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Abstract – Selective genotyping is common because it can increase the expected correlation be-
tween QTL genotype and phenotype and thus increase the statistical power of linkage tests (i.e.,
regression-based tests). Linkage can also be tested by assessing whether the marginal genotypic
distribution conforms to its expectation, a marginal-based test. We developed a class of joint
tests that, by constraining intercepts in regression-based analyses, capitalize on the information
available in both regression-based and marginal-based tests. We simulated data corresponding
to the null hypothesis of no QTL effect and the alternative of some QTL effect at the locus for
a backcross and an F2 intercross between inbred strains. Regression-based and marginal-based
tests were compared to corresponding joint tests. We studied the effects of random sampling,
selective sampling from a single tail of the phenotypic distribution, and selective sampling from
both tails of the phenotypic distribution. Joint tests were nearly as powerful as all competing al-
ternatives for random sampling and two-tailed selection under both backcross and F2 intercross
situations. Joint tests were generally more powerful for one-tailed selection under both back-
cross and F2 intercross situations. However, joint tests cannot be recommended for one-tailed
selective genotyping if segregation distortion is suspected.
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1. INTRODUCTION

Selective genotyping is a common approach used to enhance the efficiency
of quantitative trait loci (QTL) mapping studies [13, 25], which employs an
extreme threshold (ET) design and entails analyzing only a subset of individu-
als with extreme scores. In an ET2 design, individuals are sampled from both
tails of the phenotypic distribution (i.e., cases with unusually high and low val-
ues of the phenotype). ET2 designs have been shown to decrease uncertainty
about the underlying QTL genotypes, yield valid false positive rates, and in-
crease the statistical power per genotyped individual [1, 7, 13] because the ex-
pected correlation between genotype and phenotype generally increases [3].
For example, Allison [2] showed that the ET2 design increased the power of
his TDTQ5. However, there is a trade-off between (a) increasing the correla-
tion through extreme sampling and (b) reducing the overall statistical power
due to the reduction in sample size. The association between genotype and
phenotype has been the focus of tests in QTL mapping, including studies of
experimental crosses. We refer to tests that evaluate whether the distribution
of the phenotype (Y) is dependent on some function of the genotype (G) as
regression-based tests.

It is also common for genetics researchers to use and ET1 design and sam-
ple from only one tail of the phenotypic distribution. The ET1 design is similar
in concept to “case-only” designs often used in human studies [15]. However,
ET1 designs decrease the power of regression-based tests due to a restriction
of range [16]. It is important to note that, when (and only when) the null hy-
pothesis is false, extreme sampling can also affect the marginal distribution of
genotypes. That is, under the null hypothesis of no linkage, the marginal distri-
bution of genotypes has the same expected frequencies regardless of the pheno-
typic value. For example, in an experimental BB × BD backcross, all offspring
would be either BB or BD and these two genotypes would be equally likely,
assuming no segregation distortion. Under the null hypothesis of no linkage, Y
is not related to the genotype (G). Likewise, G is not related to Y and the prob-
ability of sampling a case with a either BB or BD genotype should be equal
regardless of Y , P(BB|Y) = P(BD|Y) = 1/2, assuming no segregation distor-
tion. Recognizing this, one can construct tests of linkage when ET designs are
used by testing for departures from the genotypic distribution that would be
expected under the null hypothesis. We refer to such tests as marginal-based
tests. Lander and Botstein [13] have provided considerable detail on increasing
the power of QTL mapping by selective genotyping of progeny with extreme
phenotypes in backcross designs. Similar discussions that include F2 intercross
designs appear in [5] and [20]. Nevertheless, marginal-based tests have been
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underutilized in the development of QTL mapping procedures for experimen-
tal crosses.

In this paper, we develop methods that capitalize on the information
available in both regression-based and marginal-based tests of linkage for ex-
perimental crosses. We show that these tests are rarely less powerful and are
usually more powerful than regression-based or marginal-based tests alone.
Moreover, the tests we have developed are easily implemented in standard soft-
ware, should be robust to non-normality, can be applied to either backcross or
F2 intercross designs, and allow for extreme sampling with either ET1 or ET2
sampling. In developing these tests, we assume that there is no segregation
distortion. However, we note that the marginal-based and joint tests rely cru-
cially on this assumption, especially in ET1 designs. Therefore, we examine
the statistical properties of these tests when segregation distortion is present.
We also discuss how the tests herein should be used if segregation distortion is
suspected.

2. INDIVIDUAL TESTS OF LINKAGE

Before proceeding further, it will be useful to define the specific tests of
linkage that we employed (see Tab. I). We considered two types of experimen-
tal crosses: A backcross and an F2 intercross. Let the two parental strains be
denoted BB and DD. Assume that the backcross utilized is one between the BB
strain and the BB × DD F1. Then, at each locus, progeny in a backcross can
have either BB or BD genotypes. Scoring these by the number of D alleles, the
corresponding genotypic values would be G = 0 and 1, respectively. For the
F2 intercross, BB, BD, and DD genotypes would be scored G = 0, 1, and 2,
respectively.

2.1. Regression-based tests

The first two regression-based tests involve ordinary least squares (OLS)
regression in which phenotype (Y) is regressed on genotype (G):

E[Y |G] = β0 + β1G. (1)

R1 refers to treating G as a continuous variable with a 1 degree-of-freedom (df )
test and testing the null hypothesis that the slope (β1) equals zero. R2 refers to
treating G as a categorical variable with a 2 df test of the null hypothesis that
both slopes (β1 and β2) equal zero to allow for departures from additivity:

E[Y |A,D] = β0 + β1A + β2D, (2)
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where A and D are linear and quadratic polynomial contrast variables, respec-
tively. We note that R2 cannot be applied to backcross designs because there
are only two genotypes and thus 1 df. For F2 intercrosses, however, both R1

and R2 can be applied. Although OLS regression procedures can be used to
estimate linkage parameters with selective genotyping, the estimates are ex-
pected to be biased, and thus, a maximum likelihood procedure for obtaining
unbiased estimates has been suggested [13]. For F2 intercrosses, we define R3

and R4 as the maximum likelihood procedure of Xu and Vogl [25] applied to
the linear models (1) and (2), respectively. Briefly, this technique is a simple
modification of the EM algorithm for assessing linkage for selective genotyp-
ing using only the phenotypic values of genotyped individuals.

The fifth and sixth tests depend on whether the experiment involves a back-
cross or F2 intercross. For backcross designs, R5 is calculated by regressing
the genotype (G) on phenotype (Y) using logistic regression [11] and testing
the null hypothesis that the slope (β1) equals zero:

ln

[
P(G = 1)
P(G = 0)

]
= ln

[
P(BD)
P(BB)

]
= β0 + β1Y. (3)

This method was proposed for binary variables and thus is not generally appli-
cable to F2 intercross designs. In the case of an F2 intercross, we define R6 as
multinomial regression with three categories for the response variable, which
requires estimating two slopes and two intercepts:

ln

[
P(G = 1)
P(G = 0)

]
= ln

[
P(BD)
P(BB)

]
= β0 + β1Y

ln

[
P(G = 2)
P(G = 0)

]
= ln

[
P(DD)
P(BB)

]
= γ0 + γ1Y. (4)

Thus, R6 is a 2 df test of whether both slopes (β1 and γ1) are equal to zero.

2.2. Marginal-based tests

Under the null hypothesis of no linkage P(G = 0) = P(G = 1) = 1/2 in the
backcross and P(G = 0) = P(G = 2) = 1/4 and P(G = 1) = 1/2 for the F2 in-
tercross, assuming no segregation distortion, and thus, the expected genotypic
mean in the backcross is E[G|Y] = µG =

1/2 and the expected genotypic mean
in the F2 intercross is µG = 1, regardless of the value of the phenotype (Y).
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We defined six marginal-based tests, three for each ET sampling design.
For ET1 designs, M7 is defined as a single-sample t-test of whether the mean
of G is different from its null expectation (µG). Specifically, µG =

1/2 in a
backcross and µG = 1 in an F2 intercross. As alternatives, we utilize chi-
square goodness of fit tests. For the backcross, we define M8 as a 1 df χ2 test
of G versus expected frequencies of P(G = 0) = P(G = 1) = 1/2. For F2
crosses, we define M9 as a 2 df χ2 test of whether the sample frequencies for
G departs from the null expectation of P(G = 0) = 1/4, P(G = 1) = 1/2, and
P(G = 2) = 1/4.

We note that these marginal tests rely heavily on the assumption of random
segregation in the ET1 design; however, for an ET2 design, this is not necessar-
ily the case. In family-based studies, test statistics that incorporate information
from both affected and unaffected siblings are used to control for segregation
distortion [22]. Likewise, for QTL studies the use of information from both
ends of the distribution will control for segregation distortion [2]. Under the
null hypothesis of no linkage, the marginal distribution of genotypes has
the same expected frequencies regardless of the phenotypic value. Therefore,
the upper and lower tails will have the same expected values of G (same geno-
type frequencies) under the null hypothesis regardless of whether or not there
is segregation distortion. There are standard statistical tests that can be applied
as marginal-based tests for an ET2 design. For either an F2 or backcross de-
sign, we define M10 as an independent samples t-test to assess whether the
mean of G is equal for the upper and lower tails. As alternatives, we utilize
chi-square tests of independence. For a backcross design, we define M11 as a
2 × 2 (e.g., BB vs. BD by Upper vs. Lower) chi-square test with df = 1. For an
F2 intercross, we define M12 as a 3 × 2 (e.g., BB vs. BD vs. DD by Upper vs.
Lower) chi-square test with df = 2.

3. JOINT TESTS OF LINKAGE

In the context of human IBD-based QTL mapping in sib-pair studies, Forrest
and Feingold [8] provide proof that under the null hypothesis of no linkage,
regression-based tests and marginal-based tests are independent. Therefore,
one way to construct composite tests that capitalize on the information from
regression-based and marginal-based test statistics is simply to sum them up
and treat them as χ2 with df equal to the sum of the df of the two tests being
combined. We introduced joint tests that do not require the asymptotic inde-
pendence of the tests, which we found to be more powerful than composite
tests in preliminary studies.
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We modified the Henshall and Goddard [11] approach, which reverses the
position of dependent and independent variables in a regression model (i.e., re-
gressing genotype on phenotype). Our modification involves constraining the
intercept to have a pre-specified value based on expectations from the marginal
distribution of the genotype given the experimental cross. Large test statistics
reflect deviations from the null hypothesis of no association between G and Y
and deviations from the genotype frequencies expected under the null hypothe-
sis of no linkage. Thus, these methods provide joint tests of the null hypotheses
for the regression-based and marginal-based tests. Sham et al. [21] present a
similar approach in the context of human linkage studies.

To employ OLS regression, prior to regressing the genotype on the pheno-
type, we transform G to G∗ = G − E[G], where E[G] = 1/2 in a BB × BD
backcross, 11/2 in a DD × BD backcross, and 1 in an F2 intercross. One can
then center Y , Y∗ = Y − Ȳ , and regress G∗ on the Y∗ and force the regression
through the origin:

E[G∗|Y∗] = β0 + β1Y∗, (5)

with β0 ≡ 0. This offers a single df test that will be sensitive to departures from
both the null expectation of G∗ = 0 and the null covariance between G∗ and
the phenotype. We denote this OLS-based joint test as J13.

Although OLS should be robust to the non-normality of residuals that will
occur when G∗ is used as the dependent variable given the sample sizes typi-
cally used in QTL mapping, logistic regression offers an alternative that mod-
els the categorical nature of the genotypes and avoids the normality assump-
tion. In the case of a BB × BD backcross we can simply regress G on Y∗ as
in model (3), except that we constrain the estimate of β0 ≡ 0. This is be-
cause under the null hypothesis, β1 = 0, and thus, ln [P(BD)/P(BB)] = β0.
Also, under the null hypothesis, P(BD) = P(BB) = 1/2 , which implies that
β0 = ln [P(BD)/P(BB)] = 0. Thus, we define J14 as the 1 df test that β1 = 0
while restricting β0 to be 0.

In the case of an F2 intercross, we can replace binary logistic regression with
multinomial regression and regress G on Y∗ as in model (4). However, in this
context, treating BB as the “reference” genotype, we can constrain β0 ≡ ln [2]
because under the null hypothesis β1 = 0, P(BD) = 1/2, and P(BB) = 1/4,
which implies that β0 = ln[P(BD)/P(BB)] = ln [2]. Likewise, we constrain
γ0 ≡ 0 because under the null hypothesis γ0 = 0 and P(DD) = P(BB) =
1/4, which implies that γ0 = ln [P(DD)/P(BB)] = 0. This allows the logistic



Joint tests for experimental crosses 607

regression approach to be extended to the F2 intercross design and also to
accommodate marked nonadditivity in the genotype-phenotype relationship.
We denote the joint tests involving multinomial regression with constrained
intercepts as J15.

4. SIMULATION STUDIES

To demonstrate the validity of our joint tests with respect to Type 1 error
rates and to evaluate their power relative to the marginal-based and regression-
based tests, we conducted a variety of simulations. Table I provides a summary
of the tests compared in these simulations. To evaluate Type 1 error rates, sim-
ulations were conducted under the null hypothesis of no linkage. To evaluate
Type 2 error rates (i.e., statistical power), the basic model used in the simula-
tions was that of a quantitative trait with a single major QTL. For the non-null
situations, the proportion of phenotypic variance explained by the QTL was
fixed at h2 = 3%, 5%, 8%, and 11% of the total phenotypic variance in two
separate sets of simulations for backcross and F2 intercross designs. Addi-
tive and non-additive (dominant) models were simulated. The residual within
genotype distribution was normal with a mean of zero and unit variance.

Type 1 and Type 2 errors were evaluated at a significance level of α =
0.0001. For simulations under the null model, 100 000 simulated datasets were
used for each situation to ensure reasonable precision for an alpha level as
small as 0.0001. For simulations under the alternative hypothesis, 10 000 sim-
ulated datasets were used for each situation. A total sample size of N = 500
progeny was used in all the simulations.

Three sampling schemes were considered: (1) Random sampling. All 500
progeny were analyzed; (2) Selection from both tails of the phenotypic dis-
tribution (ET2 design). The 500 progeny were ranked with respect to their
phenotypic values and the top and bottom 125 (50%) or 50 (20%) progeny
were selected for genotyping and analysis; and (3) selection from one tail of
the phenotypic distribution (ET1 design). The 500 progeny were ranked with
respect to their phenotypic values and the top 250 (50%) or 100 (20%) progeny
were selected for genotyping and analysis.

Because segregation distortion is often seen in crosses between inbred lines
of both plants and animals, two conditions of allelic segregation were imposed.
One condition is random segregation (no segregation distortion) where the
probability of the offspring receiving the D allele during meiosis is 0.5. The
second condition simulates segregation distortion where the probability of the
offspring receiving the D allele during meiosis is 0.7.
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Table I. Summary of individual tests considered.

Tests Description Applicable Sampling Dominant Referent
crosses designs variance? distribution

Regression R1 1 df OLS regression (Eq. 1) Backcross ET1 No F(1, N-2)

based tests F2 ET2
R2 2 df OLS regression (Eq. 2) F2 ET1 Yes F(2, N-3)

ET2
R3 1 df ML regression (Eq. 1) Backcross ET1 No F(1, N-2)

(Xu & Vogl, 2000) F2 ET2
R4 2 df ML regression (Eq. 2) ET1 Yes F(2, N-3)

(Xu & Vogl, 2000) F2 ET2

R5 Logistic regression (Eq. 3) Backcross ET1 No χ2(1)
(Henshall & Goddard, 1999) ET2

R6 Multinomial regression (Eq. 4) F2 ET1 Yes χ2(2)
ET2

Marginal M7 Single-sample t-test on G Backcross ET1 No t(N-1)
based F2
test M8 1 df χ2 Goodness of fit Backcross ET1 No χ2(1)

M9 2 df χ2 Goodness of fit F2 ET1 Yes χ2(2)
M10 Independent-sample t-test Backcross ET2 Yes t(N-2)

F2

M11 2 × 2χ2 Test of independence Backcross ET2 No χ2(1)
M12 3 × 2χ2 Test of independence F2 ET2 Yes χ2(2)

Joint J13 1 df OLS regression Backcross ET1 No F(1, N-1)
tests (Eq. 6) β0 ≡ 0 F2 ET2

J14 1 df Logistic regression Backcross ET1 No χ2(1)

(Eq. 3) β0 ≡ 0 ET2
J15 2 df Multinomial regression F2 ET1 Yes χ2(2)

(Eq. 4) β0 ≡ ln [2] γ0 ≡ 0 ET2
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5. RESULTS

5.1. Type 1 error rate

Tables II and III show the Type 1 error rates of all tests at α = 0.0001 for
the backcross and F2 intercross designs, respectively. These values serve as an
evaluation of the conformity of the test statistics to their asymptotic distribu-
tion for relatively small sample sizes. Lander and Botstein [13] suggest that
linear regression cannot be used when only extreme progeny have been geno-
typed because genotypic effects will be grossly overestimated because of the
biased selection; however, this does not imply that the Type 1 error rate will
be inflated. Our results confirmed this. For all tests considered, the empirical
Type 1 error rates are very close to the nominal alpha indicating excellent con-
formity to the asymptotic distribution of the test statistics, when there was no
segregation distortion.

When segregation distortion (P = 0.7) was simulated, the Type 1 error rates
for the regression-based tests were basically unaffected. By contrast, the Type 1
error rates for the marginal-based tests were severely inflated when either ran-
dom sampling or an ET1 design was employed (see Tabs. II and III). For the
joint tests developed for a backcross design, the Type 1 error rates were in-
flated when there was segregation distortion (P = 0.7) and one-tailed (ET1)
sampling (see Tab. II). Similarly for the joint tests developed for an F2 de-
sign, the Type 1 error rates were inflated when there was segregation distortion
(P = 0.7) and ET1 sampling (see Tab. II), but there was also some inflation
in the false positive rate under a Random and ET2 sampling for the joint test
involving multinomial regression with fixed intercepts (M15). The results for
selective sampling of N = 250 were very similar and for a brevity that was not
displayed.

5.2. Statistical power

In some cases, the empirical power rates reached the maximum of unity;
however, the tests demonstrated low to moderate statistical power in many
other cases. We note that the power curves for the maximum likelihood re-
gression tests (R3 and R4) were so similar to their OLS counterparts that for
graphic clarity we did not plot their results.
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Table II. Empirical Type 1 error rates under the null hypothesis (Model 1) with α =
0.0001 for backcross design. (100 000 simulations per row).

Random N = 500 ET1 N = 100 ET2 N = 100
Tests P = .5 P = .7 P = .5 P = .7 P = .5 P = .7
Regression R1 .00010 .00006 .00008 .00010 .00013 .00012
based R3 .00011 .00010 .00010 .00012 .00011 .00013
tests R5 .00007 .00004 0 .00001 .00005 .00001
Marginal M7 .00011 1 .00019 .6315 – –
based M8 .00011 1 .00008 .5472 – –
tests M10 – – – – .00018 .00014

M11 – – – – .00008 .00010
Joint J13 .00010 .00014 .00012 .5141 .00013 .00004
tests J14 .00008 .00010 .00003 .3902 .00005 0

Table III. Empirical Type 1 error rates under the null hypothesis (Model 1) with α =
0.0001 for F2 intercross design. (100 000 simulations per row).

Random N = 500 ET1 N = 100 ET2 N = 100
Tests P = .5 P = .7 P = .5 P = .7 P = .5 P = .7
Regression R1 .00007 .00014 .00008 .00009 .00018 .00012
based R2 .00008 .00009 .00012 .00027 .00016 .00017
tests R3 .00009 .00010 .00011 .00013 .00009 .00011

R4 .00008 .00009 .00024 .00029 .00007 .00009
R6 .00003 .00007 0 .00001 .00002 .00002

Marginal M7 .00008 1 .00012 .9713 – –
based M9 .00005 1 .00015 .9462 – –
tests M10 – – – – .00015 .00012

M12 – – – – .00006 .00004
Joint J13 .00006 .00015 .00015 .9345 .00016 .00002
tests J15 .00005 .00095 .00002 .8455 .00006 .00026

5.2.1. Backcross designs

Figure 1 shows that when there was no segregation distortion the regression-
based and the joint tests had virtually identical power; whereas, the marginal-
based test had virtually no statistical power. When segregation distortion was
present, the joint tests showed a slight power advantage over the regression-
based tests. Figure 2 shows that with an ET1 design the joint tests demon-
strated a considerable power advantage over the marginal-based tests, while
the regression-based tests had minimal power due to restriction of range. How-
ever, this power advantage dissipated with the reduction of the sample size
from N = 250 to 100. When segregation distortion was present only the
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Figure 1. Power results for backcross design with additive mode of inheritance and
random sampling of N = 500. [Marginal tests (M7 and M8) did not have acceptable
(i.e., inflated) Type 1 error rates under segregation distortion and thus were excluded
from the second panel].

regression-based tests demonstrated acceptable Type 1 error rates under ET1
sampling and therefore were the only valid tests under these circumstances.
For ET2 designs, the joint tests had very similar power curves as both the re-
gression and marginal tests. For ET2 designs, the results indicate that most pro-
cedures have similar power curves when segregation distortions were present,
especially the regression-based and joint tests (results not displayed).

5.2.2. F2 Intercross designs

For an F2 intercross with no segregation distortion and random sampling
of N = 500 progeny, the regression-based and the joint tests had virtually
identical power; whereas, the marginal-based test had virtually no statisti-
cal power. The OLS single-df tests (R1 and J13) demonstrated more power
when there was an additive model. By contrast, when there was a dominant
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Figure 2. Power results for backcross design with no segregation distortion for one-
tailed (ET1) selective genotyping.

mode of inheritance, the OLS two-df tests (R2) and the multinomial regres-
sion tests (R6 and J15) demonstrated more power. For the tests that maintained
valid Type 1 error rates under segregation distortion, the OLS joint test (J13)
demonstrated considerably more statistical power than the other regression-
based tests (results not displayed).

Figure 3 displays the power curves for each test for an F2 intercross with
an additive mode of inheritance and no segregation distortion. As was the case
for the backcross, under an ET1 design, the joint tests demonstrated a consider-
able power advantage over the marginal-based tests, while the regression-based
tests had minimal power. However, this power advantage dissipated with the
reduction of sample size from N = 250 to 100, especially for the multinomial
joint test (J15). For ET2 designs, the joint tests had very similar power curves
as both the regression and marginal tests.

For a dominant mode of inheritance under an ET2 design, the joint tests had
very similar power curves as both the regression and marginal tests with R2 and
J15 demonstrating more power. Under one-tailed sampling, J13 demonstrated
similar power to the marginal-based tests, whereas R2 and J15 had virtually
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Figure 3. Power results for F2 design with additive mode of inheritance and no segre-
gation distortion for one-tailed (ET1) and two-tailed (ET2) selective genotyping.

no power (results not displayed). This result can be attributed to the fact that
with one-tailed sampling we chose the upper tail of the phenotypic distribu-
tion. Under a dominant mode of inheritance, the heterozygote (BD) and the
homozygote (DD) are expected to have the same average phenotype that is
greater than the average phenotype of the other homozygote (BB). By select-
ing the upper tail of the phenotypic distribution one may end up comparing
two genotypes with the same expected value.

For an F2 intercross with additive and dominant modes of inheritance and
segregation distortion, J13 had similar power curves to other procedures and
had more power than the other procedures under an ET2 design and a dominant
mode of inheritance. Again, this power advantage dissipated when the sample
was reduced to N = 100 (results not displayed).

6. DISCUSSION

All tests held Type 1 error rate reasonably near the nominal α under random
segregation. But the marginal-based and joint Tests inflated the Type 1 error
rate under one-tailed selection (ET1) and segregation distortion. However, the
marginal-based and joint tests had valid Type 1 error rates under two-tailed
selection (ET2) even when there was segregation distortion. Although the fact
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that Mendelian inheritance is nearly universal, segregation distortion is consid-
ered to be a potent evolutionary force [19]. Yet, the prevalence and importance
of segregation distortion is widely debated. Although some researchers con-
tend that segregation distortion is a rare curiosity with little evolutionary im-
portance, it is well known that it occurs more frequently among inbred strains
of plants and animals [23]. For example, Xu et al. [26] observed 7% to 32%
of markers in inbred rice strains to demonstrate segregation distortion. Also,
Liu et al. [14] reported that 29.4% of the 238 loci mapped in inbred soybean
strains were found with segregation distortion. Regardless of the evolution-
ary importance of segregation distortion, we demonstrated it to be a statistical
problem for the marginal and joint tests under ET1 designs. We also show that
under situations of random sampling and symmetric selective sampling from
both tails of the phenotypic distribution (ET2) in an F2 intercross, these tests
have roughly equivalent power compared to corresponding alternative tests. In
cases of selective sampling from one tail of the phenotypic distribution (ET1),
these joint tests are generally more powerful than corresponding alternatives
assuming no segregation distortion.

When segregation distortion was present only the regression-based ap-
proaches yield valid tests under one-tailed selective genotyping. Thus, the joint
tests can only be validly employed with two-tailed selective genotyping if seg-
regation distortion is suspected. The joint tests showed a distinct power advan-
tage over the regression-based tests with random sampling and ET2 designs
for additive models with 50% (N = 250) sampling. Thus, for backcross and
F2 intercross designs, joint tests are recommended for analyzing data, espe-
cially if there is an additive mode of inheritance; however, joint tests are not
generally recommended for non-additive modes of inheritance. Furthermore,
when segregation distortion is present and an ET1 design is used, the joint tests
cannot be recommended. Thus, we developed joint tests that capitalize on in-
formation available in both the marginal distribution of genotype and a geno-
type/phenotype association and are valid in a variety of situation, however,
they should be used cautiously if segregation distortion is suspected. There-
fore, we also recommend that if segregation distortion is likely, then genetic
researchers should use ET2 designs when possible, in which case joint tests
may have more statistical power. However, if an ET1 design is employed, the
researcher should follow up significant results with more complete genotyping
to investigate the possibility of segregation distortion.

Of course it is important to concede that our results only definitively apply to
the conditions that were simulated. Our simulations assumed that, within geno-
type, phenotypic errors were normally distributed and that the error variance
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was constant across genotypes. Under situations in which these conditions are
not met, the relative power of the different tests may not be exactly as reported
herein. However, it is noteworthy that the joint tests as constructed should be
relatively robust. This is due to features of the backcross and F2 intercross
designs and that the tests are based on OLS or logistic regression procedures.

The OLS-based tests assume error distributions that are Gaussian with a
constant variance across the genotypes but have been shown to be relatively
robust to many forms of non-normality in samples of modest size. Importantly,
however, violations of the normality and homogeneous variances are more
likely to reduce the statistical power of the OLS-based procedures for detect-
ing linkage. The logistic and multinomial-based procedures are used to predict
the genotype membership as a function of the phenotype. In regression ter-
minology, the phenotype is a fixed effect, and thus, there are no distributional
assumptions for the phenotype. In this regard, the tests developed herein, par-
ticularly those based on logistic (or multinomial) regression, may have some
advantages over other tests that assume normality and use maximum likelihood
estimation. Fan and Wang [6] have demonstrated that unequal variances and
unequal sample sizes do not drastically affect the error rates of logistic regres-
sion in the two-group problem (i.e., backcross). Barón [4] demonstrated that
in the three-group problem (i.e., F2 intercross), multinomial regression mod-
els were preferable with non-normal data, and were comparable to OLS-based
procedures with normal data. It is important to note that violations of standard
linear model assumptions (i.e., normality; homescedasticity) are commonplace
in data from many agriculture disciplines (e.g., livestock breeding). Thus, re-
searchers in these fields have learned not to trust distribution-based P-values
and resampling-based tests (e.g., permutation; bootstrap) are generally applied.
Thus, future work should examine the statistical properties of these joint tests
when resampling based methods are applied.

There are several other strengths of the methods developed that should be
considered. First, the extension of these methods to multivariate testing is ex-
tremely simple because one simply needs to add more phenotypes on the pre-
dictor side of the logistic or multinomial regression equations. This allows one
to consider designs in which researchers are mapping genes for a binary (dis-
ease) trait and some quantitative phenotypes are also measured on all organ-
isms. In contrast, extension of the joint tests herein to multilocus models will
be somewhat more challenging, though certainly not impossible. Such tests
would require putting multiple variables on the dependent side of the equa-
tion. This might best be done through the multinomial regression approach by
extending it to allow for modeling of multilocus genotype contingency tables.
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However, using this type of joint test for multilocus models may require more
biological assumptions (e.g., Hardy-Weinberg equilibrium; random segrega-
tion) or the use of haplotypes.

Similar to the Haley and Knott [9] method, the joint tests can be extended to
test any locus within a marker interval in order to approximate interval map-
ping. First, the probabilities of genotypes can be calculated using the multi-
point method of Jiang and Zeng [12]. Then these values can be used in place
of marker genotypes. However, developing an exact interval mapping method
(similar to the conventional interval mapping in line crosses) will require an
additional effort based on the EM algorithm, which is beyond the scope of this
paper. Yet, this presents an interesting topic for future study. There are several
other future research directions for these joint tests. In the field of experimen-
tal crosses, when modeling a disease trait, it may be a useful alternative to
threshold models [17]; however, studies have found threshold models to be
less powerful for QTL detection than simpler linear models [18]. Future re-
search comparing these approaches may be warranted.

7. EXAMPLE

For demonstration purpose, we took selected data from a project designed
to locate the gene on the mouse chromosome linked with the quantitative trait,
the percentage of lung fibrosis that was induced by bleomycin, a therapy for
treatment of cancer. Significant positions have been detected on chromosome
17 marker D17mit16 and chromosome 11 marker D11mit272 [10].

For brevity, we took N = 165 mice that had been genotyped on D11mit272
(see Tab. IV). Using tests R1 and R2, the results for all 165 mice show that
there are significant mean differences in fibrosis among the three genotypes
of D11mit272 [R2: F(2,172) = 7.58, P = 0.00070, η2 = 0.081]. The additive
component of this genetic effect was statistically significant [R1: F(1,172) =

14.09, P = 0.00024, η2 = 0.075]. The difference in these two models indicates
that the non-additive effect was not statistically significant [F(1,172) = 1.08,
P > 0.05]. The multinomial regression (R6) results in a likelihood ratio chi-
square statistic [χ2 = 14.46, df = 2, P = 0.00072, Cox-Snell R2 = 0.079].

Suppose that the researchers employed the ET2 design and genotyped
the 88 phenotypically extreme mice. These mice included the top 25% (i.e.,
mice with fibrosis ≥ 2.50% of the lung nU = 44) and nL = 44 mice with
zero fibrosis. The results of the OLS regression-based tests, show the signif-
icant mean differences in fibrosis among the three genotypes of D11mit272
[R2: F(2,85) = 9.46, P = 0.00020, η2 = 0.182]. The additive component of this
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Table IV. Results of the marginal-based tests performed on ET2 data.

D17mit272
B6-B6 (G=0) B6-C3 (G = 1) C3-C3 (G = 2) Mean of G

Full sample n0 = 43 n1 = 89 n2 = 43 (SD)
Mean fibrosis 4.28 1.94 0.90 1.00
(SD) (5.90) (4.02) (1.68) (0.70)
ET2 sample n0 = 22 n1 = 44 n2 = 22
Upper 25% (nU = 44) 17 21 6 0.75
fibrosis > 2% (SD = 0.69)
Lower 25% (nL = 44) 5 23 16 1.25
fibrosis = 0% (SD = 0.65)
Mean fibrosis 7.75 3.57 1.21
(SD) (6.58) (5.23) (2.22)

genetic effect was statistically significant [R1: F(1,85) = 18.21, P = 0.00005,
η2 = 0.175]. The difference in these two models indicates that the non-
additive effect was of marginal significance [F(1,208) = 0.71, P > 0.05]. The
multinomial regression (R6) results in a likelihood ratio chi-square statistic
[χ2 = 17.92, df = 2, P = 0.00013, Cox-Snell R2 = 0.184]. By comparing the
η2 (or R2) values, which provide an effect size that is independent of sample
size, one can see that selecting the extreme ends of the phenotypic distribution
can increase the power per genotyped organism.

For the marginal based tests, the results are shown descriptively in Table IV.
The results of the marginal tests were statistically significant. The indepen-
dent samples t-test comparing the mean genotype across the two extremes
of the phenotypic distribution value was [M10: t(107) = 3.51, P = 0.00073,
η2 = 0.125]. The 2 × 3 contingency table analysis comparing the propor-
tions of each genotype across the two extremes of the phenotypic distribu-
tion resulted in χ2 = 11.18, df = 2, P = 0.00373, φ2 = 0.127. For the OLS
based joint test, J13, the results were statistically significant [F(1,85) = 18.48,
P = 0.00004]. The multinomial regression joint test (J15) results in a likelihood
ratio chi-square statistic [χ2 = 16.67, df = 2, P = 0.00024]. Since distribution-
based P-values are often questioned we also computed P-values via resam-
pling. In this situation with N = 88 the number of permutations was ex-
tremely large; therefore we randomly permuted the data 20 000 times and took
the test statistics percentile rank in the distribution of permuted test statistics
as a permutation-based P-value [24]. The permutation-based P-values were
P = 0.00002 for the OLS-based J13 and P = 0.00006 for the multinomial
regression-based J15.
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