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Abstract — Covariance functions have been proposed to predict breeding values and genetic
(co)variances as a function of phenotypic within herd-year averages (environmental parameters)
to include genotype by environment interaction. The objective of this paper was to investigate
the influence of definition of environmental parameters and non-random use of sires on ex-
pected breeding values and estimated genetic variances across environments. Breeding values
were simulated as a linear function of simulated herd effects. The definition of environmen-
tal parameters hardly influenced the results. In situations with random use of sires, estimated
genetic correlations between the trait expressed in different environments were 0.93, 0.93 and
0.97 while simulated at 0.89 and estimated genetic variances deviated up to 30% from the sim-
ulated values. Non random use of sires, poor genetic connectedness and small herd size had
a large impact on the estimated covariance functions, expected breeding values and calculated
environmental parameters. Estimated genetic correlations between a trait expressed in different
environments were biased upwards and breeding values were more biased when genetic con-
nectedness became poorer and herd composition more diverse. The best possible solution at this
stage is to use environmental parameters combining large numbers of animals per herd, while
losing some information on genotype by environment interaction in the data.
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1. INTRODUCTION

The application of genetic covariance functions (CF), to model traits in
dairy cattle by predicting breeding values as a function of an environmental
parameter (EP), has been suggested several times [1, 2, 8, 13]. The change of
an animal’s expected breeding value (EBV) across environments represents its
environmental sensitivity. The CF includes differences in the environmental
sensitivity of genotypes for a trait, also known as the genotype by environment
interaction (G X E), in the variance components, regardless of whether it origi-
nates from scaling effects or re-ranking of animals across environments. This is
in contrast to the usually applied methods for breeding value prediction that ei-
ther (1) ignore environmental sensitivity or (2) ignore re-ranking by correcting
only for heterogeneity of variances [9]. In international breeding value estima-
tion, where G X E is included in the model by regarding records of animals in
different countries as different traits [11], both scaling and re-ranking are con-
sidered. However, this method has several limitations, for example the group-
ing of animals based on country borders while herd environments in small
neighbouring countries may be much more similar than herd environments in
different parts of a large country [14]. Also, a large number of countries im-
plies a large number of traits, which increases the chance that the estimated
genetic covariance matrix is not positive definite [6], indicating that problems
are likely to appear in the estimation of variance components for such multi
trait models. Therefore, the application of CF is of interest to take G X E into
account for example in international breeding value estimation, or to investi-
gate the importance of G X E.

In applications in dairy cattle, an EP is usually calculated as the mean phe-
notypic performance of a trait in an environment [1,2,8,13], which implies that
both average genetic level within the herd and the animals own true breeding
value (TBV) are included in the EP [1,2,8]. Confounding between EP and TBV
might affect EBV for example in herds with a non-average genetic composi-
tion or relatively small herds, since it might be difficult to disentangle genetic
and environmental effects. Kolmodin et al. [8] tried to partly solve this prob-
lem by calculating EP from more animals in the herd, rather than only from
animals whose sires are being evaluated. Another problem with the applica-
tion of CF is that low numbers of daughters per sire might lead to problems in
predicting breeding values. The number of records from daughters of a sire is
the number of data points through which the curve representing the sires’ EBV
is fitted and extrapolation of curves of sires with a low number of daughters
to extreme environments might be required. Another typical animal breeding
problem is that herds with better management tend to use different sires than
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herds with a low level of management. This might lead to poorer genetic con-
nectedness between herd environments but also to a covariance between geno-
type and herd environment. Hence, it is not known whether CF can handle
these typical animal breeding problems, such as limited genetic connectedness
between herds or preferential treatment, that exists in both within country and
international breeding value estimation.

The objective of this paper was to investigate the influence of definition of
EP and levels of preferential sire use in herds on expected breeding values
and estimated genetic variance across the range of EP in one population by
stochastic simulation. Data structures were varied by changing the number of
daughters per sire and average number of animals per herd for traits with low
and high heritabilities, applying three levels of the G X E interaction.

2. MATERIALS AND METHODS
2.1. Simulation

Data were simulated to compare estimated variance components, calculated
EP and expected breeding values from different models. A record was sim-
ulated including the animals breeding value, a herd effect and a residual. A
breeding value (a) was simulated as the average of the parents breeding values
plus a Mendelian sampling term (ms). Each component included an intercept
(ap and msp) and a linear regression on the environment (a; and ms;):

a9 l ao L |40 L |™mso
a 2 ai sire ai dam msy ,
where )
Tay Tap.a ms
Var(a) = [ “ ], s = [ o1~ N(0, Var(ms))
Tapar Og msi
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/20-a0,a1 /ZO-al

The Mendelian Sampling term was simulated dependent on the environment,
to ensure that it explained half of the total genetic variance in each given envi-
ronment. The breeding value in a specific environment with a simulated herd

Zoherd

effect herd was calculated as: TBVjorq = z;wr 4% where zjerq = [ , and

Zlherd
20,4 and zi,,,, are respectively the level and slope of the animals breeding
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value. TBV .4 had a normal distribution N(O, z;ler 4 Var(a)zpera) for each value
of herd. Application of reaction norm models as a function of herd average of
the analysed trait showed that genetic variances increase with increasing herd
level of the trait [1, 8]. In order to simulate mainly increasing genetic variance
across environments, 99% of simulated herd effects (herd) got positive simu-
lated values by sampling from a normal distribution N(1, 1/9). The residual
was simulated homogeneously across environments by sampling from a nor-
mal distribution N(0, 02), where 02 = 1 — 0'30.

0'50 and 0'51 were set to 0.04 and 0.02 to reflect a low heritability trait (e.g.
a fertility trait) and to 0.4 and 0.2 to reflect a high heritability trait (e.g. a
milk production trait). The correlation between level and slope (4, 4,) Was set
to —0.5, 0 or 0.5. The simulated genetic correlation between the trait expressed
in different environments was calculated by dividing the genetic covariance
between two environments, with simulated herd effects of herd; and herd,, by

the square root of the product of the genetic variances in both environments:

Zherd, VAT (@Zherd,

)]

rgherdlheerZ = B ;
\/thzl Var(@zherd, * 2,4, Var(@znerd,

As a result of the chosen variances, both the low and high heritability traits
had simulated values for ry, , o5 e.a-15 Of 0.74,0.89 and 0.96 representing dif-
ferent amounts of re-ranking for r,, 4, being respectively —0.5, 0 or 0.5. Simu-
lated heritabilities across environments for both the low and high heritability
traits are shown in Figure 1.

2.2. Population structure

Different values were considered for the input parameters (Tab. I). All
values in bold were used as default in situations where different values
were considered for the other parameters. A simulated population contained
50000 animals, 500 or 2000 sires and 1000 or 5000 herds. The number of
daughters per sire was 25 or 100. The average number of animals per herd was
10 or 50. Only one generation of animals was simulated and no selection was
considered.

Daughters of sires were either randomly or non-randomly assigned to herds
following three different scenarios, based on the differences in the selection of
sires and herds and resulting genetic connection between the groups of herds
(Tab. II). In the first scenario sires were assigned randomly across herds. In the
second scenario (selective use of sires), sires were ranked based on the sim-
ulated breeding value of level. Both sires and herds were split in five equally
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Figure 1. Simulated heritabilities of the low and high heritability trait as a function of
the herd environment for situations with correlations between level and slope of —0.5,
0and 0.5.

Table I. Considered input parameters for simulation.

Input parameter Values

Number of animals per herd 10 or 50¢

Number of daughters per sire 25 or 100

Use of sires across herds random, selective and herd dependent
Residual variance (0'2) 1- a’ﬁwel

Correlation between level and slope 0.5, 0 or 0.5

Variance for level (o2, ) 0.04 and 0.4

Variance for slope (0%, ) 0.02 and 0.2

slope

“ Values in bold are default values.

sized groups; sires based on ranking of their breeding values for level and herds
at random. Daughters of sires from the first group were most likely assigned
to herds of the first group; daughters of sires from the second group were most
likely assigned to herds of the second group, etc. The chances of a sire from
group i to have a daughter in group of herds j, are shown in Table III. The third
scenario involved non-random grouping of herds based on an increasing sim-
ulated herd effect combined with the selective use of sires, to create a positive
correlation between the herd effect and sires breeding values for level. This
scenario is referred to as the herd dependent use of sires.
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Table II. Different scenarios for the use of sires, given the composition of groups of
herds and sires and genetic connections between groups of herds.

Use of sires Groups of herds Groups of sires Genetic connection

between groups of herds

Random No groups No groups Strong
Selective Random TBV*“ of level Poor
Herd dependent Simulated herd effect TBV of level ~ Poor

¢ True breeding value.

Table III. Chances that a daughter of a sire from one of the five groups of sires was
assigned to a herd in one of the five groups of herds for selective use of sires.

Group of herds
Group of sires 1 2 3 4 5
1 0.8318 0.1381 0.0247 0.0045 0.0009

2 0.1381 0.7080 0.1265 0.0229 0.0045
3 0.0247 0.1265 0.6976 0.1265 0.0247
4 0.0045 0.0229 0.1265 0.7080 0.1381
5 0.0009 0.0045 0.0247 0.1381 0.8318

2.3. Analysis of simulated data

The general model used to analyse the simulated data, with a linear random
regression on a calculated EP, was:

1
Yjk = L+ hrj+ Z @i Pij +e ji,
i=0
where: y i is the performance of cow k; u is the average for the trait across all
animals; hr; is either a fixed effect of herd j or a fixed polynomial regression
common to all evaluated animals on phenotypic average within a herd (see

1
below); > aj P;; is the additive genetic effect of animal k in herd j where a;;
i=0
is coefficient i of the random regression on a polynomial (pol(x,t) option in

ASREML) [4] of environment of animal k and p;; is element i of a polynomial
resembling the calculated EP of herd j; and e is the residual effect of cow k
in herd j.

Polynomials were used to rescale EP in order to facilitate the convergence
of the model. The estimated genetic variance matrix S had variances of level
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and slope on the diagonal and covariances between those on the off-diagonals.
The estimated genetic variance in an environment with EP equal to EP1 was
calculated as ®gp; SDgp;’, where Dgp; is a vector with polynomial coefficients
of EP1 on each row. The estimated genetic covariance between environments
with EP equal to EP1 and EP2, respectively, is calculated as ®gp; S®gp;’. To
compare the results to simulated values, all estimates of genetic variance com-
ponents were calculated back from the polynomial scale to the original scale
per replicate and then averaged across replicates. ASREML [4] was used for
all analyses. For all situations considered, 50 replicates were simulated, which
was sufficient to obtain reliable averages in initial test analyses.

2.4. Modelling of EP

Three models were considered for an estimated herd effect (hr;) and calcu-
lated EP:

Model 1. hr; is a fixed effect of the herd as normally used in breeding value
estimation models [5] and EP was calculated as the average pheno-
typic performance of the trait within a herd.

Model 2. hr; is a fifth order fixed polynomial regression common to all eval-
uated animals [12] on EP, which was calculated as the average phe-
notypic performance of the trait within a herd.

Model 3. hr; was a fixed effect of herd and EP was iteratively estimated with
the general model. In the first iteration EP was equal to the average
phenotypic performance of the trait in a herd. In all consecutive iter-
ations EP was equal to the value of the fixed herd effect, estimated in
the previous iteration. The iteration was stopped if all EP were equal
to the values of the corresponding estimated fixed herd effects, i.e.
the difference between each newly estimated fixed herd effect (hr )
and EP from the last iteration was smaller than the convergence cri-
terion (a maximal absolute change of 0.001).

Model 3 was expected to remove possible bias from EP, resulting from a non-
random use of sires or low numbers of animals per herd. Model 3 resembled
the simulation model most, since the calculated EP was equal to the estimated
fixed herd effect. In situations where all three models were applied, a single
data set was simulated in each replicate and analysed with each of the three
described models.
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2.5. Comparison of different methods to model EP

The effects of description of an EP were investigated by comparing esti-
mated variance components, expected breeding values and calculated EP to
simulated values for the different scenarios across all 50 replicates. Estimated
variance components were used to calculate estimated genetic correlations of
the trait expressed in different environments. Also, the correlations between
TBYV and EBV of sires were calculated for different values of EP to indicate
problems arising from the selective use of sires when applying CF.

3. RESULTS
3.1. Variance components, breeding values and EP

Each replicate gave estimates of the residual variance, variances of level and
slope and the covariance between level and slope. Averages and standard de-
viations of estimated variance components across the 50 replicates are shown
in Table IV for the low and the high heritability trait with r,, ,,of 0.0 and ran-
dom use of sires. The trends were generally the same for the low and high
heritability trait. Variance components of models 1, 2 and 3 were hardly differ-
ent. Estimated variances of the slope were underestimated for situations with
10 animals per herd.

Genetic correlations between level and slope for all situations considered
in Table IV were estimated on average 0.2 higher than simulated (results not
shown). In replicates where the estimated correlation between level and slope
became higher than 1, the (co)variance matrix was forced to be positive definite
by fixing the correlation at 0.999 [4]. For the low heritability trait, the variance
of the slope became very small in a considerable number of replicates leading
to fixation of the correlation between level and slope at 0.999 and on average
to a high estimate of the correlation between level and slope. For the high
heritability trait, the overestimation of the correlation between level and slope
mainly resulted from an overestimation of the covariance between level and
slope.

In each replicate, values were calculated for EP for all herds and breeding
values of level and slope were predicted for all animals. Average correlations
between simulated herd effects and calculated EP, and simulated and expected
breeding values of level and slope of sires, are given in Table V for the high
heritability trait, r4,,, = 0.0 and random use of sires. Different definitions
of EP hardly influenced the correlations between simulated herd effects and
calculated EP. The EP of models 1 and 2 were both calculated as phenotypic



Table IV. Estimated variance components for the different models, given different data structures, random use of sires, a low or high
heritability trait and a simulated correlation between level and slope of 0.0.

Trait Number of Number of Model o oLl T Tltel slope Covariance
daughters per sire  animals per herd (0.96/0.60)>  (0.04/0.40)*  (0.02/0.20)" (0.0 structures forced pd¢

Low h? 25 50 1 0.9600.009 0.0580.026 0.023¢.021 —0.0100,020 18

25 50 2 0.942 009 0.0560.025 0.022¢,021 —0.0080 021 17

25 50 3 0.9600.009 0.054¢.027 0.023¢.020 —0.0080,021 18

100 50 1 0.961¢,009 0.0430.015 0.018¢.010 —0.001¢,012 18

100 50 2 0.943 009 0.041¢,017 0.018¢.010 —0.001¢,012 18

100 50 3 0.961¢,009 0.0430,015 0.018¢.010 —0.001¢,012 18

100 10 1 0.9630,009 0.045¢,012 0.0090,008 0.002 00s 16

100 10 2 0.8730.007 0.035¢,009 0.006000s 0.004 006 26

100 10 3 0.9630009 0.044¢,012 0.0090,008 0.003¢,00s 18
High h? 25 50 1 0.6019019 0.401¢,037 0.1260,036 0.0380.033 0

25 50 2 0.6000,018 0.3830.036 0.124,35 0.0379.033 0

25 50 3 0.6019019 0.4000,035 0.131¢,036 0.0360,034 0

100 50 1 0.6080.028 0.403¢.042 0.1340.026 0.0299,025 0

100 50 2 0.6060 026 0.385¢.041 0.1310.025 0.0299,025 0

100 50 3 0.6080.028 0.402¢ 042 0.1400.026 0.0260 25 0

100 10 1 0.609 025 0.459.032 0.0460.013 0.0499013 1

100 10 2 0.5930.021 0.3650.026 0.037.011 0.0499.011 2

100 10 3 0.6080.025 0.453¢.032 0.0519.015 0.0500,015 1

¢ Standard deviations are given as a subscript. Standard error is equal to the standard deviation divided by V0.
b Simulated values for the low and high heritability trait, respectively.
¢ Positive definite.

SULIOU UOI0BAI SUI[[OPOU SUOTOUN] QOUBLIBAOD)

LoV
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Table V. Correlations between simulated herd effects and calculated environmental
parameters (herd environment) and between simulated and estimated values of level
and slope of breeding values of sires, given a high heritability trait, random use of
sires, different data structures and a simulated correlation between level and slope
of 0.0.

Number of Number of Model Herd Level® Slope*
daughters  animals per environment”
per sire herd

25 50 1 0.9050.005 0.7180.000  0.5460.016
25 50 2 b 0.7170.009  0.5460.016
25 50 3 0.912.005 0.7180.009  0.5470.016
100 50 1 0.9050.006 0.7850.015  0.6730.028
100 50 2 b 0.7840015  0.6730.028
100 50 3 0.9120.006 0.7850.015  0.6750.028
100 10 1 0.6890.008 0.7830.020 0.6240030
100 10 2 b 0.7820020  0.6230,031
100 10 3 0.6890.008 0.7830.000 0.6280.029

“ Standard deviations are given as a subscript.

b Environmental parameters used in models 1 and 2 are calculated in the same way, leading to
the same correlation between simulated herd effects and calculated environmental parameters
for models 1 and 2.

herd averages and therefore were the same. Generally, the values of EP in
model 3 converged after two or three iterations. The number of animals per
herd had a larger effect on the correlations between simulated herd effects and
calculated EP, than the number of daughters per sire. The number of daughters
per sire had a larger effect on the correlations between simulated and expected
breeding values of levels and slopes of sires, than the number of animals per
herd.

Genetic variances across environments estimated by model 1 are shown in
Figure 2 for the high heritability trait with r,, 4, equal to 0.0. Regardless of the
data structure, the curve of the estimated genetic variance was flatter than the
curve of the simulated genetic variance. The number of animals per herd had a
strong influence on the estimates of the genetic variance, while the influence of
the number of daughters per sire was limited. In the situation with 100 daugh-
ters per sire and 10 animals per herd, estimated genetic variance deviated up to
30% from the simulated value. The simulated value of ryg, s g5, Was 0.89
(given r4, 4, = 0.0), while estimated values were 0.93, 0.93 and 0.97 (results
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Figure 2. Estimated (and simulated) genetic variance of the high heritability trait as
a function of the herd environment, given the random use of sires and a correlation
between level and slope of 0.0, for situations with 25 daughters per sire (*) and 50 an-
imals per herd (**), 100 daughters per sire and 50 animals per herd and 100 daughters
per sire and 10 animals per herd.

not shown) for situations with 25 daughters per sire and 50 animals per herd,
100 daughters per sire and 50 animals per herd and 100 daughters per sire and
10 animals per herd, respectively.

3.2. Selective use of sires

Averages and standard deviations of estimated variance components of
model 1 for selective use of sires are shown in Table VI. Residual variance was
strongly overestimated and the variances of level and slope were strongly un-
derestimated in all situations. For situations with selective use of sires, model 3
gave results (not shown) that were comparable to model 1, indicating that
model 3 was not better in distinguishing between environmental and genetic
effects than model 1.

Correlations between simulated herd effects and calculated EP and between
simulated and expected breeding values of sires of level and slope are shown in
Table VII. Correlations for herd environment and sires breeding values of level
were lower than for situations with random use of sires, while correlations of
the slopes of sires breeding values were slightly higher. Biased estimates of
EP combined with underestimated variances of level and slope resulted in an
underestimation of the genetic variance across environments in all situations
with selective use of sires (results not shown).



Table VI. Estimated variance components of model 1 for the high heritability trait, given selective use of sires and different data

structures.
Correlation Number of Number of ola na fl(fpe Jovel.slope Covariance

leveland  daughters animals (0.60)° (0.40)" (0.20)° structures forced
slope per sire per herd positive definite

-0.5 25 50 0.7140010 0.1470020  0.0990.025 —0.034¢ 025 0

-0.5 100 50 0.6980015 0.152p027  0.0880022  —0.0200.020 0

-0.5 100 10 0.6960014 0.1579020 0.041p000  0.0040.010 0

0 25 50 0.8460016 0.1479024 0.0780p021  0.0329018 2

0 100 50 0.7750.008 0.2119038 0.0800018  0.0450.016 2

0 100 10 0.7850020 0.2399038  0.0380012  0.0470.012 3

0.5 25 50 1.0370017 0.1399027 0.0640021  0.061¢.020 20

0.5 100 50 0.8750040 0.299.064 0.0580015  0.087¢.017 11

0.5 100 10 0.8850.042  0.348p.0s5 0.0330.000  0.069.010 9

¢ Standard deviations are given as a subscript.

b Simulated values.

¢ Simulated values of covariance between level and slope were —0.141, 0.0 and 0.141 for situations with correlations between level and slope of —0.5,

0.0 and 0.5, respectively.

00¢
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Table VII. Correlations between simulated herd effects and calculated environmental
parameters (herd environment) and between simulated and estimated values of level
and slope of breeding values of sires using model 1, given a high heritability trait,
selective use of sires and different data structures.

Correlation Number of  Number of Herd Level” Slope“
level and daughters  animals per environment”

slope per sire herd

-0.5 25 50 0.8310.010 0.2770.016  0.4660 023

-0.5 100 50 0.8270.012 0.5000.042  0.5110.030

-0.5 100 10 0.6720.009 0.4950.028  0.482¢ 030

0 25 50 0.7280.013 0.392p014  0.6610015

0 100 50 0.7390.018 0.6620.033  0.7070.031

0 100 10 0.5950.014 0.6460.037  0.6850.028

0.5 25 50 0.6400.020 0.4900.017  0.7090.013

0.5 100 50 0.6340.022 0.8000.019  0.8400.018

0.5 100 10 0.5250.013 0.7880.026 0.8310.018

“ Standard deviations are given as a subscript.

Herd dependent use of sires, the situation with a confounding of sires breed-
ing values of level and simulated herd effect, was only applied to the situation
with 100 daughters per sire and 50 animals per herd with a correlation between
level and slope of 0.0. The results (not shown) were comparable to the results
for the selective use of sires.

3.3. Expected breeding values across environments

For the situation with 100 daughters per sire, 50 animals per herd, a corre-
lation between level and slope of 0.0 and all three scenarios of selective use of
sires, simulated and expected breeding values were calculated for three values
of EP. Chosen values were median values of EP of groups of herds 1, 3 and 5
in the case of herd dependent use of sires. Averages and standard deviations
of EBV across replicates are shown in Table VIII. The group of sires 1 rep-
resented the 100 sires with the lowest simulated breeding values for level, the
group of sires 3 represented the 100 sires with simulated breeding values for
level around average and the group of sires 5 represented the 100 sires with
the highest simulated breeding values for level. Averages of simulated breed-
ing values of groups of sires in Table VIII were independent from EP, due to



Table VIII. Simulated and estimated average breeding values® for groups of sires 1, 3 and 5 in case of random, weak, strong or herd
dependent selective use of sires given the high heritability trait, 100 daughters per sire and 50 animals per herd with a correlation
between level and slope of 0.0.

Average breeding values Correlations
EP EP
Use of sires ~ Group of sires 0.57 1 1.43 0.57 1 1.43
Simulated” 1 —0.8860.047 —0.888p0s8 —0.8900.073
3 —0.002p042  —0.003p0s6 —0.0040.072
5 0.8780.051 0.8760.065 0.8740.0%2
Random 1 —0.7560047  —0.8300.049  —0.905¢ 054 0.8900020 0.928p012  0.9200.014
3 —0.0020p.037  —0.003p.043  —0.0030,050 0.8850020 0.9100015 0.9110.016
5 0.7430.048 0.8160.052 0.8900.059 0.8990.020 09340013  0.9279015
Selective 1 —0.49700s1  —0.559.05s1 —0.621¢0s3 0.9020016  0.9350013  0.9270.016
3 0.0160,033 0.0130.038 0.0100,043 0.8950020 0.909.015  0.9100.018
5 0.4630.059 0.5310.063 0.5990.069 0.8980019  0.9319013 0.924¢015
Herd 1 —0.5070063 —0.5600064 —0.614¢067 0.8900.023  0.8650.025  0.824¢.030
dependent 3 0.024¢.046 0.018¢.052 0.011¢.059 0.9019017 0.912p014 09119015
5 0.442 060 0.5100.064 0.5780.070 0.8620026  0.939012  0.951¢.009

¢ Breeding values were calculated as the sum of level and EP*slope. Standard deviations are given as subscripts.
b Simulated values were averaged across the three situations.

08

‘P12 sae) "Td'IN



Covariance functions modelling reaction norms 503

the correlation between level and slope of 0.0. For groups of sires 1 and 5,
EBVEgp-9.57 and EBVEp-| 43 were on average closer to zero than simulated. As
the data became more complex, average EBV of groups of sires 1 and 5 were
closer to zero.

Correlations were calculated between simulated and expected breeding val-
ues for each EP level (Tab. VIII). Correlations were slightly higher for EP =
1.00 and EP = 1.43. Correlations were the same for random and selective use
of sires. For herd dependent use of sires, correlations tended to be the highest
in the group of herds where sires had most daughters.

4. DISCUSSION
4.1. Modelling of EP

In this study we started with an idealised situation where the simulation
model and the model used to analyse the data, were as similar as possible. One
of the major differences between the simulation and estimation models was
that EP in model 1 and 2 were calculated as phenotypic averages since they
are generally modelled in a reaction norm model [1,2,8, 13]. The proposed al-
ternative model (model 3) was expected to correct for genetic influences on EP
by iteratively estimating the fixed herd effect in the evaluation model and use
this as EP in the next iteration. Model 3 was tested because we expected that
this model had closer resemblance with the simulated (and probably the true)
model. All models used a linear random regression on EP to model genetic
effects. Model 1 performed slightly better than model 2, which likely results
from the fact that model 1 exactly fitted the simulation model and used more
degrees of freedom to estimate herd effects. The results of model 3 were not
different from the results of model 1 even for the situation with selective use
of sires and model 3 used about twice as much calculation time as model 1.
Failure of the alternative model to perform better than model 1 could mean
that either simply using herd means as EP is not the real underlying problem
for estimation when using data under the scenario of selective use of sires, or
that the proposed alternative model did not properly account for possible ge-
netic bias in EP. More theoretical models, that for instance include simulated
environmental effects as EP, could be used to further explore the nature of
this problem. However based on the results of this study which was restricted
to practical applicable models, there is no reason to use model 3 instead of
model 1.

Model convergence was one of the major problems experienced with all
three models. Although the random regression model is the most common
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applied covariance function in reaction norm models, Jaffrezic and Pletcher [7]
showed in a few examples that a character process model was more successful
in modelling longitudinal data than random regression. The application of a
character process model to model reaction norms appears straightforward, and
might provide a solution to get better convergence of the model.

4.2. Estimation of G x E

For the trait with a low heritability, it was more difficult to estimate the
genetic CF than for the trait with a high heritability. The main problem was
that for the low heritability trait in almost 40% of the replicates the covariance
structure was forced to be positive definite. Also, the number of animals per
herd was important to estimate genetic variance and calculate EP correctly,
which illustrates that environmental sensitivity is better estimated in a popu-
lation with larger herds and likely to be underestimated for a population with
small herds. However, in a practical situation small herds may either be too
large in number to simply disregard or represent certain management styles
that are hardly found in larger herds. This problem might be partly solved by
calculating EP based on for instance 50 animals that calved consecutively in
one herd, rather than based on herd-year. Changing the data structure from the
default situation by reducing the number of animals per herd to 10 or by in-
troducing the non-random use of sires, led to correlations between simulated
herd effects and calculated EP of 0.69 and 0.74, respectively (Tabs. V and VII).
Although these changes in data structure are arbitrary, it indicates that both rel-
atively low numbers of animals per herd and non random use of sires leads to
biased EP.

One of the effects observed was that the estimated genetic correlation be-
tween the high heritability trait expressed in different environments was biased
upwards, i.e. estimates were 0.93, 0.93 and 0.97 in situations with a random use
of sires where the simulated value was 0.89. This resulted from the overesti-
mated covariance between level and slope and the underestimation of variance
of slope. Underestimation of variance of slope in situations with random use
of sires also resulted in deviations of up to 30% of estimated genetic variance
from simulated genetic variance. Variances of slope were more underestimated
if the population structure was less informative, which indicates that high esti-
mates of the genetic correlation between a trait expressed in different environ-
ments calculated with CF might result from the quality of the data rather than
from the absence of re-ranking based on TBV. In the extreme situation where
the variance of slope is estimated to be zero, the estimated genetic correlation
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between a trait expressed in different environments will be 1, since it can easily
be derived from equation (1).

4.3. Prediction of breeding values across environments

One of the objectives was to investigate the influence of sires breeding val-
ues on EP. In situations with selective and herd dependent use of sires, the
sires were grouped based on their TBV for level, which is equal to TBV .,4=0.
Grouping of sires based on TBV for any other simulated herd effect would have
caused only small changes in the composition of groups of sires, since the sim-
ulated genetic correlation between the trait expressed in different environments
was relatively high. The model clearly had more problems in estimating effects
correctly in the case of selective use of sires. Selective use of sires not only im-
plies a possible bias in EP but also poorer genetic connections between groups
of herds, which can lead to more difficulties for the model to disentangle ge-
netic and environmental effects [3]. From this study, it is not clear whether
problems in the estimation of variance components in the case of non random
use of sires are due to genetic influence on EP, poorer genetic connections
between groups of herds or failure to disentangle genetic and environmental
effects. Random herd effects could be applied to avoid herd effects from ab-
sorbing part of the genetic levels within herds. Initial analyses with model 3
using random herd effects showed however that variances of level and slope
were severely overestimated and herd variances were severely underestimated.

Groups of sires shown in Table VIII were selected based on their TBV of
level. This implies that selection was based on data that is not included in the
genetic evaluation and therefore EBV are expected to be biased [5] and corre-
lations between TBV and EBYV are expected to be different for different groups
of sires. However, groups of sires in Table VIII were the same for the differ-
ent scenarios. Therefore, differences between scenarios are due to differences
in genetic compositions of herds and in case of herd dependent use of sires
also due to the fact that sires had most of their daughters in a limited range of
environments. Correlations between simulated and expected breeding values
indicated that breeding values of sires were predicted accurately across envi-
ronments with the different models. Absolute values of EBV, however, were
closer to zero if the data became less informative. This is not a problem if
selection is based on a single trait or if scaling effects are not important. If
selection is, however, based on an index based on more than one trait with
different scaling effects, scaling effects can cause re-ranking across environ-
ments based on the composite index [10]. In that case, non-random use of sires
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could result in misleading indexes, since scaling effects of traits are likely to
be underestimated.

The EBV of cows were not compared to their TBV. In the simulated data,
cows only had one record and therefore only one point through which their
EBYV was fitted. Since the EBV of cows are based on far less data than the
EBV of sires, the EBV of cows are likely to be more biased than the EBV of
sires, especially if breeding values are extrapolated to extreme environments.

Problems in estimating variance components and lower correlations be-
tween TBV and EBV under the presence of selective use of sires seem to con-
tradict suggestions [8] that CF could be useful in overcoming problems with
genetic connectedness in international breeding value estimation. However,
only one population with one generation of sires was simulated and subsets
of sires were not equally distributed, while an international situation ideally
would be simulated by different related base populations reflecting different
countries. Additional genetic relations between animals would improve ge-
netic connectedness across environments and therefore reduce bias in EBV.
Since poor genetic connectedness and confounding between herd and genetic
effects are features of the data, bias in estimated variance components might
be reduced by selecting data containing genetically well-connected herds with
a non-extreme genetic composition and different levels of management.

5. CONCLUSION

Implications of using phenotypic averages as EP in CF were expected to
lead to problems of estimation of variance components. Non average genetic
composition of herds and poor genetic connectedness had a large impact on
estimated variance components in CF and gave poorer correlations between
simulated and predicted sire effects and between simulated herd effects and cal-
culated EP. Estimation problems were not overcome by a new model that was
aimed at separating environmental and genetic effects in the EP. The effect of
estimation problems was that genetic correlations between the trait expressed
in different environments were biased upwards and that EBV were biased if
genetic connectedness became poorer and herd composition more diverse. The
best possible solution at this stage is to use EP combining a large number of
animals per herd.
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