Hastings algorithm for
obtaining samples from the fully conditional posterior distribution of R. Let
q1

(
r22|r̃22

)
denote a density that generates candidate values, ˜̃r22, i.e. candidate

correlation matrices given the current value (correlation matrix), r̃22 (and
(y, δ) ,ψ\R) (see e.g. [18] for generating random correlation matrices). As
proposal density, q

(
r|r̃), for generating candidate values, ˜̃r (i.e. candidate

covariance matrices given the current value/covariance matrix, r̃) we suggest
taking

q
(
r|r̃) = p(r| (y, δ) ,ψ\R, R22 = r22, (Rkk = 1)k=m−m4+1,...,m)q1

(
r22|r̃22

)
.

This results in the following algorithm:

1. Sample a proposal value, ˜̃r22, from the density q1
(
r22|r̃22

)
. Next sample

v11 and t2 as described above (and with parameters given in (5)). Then the

matrix ˜̃r =
(

v−1
11 + t2

˜̃r22t′2 −t2
˜̃r−1

22

−˜̃r−1

22 t′2 ˜̃r22

)
is a realised matrix from q

(
r|r̃).

2. Move to ˜̃r with probability α
(

r̃, ˜̃r
)

given by

α
(

r̃, ˜̃r
)

= min





p
( ˜̃r| (y, δ) ,ψ\R, (Rkk = 1)k=m−m4+1,...,m

)
q
(

r̃|˜̃r
)

p
(
r̃| (y, δ) ,ψ\R, (Rkk = 1)k=m−m4+1,...,m

)
q
( ˜̃r|r̃

) , 1





and stay at r̃ with probability 1 − α
(

r̃, ˜̃r
)

.
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Note that with the suggested proposal density, then

α
(

r̃, ˜̃r
)

= min





p
( ˜̃r22|

(
(y, δ) ,ψ\R, (Rkk = 1)k=m−m4+1,...,m

))
q1

(
r̃22|˜̃r22

)

p
(
r̃22|

(
(y, δ) ,ψ\R, (Rkk = 1)k=m−m4+1,...,m

))
q1

( ˜̃r22|r̃22

) , 1



 ·

5. EXAMPLE

In order to illustrate the methodology, a simulated dataset was analysed.
The simulated data and results are presented below.

5.1. Simulated data

The simulated data consist of records on five-thousand animals. First the
complete data consisting of a Gaussian, a right censored Gaussian, an ordered
categorical, and a binary trait are generated for each animal (described in detail
below). Next the missing data pattern is generated independently of the random
vector associated with the complete data.

The complete data are simulated as follows: First records at the normally
distributed level of the model are generated. The animals are assumed to
be located in one herd and to be offspring of fifty unrelated sires and five-
thousand unrelated dams (all dams and sires of the animals with records are
assumed to be mutually unrelated). The fifty 4-dimensional sire effects, sl,
l = 1, . . . , 50 are generated independently from a N4 (0, GS)-distribution. The
number of offspring per sire was 100 on average. Residuals were generated
independently (ei ∼ N4 (0, RS), i = 1, . . . , 5000), so that the ith 4-dimensional
normally distributed “record”, ui, is equal to:

ui = µH + sl(i) + ei

i = 1, . . . , 5000 (these will be called the normally distributed data); where
µ′

H = (8000, 900, 0.5,−0.2562). The covariance matrices GS and RS are:



108000 12728 1.6822 −18.418
12728 9375 −0.99124 −6.9767

1.6822 −0.99124 0.010481 0.001639
−18.418 −6.9767 0.001639 0.025639




and 


1332000 47272 22.888 54.875
47272 240620 −19.484 −43.658

22.888 −19.484 0.15721 −0.0016392
54.875 −43.658 −0.0016392 1


 ,
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respectively. The complete data are generated by the following procedure:

Yi1 = Ui1,

(Yi2, δi) =
{

(Ui2, 1) if Ui2 ≤ 1300

(1300, 0) if Ui2 > 1300
,

Yi3 =





1 if Ui3 ≤ 0

2 if 0 < Ui3 ≤ 0.3231

3 if 0.3231 < Ui3 ≤ 0.6769

4 if 0.6769 < Ui3 ≤ 1

5 if Ui3 > 1

and

Yi4 =
{

0 if Ui4 ≤ 0

1 if Ui4 > 0
.

Finally, the pattern for the missing data is generated. Let J(i) denote the
4-dimensional vector of response indicator random variables of animal i.
Then the missing data pattern is generated so that J(i), i = 1, . . . , 5000 are
independently and identically distributed with

P (J(i) = j) =





3/4 if j = (1, 1, 1, 1)

1/56 if j = (0, 0, 0, 1) , (0, 0, 1, 0) ,

(0, 0, 1, 1) , (0, 1, 0, 0) , (0, 1, 0, 1) ,

(0, 1, 1, 0) , (0, 1, 1, 1) , (1, 0, 0, 0) ,

(1, 0, 0, 1) , (1, 0, 1, 0) , (1, 0, 1, 1) ,

(1, 1, 0, 0) , (1, 1, 0, 1) or (1, 1, 1, 0)

0 otherwise

It follows that three quarters of the animals are expected to have observed (or
censored) values on all four traits.

5.2. Gibbs sampling implementation and starting values

The Gibbs sampler was run as a single chain with joint updating of location
parameters. After discarding the first 40 000 rounds of the Gibbs sampler (burn-
in), 10 000 samples of selected model parameters were saved with a sampling
interval of 100. The Gibbs sampler was implemented with improper uniform
prior distributions on elements of µH, and on (co)variance matrices GS and RS.
It was assumed that the vector of sire effects, conditional on GS, followed a
N4N (0, IN ⊗ GS)-distribution, with N = 50. Finally the two thresholds τ2 and
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τ3 were a priori assumed to be distributed as order statistics from a uniform
distribution in the interval [0, 1], as described in Section 2.2.

Starting values for the location parameters were found as the solution to the
mixed model equations given by

(
X′ (In ⊗ RS)

−1 X X′ (In ⊗ RS)
−1 Z

Z′ (In ⊗ RS)
−1 X Z′ (In ⊗ R)−1 Z + I−1

n ⊗ G−1
S

)
µθ = W′ (In ⊗ RS)

−1 u(0)

with initial values for (co)variance matrices inserted and u(0), being a vector
of observed Gaussian traits and starting values for augmented data, given as

follows: Let u(0) =
(

u(0)′
1 , . . . , u(0)′

n

)′
with u(0)′

i =
(

u(0)
i1 , u(0)

i2 , u(0)
i3 , u(0)

i4

)
, then

u(0)
i1 =

{
yi1 if J1(i) = 1

0 if J1(i) = 0
,

u(0)
i2 =





yi2 if J2(i) = 1 and δi = 1

yi2 + 0.2σuo if J2(i) = 1 and δi = 0

0 if J2(i) = 0

,

where σuo is the standard deviation of uncensored (J2(i) = 1 and δi = 1)
observations of trait 2,

u(0)
i3 =





−0.05 if J3(i) = 1 and yi2 = 1(
τ

(0)
k − τ

(0)
k−1

)

2
if J3(i) = 1 and yi2 = k, k = 2, 3, 4

1.05 if J3(i) = 1 and yi2 = 5

0 if J3(i) = 0

and

u(0)
i4 =





−0.5 if J4(i) = 1 and yi3 = 0

0.5 if J4(i) = 1 and yi3 = 1

0 if J4(i) = 0

where τ
(0)
2 and τ

(0)
3 are the initial values for non-fixed thresholds. Let nk

denote the number of observations in category k, k = 1, . . . , 5, of the ordered
categorical trait, then the initial values, τ

(0)
2 and τ

(0)
3 , of τ2 and τ3 are obtained

from the following equations

Φ

(
τ

(0)
k − µ

σ

)
− Φ

(
τ

(0)
k−1 − µ

σ

)
= nk∑5

j=1 nj

, k = 1, . . . , 5,
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with τ
(0)
k = −∞, τ

(0)
1 = 0, τ

(0)
4 = 1 and τ

(0)
5 = ∞ (i.e. by equating observed

and expected frequencies in a (generally simpler) model, where liabilities of
the ordered categorical trait are assumed to be independent and identically
distributed with mean µ and variance σ2).

5.3. Post Gibbs analysis and results

For each selected parameter, ψ, let ψ(1), . . . ,ψ(n) denote the saved sampled
values from the Gibbs sampler. The marginal posterior mean, ψ̂PM , and

variance, σ̂
2
PSTD, were estimated by 1

n

∑n
i=1 ψ(i) and 1

(n−1)

∑n
i=1

(
ψ(i) − ψ̂PM

)2
,

respectively. The method of batching (e.g. [11]) was chosen for estim-
ating Monte Carlo variance, MCV , and effective sample size, Ne. The
saved sampled values were divided into B batches (here B = 20) of equal
size, nb (here nb = 500). For each batch b, b = 1, . . . , B, the batch

mean is given by ψ̂
(b)

BM = 1
nb

∑knb
i=(k−1)nb+1 ψ(i). Assuming that the estimat-

ors associated with the batch means are approximately independently and

identically distributed, then because ψ̂PM = 1
B

∑B
b=1 ψ̂

(b)

BM , it follows that the

MCV = Var
(
ψ̂PM

)
= 1

B Var
(
ψ̂

(1)

BM

)
. The variance of ψ̂

(1)

BM , Var
(
ψ̂

(1)

BM

)
, is

estimated by 1
(B−1)

∑B
b=1

(
ψ̂

(b)

BM − ψ̂PM

)2
. The effective sample size, Ne, is

calculated by σ̂
2
PSTD/MCV (follows by equating 1

Ne
σ̂

2
PSTD and MCV).

Convergence of the Gibbs sampler was assessed via trace plots. The rate
of mixing of the Gibbs sampler was investigated estimating lag correlations
(between saved sampled values) in a standard time series analysis. The rate
of mixing was good for all parameters except for the two thresholds of the
categorical trait (with 5 categories). Lag 30 correlations between saved sampled
values of elements of µH , of GS and RS, for genetic, residual and intraclass
correlations were all numerically close to zero. The intraclass correlations, ρ1,
ρ2, ρ3 and ρ4 are calculated by ρi = GSii/(GSii + RSii), i = 1, 2, 3, 4. Lag 30
correlations between saved sampled values of τ2 and τ3 were 0.31 and 0.25,
respectively. Summary statistics of selected parameters are shown in Table I.

Let cψ
p denote the pth quantile of the (empirical) marginal posterior distribu-

tion of ψ. For all of the parameters in Table I the value of ψ used for simulating

data is included in the interval
[
cψ

0.025; cψ
0.975

]
– except one of the thresholds.

Inferences concerning a subset of the parameters from the present Bayesian
analysis were compared with those obtained using restricted maximum likeli-
hood (REML). This comparison is restricted to the covariance matrices associ-
ated with “the normally distributed data”. The normally distributed data were
analysed using the Gibbs sampler and REML [22]. Burn-in, sampling interval
and the number of saved sampled values for the Gibbs sampler implemented for
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Table I. Mean, standard deviation, 0.025 and 0.975 quantiles (c0.025 and c0.975) of the
marginal posterior distributions of selected parameters. Ne is the effective sample size.
“True” refers to the values used in the sampling model for generating data.

Parameter True Mean Std. c0.025 c0.975 Ne

GS11 108000 104850 26355 63943 146150 8979

GS22 9375 12059 3308 6881 17135 5568

GS33 0.010481 0.0128 0.0033 0.0078 0.0179 6758

GS44 0.025639 0.0279 0.0100 0.0127 0.0429 12793

ρGS21 0.40 0.2613 0.1659 −0.0791 0.4937 27388

ρGS31 0.05 0.1181 0.1654 −0.2176 0.3520 12458

ρGS32 −0.10 −0.0578 0.1752 −0.3935 0.1991 4200

ρGS41 −0.35 −0.2933 0.1926 −0.6359 −0.0034 10211

ρGS42 −0.45 −0.6062 0.1618 −0.8671 −0.3561 8734

ρGS43 0.10 0.3706 0.1815 −0.0071 0.6196 10166

ρ1 0.075 0.0743 0.0172 0.0466 0.1013 9099

ρ2 0.0375 0.0479 0.0125 0.0278 0.0669 5329

ρ3 0.0625 0.0795 0.0184 0.0500 0.1079 5801

ρ4 0.025 0.0270 0.0093 0.0125 0.0411 12697

τ2 0.3231 0.3403 0.0079 0.3255 0.3516 178

τ3 0.6769 0.6878 0.0072 0.6737 0.6982 243

analysing the normally distributed data were 4000, 10, and 10 000 respectively.
Again improper uniform prior distributions were assumed for elements of µH ,
and for (co)variance matrices GS and RS. The results from this part of the
analysis are shown in Table II.

REML estimates are joint mode estimates of the (joint) marginal posterior
distribution of (co)variance matrices. If the (joint) marginal posterior distribu-
tion of (co)variance matrices is symmetric, then joint posterior mode estimates
and marginal posterior mean estimates would be equal – except for numerical
and/or Monte Carlo error. Based on “the normally distributed data”, marginal
posterior means and REML estimates of genetic correlations are remarkably
close to each other. Marginal posterior mean estimates of intraclass correlations
are all slightly higher, compared to the REML estimates. This is because the
marginal posterior distributions of intraclass correlations are all skewed to
the right; i.e. posterior mode estimates are expected to be lower compared to
posterior mean estimates.

In conclusion, the Gibbs sampler implementation of the Bayesian analysis
of the rather complicated data (model) shows satisfactory behaviour.
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Table II. Mean, 0.025 and 0.975 quantiles (c0.025 and c0.975) of the marginal posterior
distributions of selected parameters; and REML estimates for the same parameters.
“True” refers to the values used in the sampling model for generating data.

Parameter True Mean c0.025 c0.975 REML

ρGS21 0.40 0.2741 −0.0542 0.4962 0.2730

ρGS31 0.05 0.1215 −0.1946 0.3498 0.1244

ρGS32 −0.10 −0.0216 −0.3490 0.2247 −0.0225

ρGS41 −0.35 −0.2508 −0.5714 0.0108 −0.2504

ρGS42 −0.45 −0.4795 −0.7561 −0.2331 −0.4652

ρGS43 0.10 0.2578 −0.1056 0.5037 0.2569

ρ1 0.0750 0.0749 0.0469 0.1007 0.068

ρ2 0.0375 0.0488 0.0294 0.0673 0.045

ρ3 0.0625 0.0762 0.0491 0.1026 0.069

ρ4 0.025 0.0245 0.01297 0.0356 0.023

6. CONCLUSION

During the last decade, a major change of emphasis in animal breeding
research has taken place. Rather than focusing singly on productivity, there
is now an interest in understanding the complex biological and statistical
interrelationships among traits related to product quality, disease resistance,
behaviour and production. Addressing these problems requires the develop-
ment of probability models which properly describe the underlying structures
in the data perceived by the experimenter. These models are highly com-
plex and often cannot be implemented via traditional methods. However an
increase in computer power and the introduction of modern computer-based
inference methods are making this implementation possible. In this paper
we have developed and implemented a fully Bayesian analysis of Gaussian,
right censored Gaussian, categorical and binary traits using the Gibbs sampler
and data augmentation. The methodology was applied to analyse a simulated
dataset and the results show that posterior distributions cover well the values
of the parameters used in the simulations.

The computer programme (available upon request), which has been
developed for models associated with (1), allows analyses based on models
with several random effects, including maternal genetic effects. In the pro-
gramme, it is possible to choose between univariate or joint sampling of all
location parameters. Augmented data are sampled jointly, using the method of
composition, from their truncated multivariate normal distribution. Covariance
matrices are sampled from inverted or conditional inverted Wishart distributions
depending on the absence or presence of binary traits, respectively. In most
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applications of models including at least two binary traits, it is not reasonable
to assume that the residuals of liabilities of the binary traits are independent, i.e.
the model associated with (2) is to be preferred. The Gibbs sampler outlined for
the model associated with (2) is almost identical to the one associated with (1);
the only real difference is the Metropolis-Hastings step invoked for sampling
the residual covariance matrix associated with the residuals of liabilities (this
step has not yet been implemented in the programme).
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APPENDIX

The convention used for Wishart and inverted Wishart distributions follows
Mardia et al. [17]. Let M ∼ Wp (Σ, f ), the density of M is up to proportionality
given by (for Σ > 0 and f ≥ p):

p (M) ∝ |Σ|− f
2 |M| ( f −p−1)

2 exp

{
−1

2
tr

(
Σ−1M

)} ·

The mean and variance of M are given by: E (M) = f Σ and Var (M) =
2f Σ ⊗ Σ.

Let U = M−1, then U is said to have an inverted Wishart distribution. The
density of U is, up to proportionality, given by:

p (U) ∝ |Σ|− f
2 |U|− ( f +p+1)

2 exp

{
−1

2
tr

(
Σ−1U−1

)} ·

The mean of U is given by E (U) = Σ−1/ ( f − p − 1) if f ≥ p + 2.
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