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Abstract – Best linear unbiased prediction of genetic merits for a marked quantitative trait locus
(QTL) using mixed model methodology includes the inverse of conditional gametic relationship
matrix (G−1) for a marked QTL. When accounting for inbreeding, the conditional gametic re-
lationships between two parents of individuals for a marked QTL are necessary to build G−1

directly. Up to now, the tabular method and its adaptations have been used to compute these
relationships. In the present paper, an indirect method was implemented at the gametic level to
compute these few relationships. Simulation results showed that the indirect method can per-
form faster with significantly less storage requirements than adaptation of the tabular method.
The efficiency of the indirect method was mainly due to the use of the sparseness of G−1.
The indirect method can also be applied to construct an approximate G−1 for populations with
incomplete marker data, providing approximate probabilities of descent for QTL alleles for
individuals with incomplete marker data.

BLUP / indirect method / inverse of gametic relationship matrix / marked QTL / tabular
method

1. INTRODUCTION

For best linear unbiased prediction of genetic merits, Fernando and
Grossman [3] proposed a mixed linear model to account for covariance of
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a marked quantitative trait locus (QTL) between relatives. However, this ap-
proach requires the inverse of conditional gametic relationship matrix (G−1)
for the marked QTL of interest. Therefore, efficient computation of G−1 is an
important issue in large populations. This computation is more important in
simulation studies, because G−1 must be obtained once for each replicate.

Computation of G and its inverse for a marked QTL, given completely or-
dered marker genotypes, was first described by Fernando and Grossman [3].
Goddard [4] extended this method to multiple markers where each QTL is
flanked by two adjacent markers and double recombination between two flank-
ing markers is ignored. Ruane and Colleau [8] constructed G−1 following
the rules of Fernando and Grossman [3] except that as an approximation,
inbreeding coefficients of parents based on pedigree information were used.
van Arendonk et al. [14] showed how partitioned matrix theory can be applied
to directly compute G−1 for a marked QTL. Wang et al. [15] extended the work
of Fernando and Grossman [3] to the situation where parental origin of hap-
lotypes may not be known (i.e., unordered marker genotypes). Inbred parents
were taken into account, and G−1 was directly calculated using the partitioned
matrix theory. Based on the development by Wang et al. [15], Abdel-Azim and
Freeman [1] calculated G−1 directly using the decomposition of G. In con-
structing G−1 directly by the methods of Wang et al. [15] and Abdel-Azim and
Freeman [1], accounting for inbreeding, the only nontrivial task is to compute a
matrix which is proportional to the conditional Mendelian sampling covariance
matrix for a marked QTL (D). In order to compute D, however, conditional re-
lationships between two parents of all individuals are necessary [1, 15]. Wang
et al. [15, 16] applied the tabular method to compute D, whereas Abdel-Azim
and Freeman [1] applied an adaptation of the tabular method [12] in which
a small portion of G is enough to compute D. Although the latter method
provides a great computational advantage for large populations, its efficiency
depends on the size of the required portion of G.

Recently, a fast indirect method was developed for computing vectors in-
volving the numerator relationship matrix in the polygenic model [2]. It was
applied for computing relationship statistics and inbreeding coefficients [2,10].
The objective of this paper was to examine the potential, in terms of compu-
tational efficiency, of this indirect method when relationships are to be cal-
culated at the gametic level in large populations in order to obtain G−1. To
focus on this question, complete marker data with either known or unknown
parental origins of haplotypes were assumed; however, possible application
of the indirect method for populations with incomplete marker data will be
discussed.
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2. METHODS

2.1. Theoretical considerations

For simplicity, we first describe how to compute the inverse of G directly
and what requirements have to be fulfilled. Let G denote the conditional ga-
metic relationship matrix, G = {Gi j}, where Gi j is a 2×2 matrix that includes
four gametic relationships between individuals i and j. Thus, Gii contains 1s on
the diagonal and the inbreeding coefficient, conditional on markers, of individ-
ual i on the off-diagonals. Note that individuals are ordered by birth date and
numbered consecutively from 1 to n, where n is the number of individuals. As-
suming complete marker information, two identified parents for non-founders
and nonzero recombination rates between marker(s) and QTL, G can be de-
composed, similar to decomposing the numerator relationship matrix [5] as:

G = LDL′, (1)

where L = {Li j} is a lower block triangular matrix which can be recursively
formed from pedigree and marker data, and D = diag{Dii} is a block diagonal
matrix proportional to the conditional Mendelian sampling covariance matrix,
or M = Dσ2

v , where σ2
v is the genetic variance contributed by the marked

QTL [1, 15]. Matrix Dii can be obtained as:

Dii = Gii − Bi

[
Gsi si Gsidi
Gdisi Gdidi

]
B′i, (2)

where Bi is a 2×4 matrix containing the conditional probabilities that QTL alle-
les in individual i descended from parental alleles (PDQ). Details of computa-
tion of PDQ for a QTL linked to a single marker and to flanking markers have
been given by Wang et al. [15] and Liu et al. [6], respectively. Off-diagonal
terms of Gii are expressed as tr(T′Gsidi). Matrix T is a 2×2 matrix with term
tmn representing the probability that the pair of QTL 1 and 2 in individual i
corresponds to QTL m of its sire and QTL n of its dam. For calculating T, see
Wang et al. [15]. Matrix Bi can be partitioned as

[
Bs
i B

d
i

]
, where Bs

i and Bd
i

contain PDQ from paternal and maternal origins, respectively. Furthermore,
G−1 using (1), is expressed as:

G−1 = (L−1)′D−1L−1,

where L−1 is a lower block triangular matrix which contains −Bs
i and −Bd

i
at positions linking individual i to its sire and dam and 1s on the diagonal.
Therefore, L−1 can be directly and quickly obtained without computing L.
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Calculating matrix D requires knowing the conditional gametic relationships
between the parents of all individuals. Note that G−1 can also be calculated by
using the partitioned matrix theory [15].

From (2), it is clear that for non-inbred populations, D and consequently
G−1 can be calculated simply since there are no gametic relationships between
any individual’s parents. However, for inbred populations, these relationships
must be determined to compute D and this could be computationally costly if
the conventional tabular method is used.

Abdel-Azim and Freeman [1] implemented Tier’s algorithm [12], or adap-
tation of the tabular method, at the gametic level to compute D quickly. The
idea behind the Tier algorithm is that only a small part of G is necessary to
compute the conditional gametic relationships between two parents of individ-
uals. The required elements of G are first flagged and then calculated [1, 12].
Although the required subset is a small part of G, this subset might require a
large amount of memory to be stored in large populations.

Colleau [2] presented an approach to multiply the numerator relationship
matrix (A) by a vector, say x, regarding a planned mating design (i.e., y = Ax).
This method is called the “indirect” method, because it computes a group of
elements of A simultaneously. With the indirect method, solutions are obtained
from considering A−1 instead of A. It is assumed that inbreeding coefficients of
the ancestors are known. Colleau [2] also showed that inbreeding coefficients
themselves can be obtained by the indirect method efficiently. Inbreeding coef-
ficients for paternal sibs, either half or full, having the same pseudo-generation
number were obtained simultaneously from relationships between the sire and
relevant mates. The pseudo-generation number or equivalently longest ances-
tral path number was set to 0 for founders and subsequently incremented by 1
after considering the maximal value found for parents [2,9]. Recently, the algo-
rithm for computing inbreeding coefficients by the indirect method was modi-
fied in order to facilitate the implementation of this method and to speed up the
computation of the coefficients, especially with overlapping generations [10].

Now consider implementation of the indirect method at the gametic level
to compute D for a marked QTL. It is assumed here that PDQ have already
been calculated, and thus the only requirement to compute D is the conditional
gametic relationships between the parents of every individual. The conditional
gametic relationships between an individual and other individuals (Y) can be
expressed as:

Y = GX, (3)
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where X is a n×2 matrix consisting of a 2×2 identity matrix at the position of
the individual of concern and null otherwise. Substituting (1) into (3) leads to:

Y = LDL′X.

Denoting L′X by Z, we have:

(L−1)′Z = X (4)

and
L−1Y = DZ. (5)

As mentioned earlier, L−1 is a lower block triangular matrix with special struc-
ture that contains only −Bs

i and −Bd
i at positions where individual i is linked to

its sire and dam and 1s on the diagonal, and therefore (4) and subsequently (5)
can be solved for Z and Y, respectively, using Gaussian elimination. The elim-
ination for (4) can be simply done by tracing up the pedigree that is to update
X upwards as: Xs ⇐ Xs + (Bs

i )
′Xi and Xd ⇐ Xd + (Bd

i )′Xi. This provides
solutions for Z which should be multiplied by D (Xi ⇐ DiiXi). Note that X is
now overwritten by DZ. Thus, the elimination for (5) can be simply done by
tracing down the pedigree – that is to update X downwards as: Xi ⇐ Xi+Bs

iXs

and Xi ⇐ Xi + Bd
i Xd. This finally provides solutions for Y. It is assumed that

Dii is known for the individual of concern and its ancestors. Therefore, con-
ditional gametic relationships between a sire (or a dam) and its mates can be
derived by this method in two simple steps, or tracing up and tracing down
the pedigree. To compute all conditional gametic relationships of concern, the
indirect method should be run as many times as the number of sires or dams.
In practice, the number of sires is much less than that of dams.

2.2. Algorithm and processing strategies

The modified algorithm of the indirect method to compute inbreeding coef-
ficients [10] can be applied by some changes to compute D, as follows:

(1) compute PDQ for all individuals;
(2) sort identification of individuals by pseudo-generation numbers of their

sires, and then by identification of their sires in ascending order;
(3) for j = 1 to max (pseudo-generation numbers):
(3-1) extract the pedigree of sires with pseudo-generation number j and their

mates and recode them sequentially starting from 1. Thus, for the extracted
pedigree, we have Y∗ = G∗X∗;
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(3-2) calculate Dii for the sires and their ancestors if not already calculated,
and then form D∗;

(3-3) process the indirect method sire after sire:

(3-3-1) set X∗ to a 2×2 identity matrix at the position of the sire considered
and null otherwise;

(3-3-2) solve (L∗−1)′Z∗ = X∗ for Z∗ by tracing up the extracted pedigree;

(3-3-3) solve L∗−1Y∗ = D∗Z∗ for Y∗ by tracing down the extracted pedigree;

(4) finally, calculate Dii for individuals that have not had their Dii calcu-
lated yet.

Matrices Z∗ and D∗Z∗ are obtained simultaneously. Since elements of vector
Z∗ excluding those for the sire considered and his ancestors are certainly null,
D∗Z∗ can be obtained only knowing D∗ii for the sire and his ancestors [10]. Note
that, as shown in the previous section, updating X∗upward and subsequently
downward, using information from the extracted pedigree, give D∗Z∗and Y∗,
respectively.

Theoretically, the indirect method should be solved by tracing a pedigree
containing only the sire of concern, his mates and their ancestors. However,
extracting and recoding the pedigree for every sire (plus his mates) separately
is time-consuming. Therefore, with our previous algorithm for computing in-
breeding coefficients [10], a reduced pedigree containing all sires and dams is
extracted once. With this pedigree, processing the indirect method for each sire
might include some excessive computations that do not contribute to the final
results. In the case of the polygenic model, it seems that these excessive com-
putations are less costly than extracting and recoding many pedigrees. How-
ever, inheritance of QTL alleles from parents to a child involves eight possible
allelic pathways. Therefore, for the same problem, solving (4) and (5) requires
much more computations than solving corresponding equations for the poly-
genic model and consequently more time for the computations possibly in ex-
cess. Hence, in order to lower excessive computations with the gametic model,
a few small pedigrees are built by extracting the pedigree for each group of
sires with the same pseudo-generation number and their mates. It should be
pointed out that since the pseudo-generation number represents a chronologi-
cal order [9], the indirect method can be processed group after group sequen-
tially. With such a sequential process, Dii for the sires of the current group and
their ancestors will be available when needed. Excessive computations can be
further reduced by using a Boolean vector to flag non-null block matrices of X
as they are calculated.
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2.3. Simulation

A simulation study was conducted to compare the computational efficiency
of the indirect method [2] and adaptation of the tabular method [1,12] (denoted
as IM and AT, respectively). A situation where a QTL located in the middle of a
10 cM interval flanked by two markers was considered. The QTL contributed
20% of the additive genetic variation of the trait with heritability of 0.3. To
create a QTL with the given additive genetic variation, the average effects of
the two QTL alleles were set to 6.7 and –6.7, and the remaining additive and
environmental variances to 360 and 1050, respectively. Considering three fac-
tors with two levels each, eight populations with complete marker information
were generated for 10, 20 and 30 years of reproduction. The levels of the three
factors were discrete or overlapping generations, 50 or 300 breeding sires and
2 or 8 litter size. All eight breeding populations consisted of 1500 dams. In the
base generation, two alleles at equal frequencies for the QTL and the maximum
number of alleles for the two markers (i.e., maximum polymorphic markers)
were simulated, and all founders were assumed to be unrelated, non-inbred and
unselected. For the setting of overlapping generations, the oldest 50% and 30%
of sires and dams, respectively, were replaced each year with selected progeny
from the previous year. Parents were selected based on individual phenotypic
values and mated at random.

The efficient sparse storage scheme described by Tier [12] was applied to
store the required upper triangular subset of G. Although this scheme requires
a little more memory than that described by Abdel-Azim and Freeman [1], it
is much faster, because it avoids repeated searching through linked list and
retrieves elements on the lower diagonal efficiently. Each entry of the sparse
matrix is a 2×2 matrix representing Gi j. To avoid redundant computations,
PDQ are obtained once and saved in memory with both algorithms. The PDQ
for flanking markers and the number of discrete-generation equivalents were
calculated according to Liu et al. [6] and Meuwissen and Luo [7], respec-
tively. The probabilities of linkage phases (cis or trans) were calculated using
information of parents and progeny first. Then the PDQ of each individual
were calculated with respect to parental origin of haplotypes, gametic frequen-
cies, probabilities of linkage phases of itself, its sire and its dam. In all eight
populations, less than 5% of parental origin of haplotypes in generation 30
was unknown. The computational cost for calculating PDQ, time required for
allocating memory, and memory used to store pedigree and marker informa-
tion were assessed. The algorithm described by Wang et al. [15] was applied
to compose G−1 after calculating D. All the algorithms were programmed
in C++ language. Variable types of float (4 bytes), int (4 bytes), short int
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(2 bytes) and bool (1 byte) were declared and computations were carried out
on a PC Pentium 4, 3.2 GHz processor under Windows XP (1 Gb of RAM).

3. RESULTS AND DISCUSSION

The performance of the two algorithms, in terms of computing time and
storage requirements, to compute matrix D is presented in Tables I and II, re-
spectively. The results clearly indicate that IM could be run in less time and
with less memory requirement compared to AT. The computing time of IM
relative to AT ranged from 2 to 50%. With discrete generations, both AT and
IM performed slower than with overlapping generations, which may be due to
the larger number of ancestors and the larger equivalent number of discrete-
generations. As expected, the computing time of both methods was increased
substantially with increasing number of sires. A smaller number of sires in-
dicates a smaller number of genetic origins in the population, and therefore
the number of required elements of G was far less with 50 sires compared
with 300 sires. The effect of the number of sires on IM was due to the fact
that this method essentially solves (4) and (5) as many times as the number of
sires. However, the relative efficiency of AT decreased more quickly with the
increased number of sires. The results (not shown) from a study of the effect
of the number of dams indicate that IM was significantly less sensitive to the
number of dams compared to AT.

Since litter size increased from 2 to 8, the total number of individuals in-
creased 4 times. In spite of that, AT became relatively faster with larger litter
size. Similar findings were reported for polygenic models [7, 10]. With larger
litter size, selection pressure is increased because the same number of breeding
individuals is chosen among a higher number of candidates. Hence, the num-
ber of ancestors of the selected individuals tends to decrease, contributing to
decreasing the number of required elements of G. In contrast, IM consumed
slightly more time with larger litter size except for the discrete situation with
300 sires. This could be because increased numbers of individuals increases
the overhead for other tasks.

Increasing the number of generations increased the computing time for both
methods. More precisely, the rate of increase was higher for IM than for AT.
While IM ran fast compared to AT in all situations considered, AT may become
competitive with IM in terms of computing time when both litter size and the
number of generations are large, but may still require much more memory
than IM.
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Table I. CPU time (in s) required by the adaptation of the tabular method (AT) and
the indirect method (IM) for computing matrix D.

No. of Litter Years No. of No. of dis. gen. Discrete Overlapping
sires size evaluated individuals equiv.(1) AT IM AT IM

50

2
0–10 31 550 6.4 1.9 0.1 0.3 0.1
0–20 61 550 12.4 8.9 0.4 1.3 0.1
0–30 91 550 18.3 17.8 0.9 2.5 0.2

8
0–10 121 550 6.8 1.2 0.2 0.4 0.2
0–20 241 550 13.5 4.3 0.5 1.2 0.4
0–30 361 550 20.0 7.4 1.0 2.2 0.6

300

2
0–10 31 800 6.0 24.2 0.5 1.9 0.1
0–20 61 800 11.8 97.7 3.5 9.9 0.5
0–30 91 800 17.7 342.5(2) 9.5 17.7 1.3

8
0–10 121 800 6.3 9.9 0.5 1.8 0.2
0–20 241 800 12.6 37.0 2.9 7.1 0.7
0–30 361 800 18.9 65.9 7.3 12.9 1.6

(1) Computed for individuals born in the last year with overlapping generations.
(2) Hard disk memory was used.

Table II. Memory (in Mb) required by the adaptation of the tabular method (AT) and
the indirect method (IM) for computing matrix D.

No. of Litter Years Discrete Overlapping
sires size evaluated AT IM No. of required AT IM No. of required

elements of G(1) elements of G(1)

50

2
0–10 34.3 3.4 5 535 322 9.7 2.8 1 244 014
0–20 125.5 7.0 21 046 382 30.1 5.4 4 375 274
0–30 217.8 10.0 36 749 726 51.5 8.0 7 686 430

8
0–10 30.5 10.3 3 588 682 16.7 9.7 1 183 862
0–20 85.6 20.4 11 505 926 40.3 19.1 3 587 134
0–30 139.1 30.6 19 135 686 64.5 28.6 6 091 406

300

2
0–10 183.3 3.6 31 584 180 29.1 2.9 4 625 232
0–20 607.8 7.0 105 330 252 112.6 5.6 18 799 380
0–30 1032.9 10.5 179 189 156 195.6 8.2 32 862 484

8
0–10 105.6 10.5 16 701 572 33.9 9.8 4 174 208
0–20 330.3 20.8 54 255 500 99.8 19.3 13 979 460
0–30 562.6 31.1 93 132 984 168.8 28.8 24 306 928

(1) Computed for AT.

In general, the memory requirement of AT showed the same trend as was
seen for computing time and was larger than that of IM in all settings exam-
ined. In the case of discrete generations with 300 sires, two progeny per dam
and 30 years of reproduction, AT performed worst. This bad performance of
AT could be linked to a larger number of ancestors with a more dispersed
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Table III. The number of calculated elements of G−1 and memory (in Mb) required
to store them as a lower triangular sparse matrix.

No. of Litter Years Discrete Overlapping
sires size evaluated No. of calculated Memory No. of calculated Memory

elements required elements required

50

2
0–10 404 172 2.1 392 144 2.0
0–20 824 092 4.2 811 360 4.2
0–30 1 243 972 6.4 1 230 540 6.3

8
0–10 1 486 128 7.6 1 475 112 7.5
0–20 2 985 980 15.2 2 974 396 15.2
0–30 4 485 744 22.9 4 473 552 22.8

300

2
0–10 396 860 2.0 381 200 1.9
0–20 816 792 4.2 800 748 4.1
0–30 1 236 748 6.4 1 220 404 6.3

8
0–10 1 479 316 7.5 1 464 528 7.5
0–20 2 979 200 15.2 2 964 276 15.1
0–30 4 479 124 22.9 4 464 012 22.8

pedigree, which led to an increase in the number of required elements of G.
In this case, the memory requirement for AT was 1032.9 Mb or 98 times that
required by IM, and computing time was exceptionally larger due to the use
of hard disk space. In contrast to computing time, storage requirements of IM
did not significantly differ between overlapping and discrete generations and
between 50 and 300 sires. However, the memory required by IM was greater
with the larger litter size and more generations, due to increased total num-
ber of individuals in these cases. As a result, the storage requirement of IM
was almost a linear function of the total number of individuals, whereas that
of AT could be a function of many factors such as the number of ancestors,
litter size, the number of generations, and selection strategy. Populations that
require a large amount of memory with AT can be divided into smaller popula-
tions based on the related group [12]. Nevertheless, such divided populations
may always have some part of their pedigrees in common, and consequently re-
peated computation of the same elements of G would often be required, which
would result in a marked increase in computing time.

Table III shows the number of calculated elements of G−1 and memory re-
quired to store them as a lower triangular sparse matrix. The total CPU time
consumed for creating the triangular inverse was less than 0.2 seconds in all
scenarios.

Finally, a problem lies in calculating G−1 for populations with incom-
plete marker data. A solution for this situation is given by Wang et al. [15],
which is not feasible for large populations. Given missing marker information,
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approximate methods to compute G and its inverse for large populations in
which PDQ are first approximated and then G is constructed recursively were
presented [13, 15]. The approximated PDQ can also be used by AT or IM
to compute D and consequently G−1. Although these approximate methods
do not adequately utilize the existing marker information for approximating
PDQ [13], the use of a more exact method such as the Monte Carlo Markov
chain might improve the accuracy of the approximations. Recently, given in-
complete marker data, a method for constructing a gametic covariance matrix
for an equivalent mixed model was developed [11]. With this method, how-
ever, genotype probabilities for individuals with missing marker information
should be calculated, and two random effects for each possible marker geno-
type should be considered.

In conclusion, we show that it is feasible to apply the indirect method at the
gametic level for computing conditional gametic relationships between two
parents of all individuals in inbred populations which are necessary for cal-
culating matrix D and finally G−1. Simulation results indicate that the indi-
rect method can compute D faster with significantly less storage requirements
compared to the adaptation of the tabular method. The efficiency of the indi-
rect method relies on the use of the sparseness of G−1 which can be exploited
quickly in two simple steps.
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