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Abstract — An experimental population (1216 lambs from 30 sires) of the Inra401 sheep was
created in an Inra flock to allow QTL detection for susceptibility to Salmonella infection, wool
and carcass traits. The Inra401 is a sheep composite line developed from two breeds: Berrichon
du Cher and Romanov. At 113 days of age on average, the lambs were inoculated intravenously
with 108 Salmonella abortusovis Rv6 (vaccinal strain). They were slaughtered 10 days after
the inoculation. Several traits were measured at inoculation and/or slaughtering to estimate
the genetic resistance of the lambs to Salmonella infection: specific IgM and IgG1 antibody
titres, body weight loss, spleen and pre-scapular node weights and counts of viable Salmonella
persisting in these organs. This paper presents a quantitative analysis of the genetic variability
of the traits related to salmonellosis susceptibility. The heritabilities of the traits varied between
0.10 and 0.64 (significantly different from zero). Thus, in sheep as well as in other species,
the determinism of resistance to Salmonella infection is under genetic control. Moreover, the
correlations between the traits are in agreement with the known immune mechanisms. The
genetic variability observed should help QTL detection.
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1. INTRODUCTION

In humans and animals, the Salmonella species are facultative intracellular
bacteria that are responsible for several pathologies: pneumonia, abortion,
enteritis, septicaemia, etc. [26]. Clinical manifestations depend on both the host
species and the serotype causing the infection [15]. Some Salmonella serotypes,
like the serovars Enteritidis and Typhimurium, infect a number of species
including humans and then pose serious problems of food safety [13]. The
Salmonella enterica serovar Abortusovis (thereafter simplified as S. abortuso-
vis) is pathogenic for sheep and goats, only. It can cause major animal health
problems: abortion of ewes and death of lambs [36].

The mechanisms underlying genetic resistance to salmonellosis have been
widely studied, mainly in mice [32,41,46] but also in humans [6,12],
poultry [19,20,23,24] and cattle [1]. In mice, it has been demonstrated that
resistance to salmonellosis is under the control of several loci [32,46] including
the NRAMP1 gene located on chromosome 1, which plays a major role [41,50].
In humans, the NRAMPI gene has been located on chromosome 2 [12] and
influences the resistance to intracellular pathogens such as Mycobacteria [6].
In poultry, the NRAMP1 gene, located on chromosome 7 has also been reported
to influence the resistance to salmonellosis [19,23]. Moreover, statistical
genetic approaches have shown a significant heritability of the response to
salmonellosis infection in this species [20,24]. In sheep, the NRAMPI gene
has been cloned and located on chromosome 2 [11,40], but its role in the
resistance to salmonellosis is still to be analyzed and no systematic analysis of
the resistance to salmonellosis in ruminants has been published yet.

To study the susceptibility to S. abortusovis in sheep farm conditions, we
used a vaccinal S. abortusovis Rv6 strain [28] which allowed work without
any risk of spreading the disease. The experiment began in 1993 on 1216
vaccinated lambs belonging to an Inra401 flock. The aim of this experiment
was to analyze the genetic variability of the response to salmonellosis infection
in two steps: estimation of genetic parameters and a further QTL detection
approach using molecular markers. In this paper, we focused on the genetic
control of the response to the vaccinal strain using an estimation of genetic
parameters (heritability and genetic correlations).

At the same time, the populations were observed for economic traits: body
growth and wool traits [2], as well as carcass traits [33].

2. MATERIALS AND METHODS

2.1. Experimental population

The experimental population was a flock of the Inra401 sheep, a synthetic
line bred at the Bourges-La-Sapiniere (France) experimental farm. This sheep
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Table I. Number of offspring, sires and dams by series.

Sex Batch 1 Batch 2 Batch 3 Total
(mating in (mating in (mating in

October 94) July 95) October 95)
Parents M 15 30 15 30
F 255 275 252 697
Offspring M 198 337 172 707
F 218 0 204 422
M+F 416 337 376 1129

line was created from reciprocal crosses between Berrichon du Cher and
Romanov animals, followed by four generations of synthetic crosses without
any selection from 1970 to 1980 [43]. The Berrichon du Cher and Romanov
breeds show opposite performances concerning production traits as well as the
response to salmonellosis infection [30]. A substantial fraction of this inter-
breed variability is probably still present in the Inra401 line, due to the genetic
management of the population based on a rotation between 15 families, with
the aim of preserving genetic variability. Our experimental population was
thus probably genetically variable enough to insure success for QTL detection.

The design used was based on a series of sire half sib families [35]. Simula-
tions (not shown) were done to optimize the family structure. They were made
up of 30 sires each with 40 progeny. Practically, 1216 animals were put into
three batches (mating in October 1994, July 1995 and October 1995) and 1129
sheep were measured for resistance traits. The number of female progeny was
lower than the number of males due to the fact that the females from batch 2
were kept for replacement on the farm (Tab. I).

2.2. Phenotypic measurements

Table II presents descriptions and abbreviations for the measured traits.

2.2.1. Bacterial strain

Due to the restraints related to the inoculation of a virulent S. abortusovis
strain (breeding in a protected environment, full destruction of the carcasses, ...),
the vaccinal strain of S. abortusovis, Rv6 was used. The Rv6 strain is a
spontaneous double mutant with attenuated virulence selected from a spon-
taneous mutant, itself streptomycin-dependent, obtained from the Salmonella
abortusovis 15/5 virulent strain [28,37]. As compared to the virulent strain,
this strain induces a similar but weaker response [16,21,28,29].
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Table II. Notations of variables.

Notation Measured variable

IgGlo IgG1 titre at vaccination

IgG1, IgGl1 titre at slaughter

Var-IgG1 IgGl1 titre variation between vaccination and slaughter
IgMy IgM titre at vaccination

IgM; IgM titre at slaughter

Var-IgM IgM titre variation between vaccination and slaughter
BgLN Bacterial count per gram in the left pre-scapular node
BgRN Bacterial count per gram in the right pre-scapular node
BgS Bacterial count per gram in the spleen

BgS01 Presence/absence of bacteria in the spleen

WILN Left pre-scapular node weight

WiRN Right pre-scapular node weight

WitS Spleen weight

WS Spleen weight stated in the body weight at the vaccination fraction
loss-Wt Body weight loss between vaccination and slaughter

Preliminary experiments were conducted to choose the optimal conditions
(traits and timing) for measuring the response to S. abortusovis Rv6 with respect
to practical husbandry conditions [8,30].

2.2.2. Experimental design

In the experimental farm, there was no history of clinical signs related to
salmonella. However 20 animals (non-infected by S. abortusovis Rv6) were
used to control the status of the experimental flock and no lymph node or spleen
contamination by any bacteria was observed.

Up to 45 days of age, the lambs were fed milk naturally or artificially. After
weaning, they were raised in a sheep barn where the males and females were
separated. When they reached a given weight (38 kg for the males and 32 kg
for the females), a blood sample was taken (Day 0 (D0)) and each lamb was
intravenously inoculated with 108 bacteria from the vaccinal Rv6 strain in the
left jugular vein. The mean age of the lambs was then 113 days. They were
weighed at D7, a second blood sample was collected and they were slaughtered
at D10. After slaughtering, the right and left pre-scapular lymph nodes and the
spleen were sampled in order to measure the bacterial load. The blood taken at
DO and D7 was used to evaluate the anti-Salmonella IgM and IgG1 antibody
response.
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2.2.3. Antibody titres

The anti-S. abortusovis antibody titres of sera collected at DO and D7
were determined by direct ELISA assays according to Berthon et al. [9]
using inactivated whole S. abortusovis as the antigen. Class specific anti-
sheep IgG1 and IgM monoclonal antibodies [4,5] were kindly provided by
Dr. K.J. Beh (CSIRO, Glebe, Australia). Each serum was tested in duplicate.
As determined by preliminary studies, a 1/900 dilution of serum was chosen as
clearly differentiating DO and D7 IgG1 and IGM titres in sera from immunized
or naive sheep. The specificity of the assay for anti-S. abortusovis antibodies
was assessed through kinetic studies of the response to vaccination or infection
and the use of sera from sheep infected with unrelated pathogens (unreported
data). In the first step, the ELISA results were given in OD (optical density)
corrected for the baseline level of the test as determined by negative control
wells (including all reagents, except the tested serum). In order to be able
to compare the assays performed at various dates, a positive control, a hyper-
immune serum from a sheep vaccinated twice with the S. abortusovis strain
Rv6, was included in each test. It was verified that the variation of this positive
control never exceeded 5% of the expected value. Antibody titres were given
in the percent of the mean value of the positive control.

The IgG1 and IgM titres at DO and D7 sera will be referred to as IgG1,,
IgM, and IgG1,, IgM;. The response to vaccination given by the antibody
titre variations will be referred to as Var-IgG1 and Var-IgM.

2.2.4. Bacterial enumeration

The number of bacteria colonizing the spleen, the right and left pre-scapular
lymph nodes was estimated by a classical bacteriological protocol [27]. The
organs were collected in the slaughterhouse and were stored at —20 °C until
their treatment within 2 months, a period of time during which the Salmonella
population in stored tissues is known to remain constant (unpublished results).
After thawing, the samples were superficially burned, ground and diluted.
Aliquots of the homogenates and of their dilutions were cultured on a selective
medium (SS, Biomérieux). After a 48 h-incubation at 37 °C, the S. abortusovis
colonies were enumerated. From these enumerations, the number of bacteria
per gram in the spleen (BgS) and the right and left pre-scapular lymph nodes
(BgRN and BgLLN) were computed. Since the number of bacteria in the spleen
was null in 70.5% of the samples, then the binary trait, the presence or absence
of bacteria (BgS01) was also considered.

2.2.5. Body and tissue weights

Weights were also considered to evaluate the effect of vaccination against
salmonellosis: body weight at DO and D7 (Wty and Wt;), weight of the lymph
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Table III. Basic statistics.

Unit Numbers  Mean Standard Minimum Maximum
deviation
1gGly % 1126 8.7 6.5 1 50
Var-I1gG1 % 1123 15.0 16.1 -9 100
IgM, % 1126 17.7 8.2 1 49
Var-IgM % 1123 87.8 36.1 -2 195
BglLN g”! 1128 1046.2 2302.1 0 30350
BgRN g”! 1128 965.8 2163.9 0 24 106
BgS g”! 1127 1.8 4.7 0 56.3
WILN g 1126 4.6 1.6 1.5 13.7
WIRN g 1126 4.1 1.3 1.4 11.0
WtS g 1127 45.8 9.3 23.7 98.6
WitrS mg - kg ™! 1127 12.7 2.3 7.1 24.2
loss-Wt kg 1129 —-0.2 2.1 —4.7 7.6

nodes and the spleen sampled at slaughtering (WtS, WtRN, WtLN). Despite
the initial objective of 32 kg for the females and 38 kg for the males, the weight
at vaccination Wty, varied between animals, and the spleen weights were also
expressed as the proportion of Wty: the relative spleen weight (WtrS). Finally
the body weight loss between DO and D7 (loss-Wt) was itself considered as a
trait responding to vaccination. Indeed, the growth rate after vaccination was
largely affected since the gain of weight varied from —8 to 45 kg within 7 days
while it was about +1 to +6 kg for uninfected control animals (Tab. III).
The elementary statistics concerning all traits are given in Table III.

2.3. Statistical methods
2.3.1. Analysis of the trait distribution

Deviation from the normality of the traits was assessed from an asymmetry
coefficient gl and kurtosis coefficient g2 [49], and from the Shapiro-Wilk
normality test [47] (SAS® UNIVARIATE procedure [44]).

The traits showing a strong deviation from normality were transformed using
the logarithmic transformation (Log,,(X)). The transformation was performed
onthe X = Y +k variable, where Y was the measured trait and & is the minimum
integer value such as X is always positive, in order to allow the transformation
whatever the Y value. The transformed data was referred to as Log-Y (e.g.
Log-WtLN).
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The bacterial colonisation was also estimated by the all-or-none variable:
presence/absence of the bacteria in the spleen (BgSO01), avoiding the strong non
normality of this trait showing a very high proportion of 0 values.

2.3.2. Continuous variable analysis: Gaussian model

Under the hypothesis of a normal distribution of the traits, the mixed linear
model [38] was used to estimate the phenotypic correlations and the genetic
parameters, heritabilities and genetic correlations. The variance components
were obtained using the REML method with the Groeneveld VCE [22]. The
robustness of the results was evaluated testing different mixed models, uni-
or multi-traits, with sire or animal random effects, with or without a mater-
nal effect. The genetic parameters presented were obtained considering five
generations in the pedigree.

For practical reasons, the fixed effects included in the model were chosen
using a first model where all the effects (environment and sire) were fixed
using the SAS® GLM procedure [45]. A fixed effect was kept when it was
significant at a level P < 0.05. The same initial effects were tested for all
traits: sex (2 levels), batch (3 levels), birth rank-suckling type (5 levels:
born-suckled single, born multiple-suckled single, born-suckled double, born
triplet or quadruplet-suckled double, artificially suckled) and an age class at
vaccination (4 levels: under 99 days, 99 to 115 days, 115-130, above 130
days of age). Weight class at vaccination was also tested within both sexes
to verify that it had no effect on the measured traits. Three categories were
created for the females (body weight less than 31 kg, 31 to 33 kg, more than
33 kg) and for the males (body weight less than 37 kg, 37 to 39 kg, more than
39 kg).

2.3.3. Binary variables analysis: threshold model

The binary trait presence/absence of the bacteria in the spleen (BgSO1)
has been described by the Wright model [51], which hypothesizes a normal
variable (X;) underlying the observations (Z; = 0 or 1) and a threshold (s)
for this variable so that Z; = 0 if X; < 5, Z; = 1 if X; > s. Following this
model, the variance components were estimated directly on the underlying
scale. The software used was developed by Chapuis (pers. comm.) following
the methodology of Janss and Foulley [25] and the EM algorithm following
Simianer and Schaeffer [48]. This software allows a bivariate analysis for a
binary trait and a continuous trait under a sire model.

As for the normal model, the fixed effects to consider for estimating the
genetic parameters were determined using a fully fixed effect model, here
with the SAS® GENMOD procedure [3]. The tested effects were the sex,
batch, birth-suckling type, age class at vaccination, and sire. Considering the
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significant fixed effects, the heritability of the variable presence/absence of
bacteria in the spleen and its correlations with other traits were estimated using
the pedigree information from five generations.

3. RESULTS

3.1. Elementary statistics and transformations

With the exception of the IgM antibody measurements (IgMy, var-IgM), trait
distribution was significantly different from the normal law (Fig. 1: example of
the number of bacteria in the left pre-scapular lymph node). This non normality
was mainly due to a strong right asymmetry (g; = 4.6 to 5.6) for the number of
bacteria per gram in organs (BgLLN, BgRN and BgS), a moderate asymmetry
(g1 = 2.2 and 1.9) for the IgG1 antibody measurements (IgG1, and var-IgG1)
and slight (g; = 0.6 to 1.3) for the organ weight (WtLN, WtRN and WtS),
the relative spleen weight (WtrS) and the body weight loss (loss-Wt). When
we used a Log transformation, the asymmetry decreased for all traits having
a non-normal distribution (g; = —0.8 to 1.6). As a consequence, all traits
except the IgM measurements (IgM,, Var-IgM) were Log transformed in the
following analysis.
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Figure 1. Bacterial count per gram in the left pre-scapular node.
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Table IV. Significance of tested effects (continuous and binary traits).

Variables Partof  Sex  Weight Age  Birthrank Batch Sire

explained class class suckling

variance” within sex status
IgMy 0.35 NS NS ok NS HEE R
Var-IgM 0.17 * NS * NS * rowk
Log-IgGly 0.13 NS NS ** wE Rk ok
Log-Var-IgG1 0.22 NS NS NS * HAE Lk
Log-BgLN 0.10 R NS * NS NS #**
Log-BgRN 0.11 o NS ok NS NS #**
Log-BgS 0.05 ** NS NS NS NS *
Log-WtLN 0.17 ok NS HE NS HAE Lk
Log-WtRN 0.18 ok NS ok NS Rk Rk
Log-WtS 0.30 ok ook ok ok wk k%
Log-loss-Wt 0.11 ok * ** NS NS *E
BgS01* - * - NS NS NS *

@ The trait was analyzed with a threshold model; ® the proportion of variance
explained by the model constituted of significant fixed effects; (—) parameters absent
from the model. The levels of significance of the fixed effects are shown with
asterisks. *** P < 0.001; ** P < 0.01; * P < 0.05; NS: not significant.

3.2. Fixed effects

The levels for the significance of the tested fixed effect are given in Table IV.

The effect of body weight at vaccination was significant for Log-WtS but
not for Log-WtrS. Given these observations, the trait finally analyzed was the
logarithm of the relative spleen weight (Log-WtrS).

The sex effect was found to be significant for most of the measured traits
except for IgMoLog-IgG1y, Log-Var-IgGl. When compared to females, the
males had on average a lower IgM response but more bacteria in their pre-
scapular lymph nodes and their spleen. Their organs were heavier and they
gained more weight after vaccination.

Age at vaccination had a significant effect on most of the traits. The older
the animal was, the higher was the level of IgM at vaccination (IgMj). A
similar but less clear situation was observed for Log-IgG1,. After vaccination,
age had a reverse and lower effect on the IgM level variation: the younger the
animal, the higher the IgM level variation, and the higher were its bacterial
counts in the lymph nodes (at 5% level) and in the spleen (non significant).
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Finally, the younger the animal was, the heavier its organs were at slaughtering
and the lower its growth was between vaccination and slaughtering.

Batch had a significant effect on antibody responses and organ weights, but
not on the bacterial enumeration.

The birth-suckling type had a significant effect for only four traits: Log-
IgGly, Log-Var-IgG1, Log-WtS and Log-WtrS. The more lambs the dam
suckled, the lower the IgG1 basal titre of the lamb. Lambs suckled artificially
behaved as single suckled lambs for Log-IgG1, and had on average a heavier
spleen.

As far as the number of bacteria in the spleen was concerned both continuous
(log-BgS) and discrete (BgS01) models revealed the same significant effects,
at similar levels.

3.3. Estimations of genetic parameters and phenotypic correlations

In general, the heritabilities (Tab. V) were found to be moderate to high, with
the exception of the body weight loss between vaccination and slaughtering
(log-loss-Wt) and, of Log-IgG1, and Log-BgS, which were low (0.10, 0.14
and 0.06, respectively). The IgM level at vaccination and the spleen weight
were highly heritable (0.64 and 0.54 respectively). The genetic correlations
were generally of the same sign and higher than the phenotypic correlations. In
particular, the genetic correlation between the number of bacteria in the right
and left pre-scapular lymph nodes was close to 1 and the phenotypic correlation
was slightly lower. The same trends were observed concerning the correlations
between the weights of these organs. The genetic and phenotypic correlations
between Var-IgM and Log-Var-IgG1 were high. The genetic and phenotypic
correlations between IgM, and body weight loss between vaccination and
slaughtering were negative, but this trait was positively correlated with all
other traits. Finally, the number of bacteria in the spleen showed high genetic
correlations, negative with [gM, level and positive with the number of bacteria
in the lymph nodes.

For continuous traits, the estimations were similar whatever the mixed model
considered: uni- or multi-trait, sire or animal random effect, except for Log-
IgG1y. The heritability of this trait was 0.14 from a multi-trait sire model, and
0.33 from a multi-trait animal model. The genetic correlations between Log-
IgG1y and other traits differed between the two models. Because the genetic
structure of the population did not enable a correct estimation of the genetic
maternal effect (Appendix), the pedigree information from the dam side was
not included, estimating under a sire model the heritability of Log-IgG1, and
its genetic correlations with other traits (1st row and 1st column of Tab. V).
As far as the other traits were concerned, the parameters presented in Table V
were estimated under a multi-trait animal model.
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4. DISCUSSION

4.1. The experimental design

In order to be able to predict the response to infection as much as possible,
many traits were considered. The age at measurement was chosen according
to previous observations: the maximum level of bacterial infection in the
spleen was observed a week after subcutaneous inoculation in sheep [27] and
subcutaneous or intravenous inoculation in mice [29], and the IgG1 humoral
response was soon starting one week after infection [9]. Considering these
observations and practical husbandry restraints, the chosen slaughtering time
corresponded to the end of the spleen infection (10 days after inoculation) and
to the beginning of the IgG1 response (7 days after inoculation). On average,
the measured traits exhibited a large phenotypic variation (Tab. III), allowing
correct genetic analysis. However, a large proportion of bacterial enumerations
revealed an absence of infection, with 20% and 70% of null values in the lymph
nodes and in the spleen, respectively. The simplest explanation is that data
were collected at the end of the infection process, a large part of the animals
having cleared the bacteria from their spleen (one of the organs primarily
infected following an intravenous inoculation). From a statistical point of
view, the number of bacteria in the spleen is the only trait causing difficulties
for the genetic analysis, being only slightly variable and exhibiting a strong
asymmetrical distribution, even after a mathematical transformation.

A major hypothesis, sustained by the absence of Salmonella clinical episodes
or serology in this flock, was that the animals had no previous infection with
Salmonella. To test this hypothesis, the basal levels of specific IgG1 and IgM
antibodies were measured just before vaccination. A phenotypic variability
of these traits was observed (Tab. III), but their phenotypic correlations with
the traits measuring the response to infection were low to null (Tab. V). This
supported the hypothesis and preliminary observations. Detection of anti-
Salmonella antibodies at a baseline level is known to be due to stimulation of
the sheep immune system by normal gut flora, for instance with cross reactive
antigens from frequent Enterobacteria such as Escherichia coli.

4.2. Antibody production

Anti-Salmonella antibody titres were measured at two stages: before vac-
cination as a basal level and before slaughtering as a response to inoculation.

The IgMj and Log-IgG1, showed very different genetic determinisms (her-
itabilities and correlations with other traits). Log-IgG1, had a low heritability
and was genetically poorly correlated with other traits, with the exception of
the Log-Var-IgG1. This last correlation suggests that animals which produce a
high basal IgGl1 level, respond to new infection with a lower production of IgG1
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antibodies. Additional genetic analysis indicated a genetic variability of the
maternal effect and a strong correlation between the direct and maternal effect
on Log-IgG1, (Appendix). The most probable explanation to this observation is
that a part of the IgG1 circulating in the lambs was of maternal origin. Indeed
IgG1 antibodies transmitted by the dam to the lamb through the colostrum
persist for several weeks [34]. At 3—4 months of age, when the lambs were
observed, some of these maternal antibodies could have still been present in
the lamb.

The IgM basal titre had a high heritability value and was highly genetically
correlated with some traits that measure resistance to salmonellosis. Our results
indicated common mechanisms controlling the IgM basal level and the bacteria
clearance in the spleen, as well as body weight loss during the infection period.
The animals with the highest levels of IgM at DO, before Salmonella infection,
were the less infected after experimental inoculation with the vaccinal strain
of S. abortusovis. It should be investigated whether or not this measurement
(IgM antibody response to normal gut flora or mild contaminants, which would
avoid any challenge) is a good predictor for selection purposes.

Both IgG1 and IgM humoral responses to infection were observed. After a
primary infection, IgM production makes the first response followed by IgG1
production. Observing high genetic and phenotypic correlations between these
traits is consistent with our knowledge about the common immune mechanisms
inducing IgM and IgG1 responses. Moreover, the genetic and phenotypic
correlations between Var-IgM and Log-Var-IgG1 and bacterial counts, as well
as body weight loss, indicate that high antibody responders have more bacteria
in the lymph nodes and are losing more weight. A simple explanation could
be that animals with greater infection had a higher stimulation of their immune
system.

A number of estimations of genetic parameters for the antibody response
to antigens have been previously published. In sheep, Berggren-Thomas
et al. [ 7] found heritabilities between 0.28 and 0.38 for the humoral response to
ovalbumin antigens. In other species, multi-generation diverging selection for
antibody responses was successful. Heritability of antibody response to sheep
red blood cells was found to be between 0.18 and 0.36 in mice depending on the
design [10], and was estimated at 0.31 in poultry [39]. In pigs, the heritabilities
of these responses to various antigens were observed to be between 0.15 and
0.75[31]. In mice, experimental infection of NRAMP I congenic lines indicated
that the IgM and IgG1 anti-Salmonella antibody responses were lower in the
susceptible line [18]. These results are consistent with our observations since
IgM and IgGl titre variations were heritable and correlated.

All these studies showed that antibody response was heritable and that
heritability values were similar to those observed in sheep. Moreover, since
the genes affecting antibody production were identified in mice [42], it should
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be possible to use a comparative mapping approach to detect QTL for [gM and
IgGl titre variations from our design in the future.

4.3. General response

The other recorded traits measured more overall responses: the number of
bacteria in the lymph nodes and spleen 10 days after inoculation, the weight of
these organs, and body weight loss between vaccination and slaughtering. This
latter parameter could be considered as a measure of resilience. Our observa-
tions suggested that an animal that maintained its growth (high resilience) had
a higher IgM basal level but a lower antibody response and a lower number of
bacteria in the observed organs.

From our results, the genetic mechanisms for bacterial clearance were
similar in the left and right pre-scapular lymph nodes. The corresponding
measurements are thus indicators of the general and not of the local response
(the vaccination was always performed on the left side).

The genetic parameters for the bacterial count in the spleen (Log-BgS),
estimated with the VCE software and assuming the normality of the distribution,
may be questionable. To check these results, the genetic parameters were also
estimated for all or none of the presence/absence of bacteria traits (BgSO1),
using software dealing with a binary and a normally distributed trait (Hervé
Chapuis, pers. comm.). Genetic correlations between Log-BgS or BgS01 and
the other traits are close with a notable exception of Log-BgRN (0.51 versus
0.15) without any obvious explanations. Heritability of BgSO1 estimated with
the threshold model (h? = 0.09) is classically higher than the Gaussian model
estimate by Log-BgS heritability (h> = 0.06).

In the literature, a number of genetic parameters concerning pathogen enu-
merations have been published but only a few deal with salmonellosis [20,
24]. In chickens inoculated with Salmonella enteritidis, the heritability of the
number of bacteria in the spleen was found to be 0.10 [20] and the value for
caeca 0.08 [24]. In sheep, counts have been widely used for studying resistance
to parasitism [17]. But, to our knowledge, nothing has been published about
salmonellosis.

5. CONCLUSION

A number of traits were measured in a large number of animals to obtain a
better description of the immune parameters related to Salmonella colonisation:
an immune humoral response, bacteria clearance in lymphoid organs, etc. As
in mice and poultry, we found that sheep resistance to salmonellosis has a
genetic component: the heritabilities differed significantly from zero, ranging
from 0.10 to 0.64. Correlations between the measured traits are consistent with
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known immune mechanisms. In the near future, our observations will be used
for the detection of QTL, enabling a more direct comparison with the results
obtained in mice [46]. The very high heritability of the basal IgM level and
the correlation between this trait and other measurements of resistance could
suggest applications for selection. Further studies are nevertheless needed to
check that selection on “natural antibody” production could not induce higher
susceptibility to other diseases [14].
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APPENDIX: EVALUATION OF THE POSSIBLE MATERNAL
EFFECT ON LOG-IGG1,.

The estimation of Log-IgG1y heritability was different in the animal and
sire models. To analyze this divergence, an animal model including a maternal
genetic effect was tested to quantify this possible additional source of variation.
The heritability of the direct effect estimated under this new model was close
to the estimate obtained with a sire model, but the genetic maternal effect was
small and had a correlation of 1 with the direct effect (Tab. VI).

This correlation of 1 being questionable, we explored the sources of dif-
ficulties in the estimation procedures. Convergence problems were unlikely
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Table VI. Estimations of Log-IgG1 genetic parameters under three uni-trait models.

Sire model h2 =0.12
Animal model h2 =0.28
Animal model with maternal effect h2 =0.11 h2, = 0.06 Pam =1

hﬁ is the heritability of the direct effect, hi of the maternal effect, p,,, the genetic
correlation between both effects.

because the EM algorithm used converged to the same estimation whatever
the starting solution given. Since performances were only recorded on the last
generation, we tested the effect of the pedigree information on the quality of
the estimation of the maternal genetic variance and the correlation between
direct and maternal effects.

Simulations were done for a trait normally distributed and with the pedigree
as observed in the real population. The heritabilities of the direct and maternal
effect were always fixed at 22 = 0.11 and k% = 0.06 respectively. The
parameters varying between simulations were the genetic correlation between
both effects and the number of generations with measurements (n,). Each
situation was replicated 100 times.

Then, the direct effect heritability is correctly estimated for most of the cases
simulated. The maternal effect heritability is on average slightly overestimated.
The estimations of the genetic correlation vary between —1 and +1 for all stud-
ied situations, according to the very large standard deviation of this estimation.
The estimations are much better when the performances are measured on more
than 1 generation (n, = 2 or 4), being less biased and more precise. The
pedigree structure of our population thus does not allow a correct estimation of
the correlation between direct and maternal effects. Consequently, the direct
effect heritability was estimated with a sire model.
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