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A note on QTL detecting for censored traits
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Abstract – Most existing statistical methods for mapping quantitative trait loci (QTL) assume
that the phenotype follows a normal distribution and that it is fully observed. However, some
phenotypes have skewed distributions and may be censored. This note proposes a simple and ef-
ficient approach to QTL detecting for censored traits with the Cox PH model without estimating
the baseline hazard function which is “nuisance”.

QTL detecting / censored trait / interval mapping

1. INTRODUCTION

The standard approach for mapping the quantitative trait loci (QTL) con-
tributing to variation in a quantitative trait makes use of the assumption that
the phenotype is normally distributed and fully observed [7,8,11,18]. In recent
years, many authors have proposed nonparametric or semiparametric meth-
ods to solve the problem of model misspecification caused by the assump-
tion of normality [6, 10, 19]. In addition, assumptions of standard approach
are likely to be false when the phenotype pertains to the survival time or fail-
ure time and the failure time is often subject to censoring. The incomplete-
ness of the trait values presents a major challenge in the application of the
interval-mapping approach [11]. Symons et al. [17] computed LOD scores un-
der the Cox proportional hazards (PH) model using a variant of the EM algo-
rithm using Monte Carlo simulation to make the computations tractable as
described by Lipsitz and Ibrahim [13]. The EM algorithm incorporates all
possible values of missing covariates according to the appropriate probabil-
ity distributions. This method is computationally intensive and it needs esti-
mating a “nuisance” parameter, that is, baseline hazard function λ0(·) of the
Cox PH model. Broman [2] considered a cure-rate model in which the mice
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that are alive at the end of the study are regarded as cured and in which the
survival times among the deaths follow a log-normal distribution. This is a
special model which can only deal with the situations in which the potential
censoring times are equal among all study subjects. Diao et al. [4] formulated
the effects of QTL on the failure time through a parametric PH model with a
Weibull baseline hazard function λ0(t) = γ1γ2tγ2−1, γ1 > 0, γ2 > 0. Since it
is a parametric model, it still has the problem of mis-specification. In a recent
study, Moreno et al. [15] proposed two new QTL detection approaches which
allow the consideration of censored data. One is similar to Diao et al. [4] based
on Weibull distribution and the other one is based on Cox proportional hazards
model.

Since the primary reason for using the Cox proportional hazards model and
his partial likelihood technique is avoidance of the “nuisance” baseline hazard
function λ0(·), in this article, we provide a simple interval-mapping method
to censor traits without estimating λ0(·). In brief, we formulate the effects of
QTL on the failure time through the PH model and treat unobserved genotypes
of QTL as missing covariates. Then we develop a procedure based on partial
likelihood for detecting QTL and show how to assess genome-wide statisti-
cal significance. In comparison to Symons et al. [17], Broman [2] and Diao
et al. [4], our approach has some advantages. First, we used the Cox semi-
parametric PH model which is most popular for survival analysis. Second, we
avoided estimating a baseline hazard function which is very complicated to
be estimated. Third, the test statistic we used was actually the well-known log
rank statistic and it is the locally most powerful test. Furthermore, because
there was no iteration in calculating the test statistic, the method proposed in
the following was computationally efficient.

2. MAIN RESULTS

We consider populations derived from a cross between two parental inbred
lines P1 and P2. There are two kinds of basic populations, F2 and backcross.
In this note we are only concerned with F2. Consider n progenies from an
F2 population. Let Ti denote the quantitative trait from the ith subject, which
pertains to a failure time that can potentially be censored and thus incompletely
observed. Let Ci be the censoring time for the ith subject. The observation
consists of T̃i = min(Ti,Ci) and δi = I(Ti ≤ Ci), where I(A) is the indicator
function for event A. The failure time Ti is fully observed only when it is
uncensored, i.e., δi = 1.

Suppose that we have data on a set of genetic markers with a known
genetic map. Let Mi denote the multipoint marker genotype data for the
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ith subject. We consider a putative QTL locus d in the genome and define
Gi = −1, 0 or 1 according to whether the ith subject has genotype qq, Qq or
QQ, respectively, at the QTL. We specify a proportional hazards model for the
effects of the QTL genotypes on the failure time such that, conditional on the
QTL genotype Gi, the hazard function of Ti takes the form

λ(t|Gi) = λ0(t) exp{β1Gi + β2(1 − |Gi|)}, i = 1, · · · , n, (1)

where β1 and β2 pertain to the additive and dominant effects of QTL and λ0(t)
is an unknown baseline hazard function. Diao et al. [4] considered a Weibull
hazard function λ0(t) = γ1γ2tγ2−1, γ1 > 0, γ2 > 0. In this article, we add no
condition on the form of λ0(t).

Because Gi’s are missing covariates in model (1), we consider conditional
hazard function given Mi, that is

λ(t|Mi) = λ0(t)E
[
eβ1Gi+β2(1−|Gi |)|Mi, Ti ≥ t

]
, (2)

which is also a multiplicative hazards model. Denote the conditional expecta-
tion in (2) by ai(t,β), where β = (β1, β2)′, then we have

ai(t,β) =
E

[
eβ1Gi+β2(1−|Gi |) exp

{
−Λ0(t)eβ1Gi+β2(1−|Gi |)

}
|Mi

]
E

[
exp

{−Λ0(t)eβ1Gi+β2(1−|Gi |)} |Mi
] , (3)

where Λ0(t) =
∫ t

0 λ0(s)ds is the cumulative baseline hazard function.
Suppose now that t1 < · · · < tk are the ordered distinct failures in the sample

and R(t j) and D(t j) denote the risk set just prior to t j and the set of subjects
failing at t j, respectively, j = 1, · · · , k. If we use an approximation to accom-
modate tied failure times [1], like Prentice [16], the partial likelihood function
is given as

L(β) =
k∏
j=1

∏
h∈D(t j) ah(t j,β)[∑

h∈R(t j) ah(t j,β)
]mj
, (4)

where mj is the number of failures at t j and nj is the size of the risk set R(t j),
j = 1, · · · , k.

The score function of (4) is

S(β) =
∂log L(β)
∂β

=

k∑
j=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

h∈D(t j)

bh(t j,β)

ah(t j,β)
− mj

∑
h∈R(t j) bh(t j,β)∑

h∈R(t j) ah(t j,β)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (5)

where bi(t,β) = ∂ai(t,β)/∂β, i = 1, · · · , n.
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In order to test the null hypothesis of no QTL effect, i.e., H0 : β = 0, we
used score test procedure. To do so, let xi = (x1i, x2i)′, i = 1, · · · , n, where
x1i = E[Gi|Mi] and x2i = E[(1− |Gi|)|Mi]. These values, x1i’s and x2i’s, can be
found, for example, in [14]. It is easy to verify that ai(t, 0) = 1 and bi(t, 0) = xi,
for any i = 1, · · · , n, then the score statistic (5) at β = 0 can be written as

s =
k∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

h∈D(t j)

xh − mjn
−1
j

∑
h∈R(t j)

xh

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (6)

We were not excited to find that the above statistic does not depend on the nui-
sance parameter λ0(·). Since the primary reason for using the partial likelihood
technique is avoidance of λ0(·), the use of statistic (6) will lead to a simple and
efficient mapping approach.

By some arguments based on the counting process (App. A), we can get an
estimate of variance of score statistics (6),

u =
k∑
j=1

mjn
−1
j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑

h∈R(t j)

x⊗2
h − n−1

j

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

h∈R(t j)

xh

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⊗2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (7)

where x⊗2 = xx′ for x a vector.
In fact, similar to Prentice [16], a finite population variance argument ap-

plied to
∑

h∈D(t j) xh, given R(t j) for each j = 1, · · · , k leads to

ũ =
k∑
j=1

nj − mj

n j − 1
· mj

n j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑

h∈R(t j)

x⊗2
h − n−1

j

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

h∈R(t j)

xh

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⊗2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (8)

where factors
nj−mj

nj−1 due to the tied data approximation used in (4).
Under H0 : β = 0, the statistic

w = s′ũ−1s, (9)

will have an asymptotic χ2
2 distribution. Note that the score s and variance u or

ũ all depend on the locus d of QTL through the dependence of xi’s on d. In the
sequel, we include d in the expressions to emphasize their dependence on d,

w(d) = s′(d)ũ−1(d)s(d). (10)

Thus the test statistic curve {w(d), d ≥ 0} for each chromosome can be drawn
as in the case of standard interval mapping. For each chromosome, the position
with the largest value of the curve is declared to be the QTL location provided
that the value exceeds a certain threshold level. In the next section, we will
show how to determine the threshold level.
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3. THRESHOLD VALUES

When searching the entire chromosome or whole genome for QTL, one
should select a threshold level such that the probability that the test statis-
tic exceeds this level anywhere in the genome equals the desired false-
positive rate. In Appendix B we show that in a dense-map case, the process
{ũ−1/2(d)s(d), d ≥ 0} is asymptotically equivalent to a two dimensional
Ornstein-Uhlenbeck process under a null hypothesis. Thus we can get ana-
lytical approximations of thresholds which are analogous to those of Lander
and Botstein [11], Dupuis and Siegmund [5], etc.

Since the analytical results are based on a number of assumptions that are
not likely to be met in practice, we can simply use a permutation test, as de-
scribed by Churchill and Doerge [3], to obtain an empirical threshold value. In
addition, this section concludes with a resampling procedure similar to Diao
et al. [4] and Zou et al. [20] by which we approximate the null distribution
of supd w(d) and then get the threshold value of our interval mapping method.
First, we generate Zi, i = 1, · · · , n, which are i.i.d. standard normal random
variables. Then define

s∗(d) =
k∑
j=1

∑
h∈D(t j)

Zh

⎛⎜⎜⎜⎜⎜⎜⎜⎝xh − mjn
−1
j

∑
h∈R(t j)

xh

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (11)

and
w∗ = sup

d
s∗
′
(d)ũ−1(d)s∗(d). (12)

In Appendix C, we can show that the unconditional distribution of
1√
n

supd w(d) can be approximated by the conditional distribution of 1√
n
w∗. To

this end, we generate the standard normal random sample (Z1, · · · , Zn) a large
number of times. For each sample, we calculate w∗. The 100(1−α)th percentile
of the simulated w∗’s is the threshold value for the genome-wide significance
level of α.

4. A SIMULATION STUDY

To investigate the proposed method in practical situations, we performed a
small simulation study. Since the proposed score test is locally most powerful,
we did not have to evaluate its power. In this section, we only examined the
performance of the proposed interval-mapping method for locating the QTL
for two different settings. The first setting was the same as the one in Diao [4]
in order to compare their method, where the failure times were generated from
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Table I. Sample means and standard errors for QTL location.

Weibull distribution Log-normal distribution
No. of markers Mean SE Mean SE

6 35.6 10.7 33.4 10.0
11 33.4 9.8 33.9 8.4
51 33.0 8.9 32.3 6.3
101 32.1 7.5 33.6 7.9

the Weibull distribution with baseline hazard function λ0(t) = γ1γ2tγ2−1 with
γ1 = 0.01 and γ2 = 2. In the second setting, the failure time were generated
from the log-normal distribution, that is, log T ∼ N(0, 1) under the null hypoth-
esis. In both settings, the censoring times were generated from the uniform (0,
τ) distribution, where τ was chosen to yield ∼ 30% censored observations.
Assuming no crossover interference, we generated the marker data from the
Markov chain. The interval-mapping step size was set at 1 cM.

We considered a chromosome with a total length of 100 cM. Genetic maps
with different numbers of equally spaced markers were simulated. In both set-
tings, one QTL located at 33 cM was simulated with β1 = 0.5 and β2 = 0.25.
We generated 200 replicates of 300 observations from an F2 population. The
results are summarized in Table I where the unit of means and standard errors
is cM.

In Table I, the results from setting 1 are very similar to those in Table 2 of
Diao et al. [4]. In both settings, there is little bias for the estimation of the QTL
location. In addition, we also found that the dense-maker map makes a small
contribution to the accuracy of the confidence intervals of the QTL location.
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APPENDIX A: ASYMPTOTIC PROPERTIES

In this Appendix, we give some asymptotic results of model (2). The follow-
ing arguments are similar to the Section 5.7 in Kalbfleisch and Prentice [9].
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Define counting processes {Ni(t) = ΔiI(Ti ≤ t), 0 ≤ t}, at-risk processes
{Yi(t) = I(Ti ≥ t,Ct ≥ t), 0 ≤ t}, i = 1 · · · , n and their generating filtration

Ft = σ{Ni(u), Yi(u+),Mi, i = 1, · · · , n, 0 ≤ u ≤ t}.

Then corresponding to this filtration, for each i = 1, · · · , n, the process

Mi(t) = Ni(t) −
∫ t

0
Yi(u)λ(u|Mi)du, t ≥ 0

is a martingale. Based on these martingales, the score of (5) can be written as

S(β) =
n∑
i=1

∫ ⎛⎜⎜⎜⎜⎜⎝ bi(t,β)
ai(t,β)

−
∑n

j=1 b j(t,β)Y j(t)∑n
j=1 aj(t,β)Y j(t)

⎞⎟⎟⎟⎟⎟⎠ dMi(t). (A.1)

This is equivalent to (6). Its predictable variation process is

〈S(β)〉 =
n∑
i=1

∫ ⎛⎜⎜⎜⎜⎜⎝ bi(t,β)
ai(t,β)

−
∑n

j=1 b j(t,β)Y j(t)∑n
j=1 aj(t,β)Y j(t)

⎞⎟⎟⎟⎟⎟⎠
⊗2

ai(t,β)Yi(t)λ0(t)dt, (A.2)

and an estimate of it at β = 0 is

n∑
i=1

∫ ⎛⎜⎜⎜⎜⎜⎝ bi(t, 0)
ai(t, 0)

−
∑n

j=1 b j(t, 0)Y j(t)∑n
j=1 aj(t, 0)Y j(t)

⎞⎟⎟⎟⎟⎟⎠
⊗2

ai(t, 0)Yi(t)∑n
j=1 aj(t, 0)Y j(t)

dN.(t), (A.3)

where N.(t) =
∑n

i=1 Ni(t). Since it is easy to verify ai(t, 0) = 1 and bi(t, 0) = xi,
for i = 1, · · · , n, the above estimate is equivalent to (7).

APPENDIX B: ANALYTICAL APPROXIMATIONS
OF THRESHOLDS

Let gi(d) = (Gi(d), 1 − |Gi(d)|)′, i = 1, · · · , n, and g
d
= g1, where Gi(d) is the

genotype at position d. Let d1 and d2 denote two points on the chromosome,
and p be the recombination fraction corresponding to the genetic distance |d1−
d2|. It is easy to see that the correlation of g(d1) and g(d2) is

Corr(g(d1), g(d2)) =

(
1 − 2p 0

0 1 − 4p

)
=

(
e−2|d1−d2 | 0

0 e−4|d1−d2 |

)
,

assuming Haldane’s map function.
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The score statistic at β = 0 can be written as s(d) =
∑n

i=1 δi{gi(d)− g(d, Ti)},
where g(d, t) =

∑n
i=1 gi(d)Yi(t)/

∑n
i=1 Yi(t). Obviously, limn→∞ g(d, T1) =

E(g(d)) = (0, 1/2)′, in probability. Define u(d) = ũ(d)−1/2 s(d), we have

Corr(u(d1), u(d2)) = Corr(g(d1), g(d2)) + op(1).

Therefore, u1(d) and u2(d), two components of u(d), are approximately inde-
pendent Ornstein-Uhlenbeck processes with means zero and correlation func-
tions e−2|d1−d2 | and e−4|d1−d2 |, respectively. Then we can obtain analytical ap-
proximations of thresholds for both dense-map case and sparse-map case. See,
for example, Dupuis and Siegmund [5].

APPENDIX C: RESAMPLINGMETHOD

It is easy to see that {s(d), d ≥ 0}, where

s(d) =
n∑
i=1

∫ ⎛⎜⎜⎜⎜⎜⎝xi −
∑n

j=1 x jY j(t)∑n
j=1 Y j(t)

⎞⎟⎟⎟⎟⎟⎠ dMi(t), (C.1)

converges to a zero-mean Gaussian process. We can approximate its limiting
distribution through the Monte Carlo method. A robust and efficient method is
to replace Mi(t) by a similar process, say M̃i(t), which has a known distribution
and leave other terms unchanged. Note that the variance function of Mi(t) is
E[Ni(t)]. Thus a natural candidate for M̃i(t) is Ni(t)Zi, where {Zi, i = 1 · · · , n}
denotes a random sample of standard normal variables. After doing that, we
obtain

s∗(d) =
n∑
i=1

∫
Zi

⎛⎜⎜⎜⎜⎜⎝xi −
∑n

j=1 x jY j(t)∑n
j=1 Y j(t)

⎞⎟⎟⎟⎟⎟⎠ dNi(t). (C.2)

By the arguments similar to the Appendix 1 in Lin et al. [12], we can show that
under the null hypothesis that there is no QTL, the conditional distribution of
n− 1

2 s∗(d) given the observed data is the same in the limit as the unconditional
distribution of n− 1

2 s(d).
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