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Abstract — A Bayesian analysis of longitudinal mastitis records obtained in the course of
lactation was undertaken. Data were 3341 test-day binary records from 329 first lactation
Holstein cows scored for mastitis at 14 and 30 days of lactation and every 30 days thereafter.
First, the conditional probability of a sequence for a given cow was the product of the probabilities
at each test-day. The probability of infection at time ¢ for a cow was a normal integral, with its
argument being a function of “fixed” and “random” effects and of time. Models for the latent
normal variable included effects of: (1) year-month of test + a five-parameter linear regression
function (“fixed”, within age-season of calving) + genetic value of the cow + environmental
effect peculiar to all records of the same cow + residual. (2) As in (1), but with five parameter
random genetic regressions for each cow. (3) A hierarchical structure, where each of three
parameters of the regression function for each cow followed a mixed effects linear model.
Model 1 posterior mean of heritability was 0.05. Model 2 heritabilities were: 0.27, 0.05,
0.03 and 0.07 at days 14, 60, 120 and 305, respectively. Model 3 heritabilities were 0.57,
0.16, 0.06 and 0.18 at days 14, 60, 120 and 305, respectively. Bayes factors were: 0.011
(Model 1/Model 2), 0.017 (Model 1/Model 3) and 1.535 (Model 2/Model 3). The probability of
mastitis for an “average” cow, using Model 2, was: 0.06, 0.05, 0.06 and 0.07 at days 14, 60, 120
and 305, respectively. Relaxing the conditional independence assumption via an autoregressive
process (Model 2) improved the results slightly.
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1. INTRODUCTION

Longitudinal binary response data arise frequently in many fields of applic-
ations ([2,4]). Generally, longitudinal data consist of repeated observations
taken over time in a group of individuals. In animal breeding, repeated
observations over time on the same animal arise often. Although continuous
repeated measurements over time (e.g., test day milk yield) have received a
lot of emphasis in the last decade ([8, 12, 13]), little attention has been devoted
towards longitudinal binary responses. Most research done with binary data
has focused on cross-sectional data, where only a single response is screened in
each animal ([7,9, 10, 15]). However, a single response is frequently a summary
of performance over a period of time. For example, in mastitis studies, a cow
is considered infected in lactation if at least one episode of infection has taken
place during lactation, disregarding the number of episodes of infection or the
timing of the episodes. Furthermore, environmental conditions fluctuate in the
course of lactation. A longitudinal analysis of such data gives flexibility by
permitting a better modeling of the environmental conditions affecting each
episode of infection, and perhaps by allowing a better representation of the
covariance structure within and between animals. Also, a longitudinal analysis
of binary response data allows developing novel selection criteria other than a
single predicted breeding value for liability to disease.

In this study, an approach to the analysis of longitudinal binary responses
taken over time is developed in a Bayesian framework. The procedure was
applied to longitudinal mastitis records (absence-presence) taken in the course
of lactation using three different models for the probability of infection at
any time ¢ assuming conditional independence. A fourth model allowed for
serial correlation between residuals in the underlying scale, thus relaxing the
conditional independence assumption.

2. MATERIAL AND METHODS

2.1. Data

The data recorded between July 1982 and June 1989, were provided by the
Ohio Agricultural Research and Development Center at Wooster, Ohio, USA.
After edits (inconsistent date of control, cows with less than three records), 142
records were eliminated. The final data set consisted of 3341 test-day binary
records from 329 first-lactation Holstein cows scored for clinical mastitis at
14 and 30 days of lactation and every 30 d thereafter. Around 88% of the
cows had complete lactation and only 4% had 5 test-day records or less. The
incidence rate of mastitis (at least one infection in the lactation) was 17.8%. A
general description of the original data set can be found in [14]. A summary
description is presented in Table I. About 82% the cows did not have mastitis
in their first lactation.
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Table I. Distribution of cows by the number of mastitis cases.

Test with Number % of total
mastitis of cows
0 270 82.1
1 32 94
2 11 3.3
3 7 2.1
4 3 0.9
5 0 0.0
6 3 0.9
7 1 0.3
8 1 0.3
9 1 0.3
10 1 0.3

2.2. Methods
2.2.1. Cross-sectional binary response

Before describing the longitudinal setting, we describe a basic latent variable
model for a cross-sectional binary response. Assume the observed binary
response y; related to a continuous underlying variable /; satisfying:

1 if ;>T
i = ey

0 if [; <T,

where I; ~ N(u;, 0%), and T is a threshold value. This is the basic threshold
model of quantitative genetics ([5,9,16]). The probability of observing (1)
(success) is:

Pi=pr(l; > T|pu) =1—prl; > T|u;)

=1—¢<T_“"), @
o

where @ is the cumulative standard normal distribution function. It is clear
from (2) that it is not possible to infer u;, T and o°, separately. Hence, some
restrictions are placed on two of the three model parameters. A common choice
is to set T = 0, and 0 = 1, leading to:

Pi=pr(l; > T|n) =1 —D(—p;) = d(w,). 3)

Furthermore, p; can be linearly related to a set of systematic and random
effects as:

wi =X;f+ zu,
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where x; and z; are known incidence row vectors, and 8 and u are unknown
location vectors corresponding to systematic and random effects, respectively.
Implementation of this model in a Bayesian analysis using data augmentation
became feasible after Albert and Chib [2] and Sorensen et al. [15]. All pertinent
regional posterior distributions can be obtained using Markov Chain Monte
Carlo procedures.

2.2.2. Longitudinal binary response

Now lety; = (Vir,» Yitys - - - y,-,m,)’ be a n;x1 vector of responses for animal,
(i=1,2,...,q) observed at times 1, f, ..., t,, test days. As in the case of
cross-sectional analysis, the binary response observed at a time #; related to a
normally distributed underlying variable satisfying (1):

lij ~ N(Mij, D),

where p;; is now some function of time. In this study, three functional forms
were used to model 5, as follows:

Ali-Schaeffer model: M1

Here, the Ali and Schaeffer function [1] was fitted as a fixed linear regression
within age-season of calving classes. The conditional expected value of liability
for a cow, scored at time j in year month of test m calving in age-season r, was
assumed to follow the model:

Iijm = YMy + bor 4 b1,z + borZy; + b3y In(z; ') + ba,[In(z; )] + ;i + pi,

where 1, = conditional mean for cow i at time j, year-month m and calving
in age-season r; YM,, = effect of year-month of test m (m = 1,2, ..., 89);

b, = [bo,, b1y, by, b3y, bsyy] = 5 x 1 vector of regressions of liability by age-

days in milk j for cow i o
; u; = additive

season (five classes) of calving r; z;; =

genetic value of cow #; p; = environmental effect3lg)gculiar to all n; records of
COW 1.

The prior distributions were: YM,, ~ U[YMyin, YMpax],(im = 1,2, ..., 89);
b ~ U[Buin, Pmax], Where b is a vector containing b, vectors; u ~ N(0, Aoi);
p~ N, o2); (72 ~ U[oflmm, oﬁmax]; o2 ~ U[ogmin, agmax].

Above, o2 and a,% are the additive genetic and permanent environmental
components of variances and A is the additive relationship matrix. Bounds
were set to large values to avoid truncation of parameter space. The joint prior
had the form:

p(YM, b, u, p, 02, 02|hyper—parameters) = p(YM)p(b)p(u)p(az)p(G;).

a
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Random regression model using the Ali-Schaeffer function: M2

This model is similar to the previous one, but the genetic value was modeled
via five-random regression parameters, leading to:

i = YMy + (bor 4 uoi)) + (b1 + w11)zj + (boy + 21)7
+ (b3, + u3;) ln(ziyl) + (bay + M4i)[1H(Zl~;l)]2 + i

The same prior distribution was used for parameters defined earlier. The
prior distribution of the genetic regressions was:

ug, Uy, Uy, U3, |Gy ~ N0, A ® Gy),

where Gy is a 5 x 5 matrix of genetic (co)variances between the random
regression parameters. The prior for Gy was uniform, but with bounds for each
non-redundant element (variances and covariances).

The Wilmink hierarchical model: M3

A three-stage hierarchical model was implemented using the Wilmink func-
tion to relate the mean of the underlying variable to time:

Wijm = YM, + yoi + yiitij + v2i exp(—0.05t;) + p;,

where YM,, and p; are as defined before, #; are days in milk on test-day j for
cow i and y; = (Voi, Y1i> Y2i) @ 3 x 1 vector of the Wilmink’s parameters for
animal i. At the second stage of the hierarchy, a mixed linear model was
imposed to the parameters of the Wilmink function, as follows:

y=XB+ Zu + e,

where y is a vector containing all parameters for all cows, § includes effects
of age-season of calving as parameters, u is a vector of additive genetic values
associated with all the Wilmink function parameters, and e is a second-stage
residual term.

To complete the hierarchy, the following prior distributions were assigned
to the model parameters:

IB ~ U[,Bmim ,Bmax]v
lllK() ~ N(O, A %) K()),

e|ZO:~N<0,I®ZO:>,

where Ky and ), are 3 x 3 matrices of genetic and residual (co)variances
between the parameters of the Wilmink function, respectively. For both
matrices, flat and bounded priors were adopted.
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2.2.3. Heterogeneity of the residual variance

Based on model comparison results, the random regression model using the
Ali-Schaeffer function (M2) was used to investigate the effect of allowing for
dependence of liabilities within a cow in the course of lactation (M4). A first
order autoregressive process (AR(1)) was assumed. In this model, a serial
residual correlation pattern within-cows was adopted. The resulting residual
(co)variance matrix, Ry, has known diagonal elements (equal to 1) and the
covariance (correlation) between liability at test-days i and j is given by:

cov(i, j) = p,
where p € [—1, 1], so:
Lo o 007

1 p p 0’

Ry = .

0

0

1

The prior distribution of p was uniform in [—1, 1].

2.2.4. Implementation

A data augmentation algorithm was implemented. For each of the three
models M1, M2 and M3, the parameter vector was augmented with 3341 latent
variables and with 171 genetic values of known ancestors in each of the three
models. The conditional posterior distributions are in known form for all
parameters, so Gibbs sampling is straightforward. The needed conditional dis-
tributions are normal for systematic, genetic and permanent eftects (b, 8, u, p),
truncated normal for the 3341 latent variables, scaled inverted chi-square for the
genetic variance in the first model (o) and for the permanent effect variance in
the three models (og), and inverted Wishart for the 5 x 5 genetic (co)variance
matrix in M2 (Go) and the 3 x 3 genetic and residual (co)variance in M3
(Ko, >0

For the autoregressive random regression model (M4), all conditional pos-
terior distributions, except for p, are in closed form. The sampling of liabilities
is more involved because of the non-zero correlation between test-days that
induces to truncated multivariate normal distribution. In order to sample from
the multi-dimensional posterior density, p(l;|y;, 8, u, p, Ry), a method of com-
putation consisting of successive sampling from a set of truncated univariate
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normal distributions was adopted. The univariate distributions involved in this
sampling scheme have the form:

pUill_, yi, B, u, p, Ry),

where [;; is the element j of the vector of liabilities for cow i and
1_j = (li, lnn, ..., ljj—1)) are the liabilities for cow i except /;;. Inverse cumu-
lative distribution sampling [6] was used to draw samples from the conditional
posterior distribution of the latent variable. This technique is more efficient
than a rejection-sampling scheme.

As noted before, the diagonal elements of the residual (co)variance matrix,
Ry, are set equal to one and hence, the only element of this matrix to sample
in the autoregressive model is p. Its conditional distribution is not in a closed
form, so a Metropolis-Hastings algorithm was used.

2.2.5. Comparison of Models

The Bayes factor, as defined by Newton and Raftery [11], was used to assess
the plausibility of the models postulated. The marginal density of the data under
each one of the models was estimated from the harmonic means of likelihood
values evaluated at the posterior draws, that is:

-1
N

A 1 . _
pyIM;) = NZ[P(YWU),Mi)]I ,

=1

where y is the vector of observed binary responses and 8% is the Gibbs sampling
sample j of parameters under model M;. The estimated Bayes factor between
models M; and M is:
_ pOIM:)

pOIM))

M;.M;

2.2.6. Genetic parameters and model selection criteria

For M2, the genetic covariance for liability to mastitis between two times, ¢;
and #; was defined to be:

CoV(ti, ) = V(t)GoV (1)),

where Gy is the 5 x 5 genetic (co)variances for the random regression parameters
and
Viy=1[1 t £ In@t" In@ "

1

This definition sets the strong assumption that genetic expression along lacta-
tion is completely driven by time, since Gy is not time-dependent.
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For M3, the genetic covariance for liability to mastitis between two times
was:
cov(ti, 1j) = W (1) Kow (1),

where K is a 3 x 3 genetic (co)variances matrix between the Wilmink function
parameters and:
w() =11 t exp(—0.05)].

Heritabilities of liabitity to mastitis using the three models were defined as:

2 o,
=4 (MDD,
Zrorr1y
V() GV (1)
W= M2),
VOGO 402+ 1 (M2)
5 w (1) Gow (1)

he = M3).
T WK+ YWt o2 41

For the model with the autoregressive structure, heritability is computed as
for M2.

Longitudinal data allows developing new selection criteria other than a single
predicted additive genetic value for acow. Potential selection criteria from these
models include, for example, the probability of no mastitis during lactation, the
probability of at most a certain number of episodes, and the expected number
of days a cow has mastitis. In this study, the following arbitrary criteria were
used:

(a) Expected number of days with mastitis (MD):

300

MD; =) | ()
j=14
0 <MD, < 287.

(b) Probability of mastitis during lactation:

n;

pi() =1=T]01 = @)

j=1
(c) Probability of no mastitis during lactation:
pi(0) = 1 — pi(1).

(d) Expected fraction of days without mastitis (NMD):

300
NMD; =Y "[1 — ®(uy)] = 287 — MD;.
j=14



Longitudinal binary data 465

(e) Probability of no mastitis at 30, 150 and 300 days:

P(izo = 0, yi150 = 0, yizoo = 0) = pi30(0)pi150(0)piz00(0).

Some of the selection criteria are a function of the others. However, for
demonstration purposes and to illustrate the flexibility of the models, all these
quantities were inferred from their posterior means.

Computations were by Gibbs sampling and Metropolis-Hastings algorithms,
with a burn-in period of 20000 samples. Analysis was based on 50000
additional samples, drawn without thinning.

3. RESULTS AND DISCUSSION

The posterior mean for heritability of liability to mastitis was 0.05 using the
first model, where the breeding value was assumed constant along lactation.
Even though the data set used in this analysis was too small to draw a definite
conclusion on genetic parameters, this estimate was similar to the values found
by [14]. Under Models 2, 3 and 4, heritability is a function of time. Figure 1
shows the variation of heritability throughout lactation using Models 2, 3 and 4.
For Model 2, heritability was high at the beginning of lactation (0.27 at day 14),
dropped quickly to reach values close to 0.05 in the middle of lactation, and
then increased by the end of lactation. A similar pattern was observed using the
random regression model for continuous test-day data (milk yield). A possible
explanation for such behavior was attributed in part to the heterogeneity of the
residual variances, and by assuming a constant permanent environmental effect
along lactation. Given the small amount of information in our data set, we did
not test the effect of applying a random regression for the permanent effect. The
same pattern was observed for heritability throughout lactation using Model 3.
However, this time, the heritability at the beginning of lactation was much
higher (0.57 at day 14) compared with Model 2. Also, the lowest values for
heritability were in the middle of lactation. With Model 4, the heritability was
lower at the beginning of lactation (0.21 at day 14) compared with M2, although
it is still high for the trait under analysis, indicating the necessity of treating
the permanent effect as a function of time. For all four models, the posterior
standard deviation of heritability was high and ranged from 0.006 to 0.18. The
posterior mean and standard deviation of the correlation parameter were 0.19
and 0.07, respectively. This estimate indicates a low correlation between two
successive test-days. The correlation declines quickly as the interval between
test-days increases; it drops to 0.04 and 0.007 when the interval between
test-days is around 60 and 90 days, respectively.

The Bayes factor was 0.011 between Model 1 and Model 2, 0.017 between
Model 1 and Model 3 and 1.537 between Model 2 and Model 3. These results
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Figure 1. Heritabilities (posterior means) along lactation using Model 2, Model 3 and
Model 4.

show that the data favored models with a genetic component in the regression
(Model 2 and 3). Although, the results were not conclusive, Model 2 received
more support by the data than Model 3. Comparing Model 2 and 4, the Bayes
factor was 1.10 in favor of the latter, indicating that the heterogeneity of residual
variance has to be postulated by the statistical model.

New selection criteria, including the expected number of days with mastitis,
the probability of no mastitis during lactation and the probability of at most a
certain number of episodes with mastitis, were computed for the best and worst
cows using Model 2. Table II presents the posterior mode and high posterior
density interval at 95% for the five best and worst cows for the expected number
of days with mastitis, respectively. For the five best cows, the expected number
of days with mastitis ranged between 8 and 9 days. At a phenotypic level,
these cows did not experience any episodes of mastitis during their lactation.
However, for the five worst cows, the expected number of days with mastitis
ranged from 151 days for a cow having six episodes of mastitis during lactation
to 223 days for a cow having 10 episodes of mastitis. Table III presents the
probability of no mastitis at 30, 150 and 300 days for the best and worst five
cows. Such probability was higher than 0.92 for the best cows, and, in fact, they
never got mastitis on the mentioned dates. For the worst cow, the probability
was lower than 0.01.
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Table II. Posterior mode and HPD (95%) for the expected number of days with
mastitis for the five best and worst cows using Model 2.

Cow Mode HPD (95%)
5 best cows

12 7.9 37,124
126 8.1 4.6,12.9
314 8.5 48,134
278 8.8 4.5,12.9
181 9.0 5.2,14.1
5 worst cows

271 151.3 130.2, 176.6
115 165.9 141.1, 183.2
224 171.5 153.9, 195.6
143 177.5 155.2,192.3
109 222.9 196.5, 251.8

Table III. Posterior mode and HPD (95%) for the probability of no mastitis at 30, 150
and 300 days of lactation.

Cow Mode HPD (95%)
5 best cows

324 0.952 0.894, 0.979
9 0.941 0.871, 0.983
283 0.936 0.918, 0.992
131 0.932 0.833,0.974
126 0.923 0.783, 0.957
5 worst cows

224 0.011 0.003, 0.029
271 0.009  0.0016, 0.027
14 0.008 0.0014, 0.023
111 0.006  0.0022,0.018
143 0.004  0.0008, 0.015

4. CONCLUSION

This study demonstrates the feasibility and advantage of a longitudinal
analysis of sequential binary responses. A random regression model proved to
be superior than a model with constant genetic value over time based on the
Bayes factor results. The proposed model allowed not only a better modeling
of systematic effects associated with each episode of mastitis, but also defining
new selection criteria other than a single predicted additive genetic value for
a cow. Furthermore, longitudinal data analysis accounts for the number of
episodes of mastitis along lactation as well as their timing. Relaxing the
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conditional independence assumption via an autoregressive process helped
improve the results.

The methodology presented in this study is being applied to large data sets
in Norway and Denmark.
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