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Abstract — The analysis of nonlinear function-valued characters is very important in genetic
studies, especially for growth traits of agricultural and laboratory species. Inference in nonlin-
ear mixed effects models is, however, quite complex and is usually based on likelihood approx-
imations or Bayesian methods. The aim of this paper was to present an efficient stochastic EM
procedure, namely the SAEM algorithm, which is much faster to converge than the classical
Monte Carlo EM algorithm and Bayesian estimation procedures, does not require specification
of prior distributions and is quite robust to the choice of starting values. The key idea is to recy-
cle the simulated values from one iteration to the next in the EM algorithm, which considerably
accelerates the convergence. A simulation study is presented which confirms the advantages of
this estimation procedure in the case of a genetic analysis. The SAEM algorithm was applied to
real data sets on growth measurements in beef cattle and in chickens. The proposed estimation
procedure, as the classical Monte Carlo EM algorithm, provides significance tests on the pa-
rameters and likelihood based model comparison criteria to compare the nonlinear models with
other longitudinal methods.

genetic analysis / growth curves / longitudinal data / stochastic approximation
EM algorithm

1. INTRODUCTION

Many traits of interest in genetic studies are function-valued characters, i.e.
they change in a continuous manner over time or some other independent con-
tinuous variable. Focus will be in this study on nonlinear functions applied to
growth traits. They are of interest for many agricultural and laboratory species
such as rabbits [2], chickens [24], pigs [11], cattle [13], mice [1] and trees [20].

Various methodologies have been proposed to analyze such longitudi-
nal data, including random coefficient models [7], which model individual
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deviations with polynomial functions of time, and structured antedependence
models [12,25], which consider that the observation at time ¢ is a function of
previous observations. These models are in the linear mixed model framework
and can be implemented in traditional mixed model softwares.

A different approach for function-valued characters, especially growth traits,
is to use a parametric nonlinear function of time, with a few interpretable pa-
rameters, that are decomposed into a genetic and an environmental component.
For instance, the Gompertz curve has proven suitable for modeling growth
curves in rabbits [2] and chickens [24]. It has three parameters that have an in-
teresting biological interpretation in terms of adult body weight and maturation
rate. This modeling is similar in spirit to the random regression approach, but it
overcomes the drawbacks encountered with the use of polynomimal functions.
This nonlinear modeling of growth curves has also been used in QTL detection
by Ma et al. [20].

Estimation procedures for these nonlinear mixed effects models are, how-
ever, much more complex, and require the use of stochastic estimation pro-
cedures. Some authors have used the Gibbs sampling for Bayesian estima-
tions [2]. These Bayesian methods do, however, have a few drawbacks such as
the choice of prior distributions, the computing time, the check of convergence
and inference on the estimated parameters (significance tests, etc.).

McCulloch [21], however, has proposed using a hybrid algorithm combin-
ing a Markov chain Monte Carlo EM algorithm — MCEM [28] and a Markov
chain Monte Carlo (MCMC) integration and maximization of the likelihood —
MCMLE [9]. Indeed, the MCEM algorithm converges quickly to the neighbor-
hood of the parameter estimates, but shows a great deal of variability within
this neighborhood. In addition, it requires a considerable increase in the num-
ber of MCMC draws and the number of EM iterations to make the procedure
accurate [3]. On the contrary, the MCMLE algorithm provides accurate es-
timates as well as all the elements required for parameter testing and model
comparisons. It is, however, very computationally expensive and requires a
reference point in the parameter space close to the actual MLE [26].

The aim of this paper was to present an extension of the stochastic approx-
imation EM algorithm (SAEM) proposed in the statistical literature [15] and
to apply it to the genetic analysis of growth curves. This methodology com-
bines the strength of the two aforementioned algorithms. As with the MCEM
algorithm, it is quite robust to starting values, but has much faster convergence
to the maximum likelihood estimates, thanks to a smoothing parameter. It also
provides the likelihood value and confidence intervals for all the estimated
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parameters, and therefore permits the use of classical significance tests and
likelihood based model comparison criteria.

A simulation study will be presented to check the properties of this algo-
rithm in genetic studies, and an application to growth data analysis in beef
cattle and in chickens will be presented.

2. MATERIALS AND METHODS
2.1. Presentation of the nonlinear genetic model

The general form of the model can be written as:

yij = f(tij, i) + g(tij, Pi)eij (D

for individual i (1 < i < N) and measurement j (1 < j < n;). In this equation,
functions f and g are nonlinear functions of #;;, a known continuous variable,
usually time, and of an unknown random vector ¢; of dimension (d X 1). Vari-
able ¢;; is a residual term and is assumed to be normally distributed with mean
zero and variance o-2. In the case where f is the Brody function, for instance,
and g is equal to 1, the model reduces to:

yij = Ai - Bie M + ¢ 2)

where #;; is the time of measurement and the individual vector of parameters is
¢; = (A;, B, K;), which are biologically interpretable.

In the case of a genetic analysis, for an animal model, vector ¢; for individ-
ual i is decomposed as follows:

$i=Xip+Zu+ p; 3)

where X;B are the fixed effects influencing the curve parameters (4;, B;, K;),
Zu are the genetic effects and p; are the permanent environmental effects. Ma-
trices X; and Z; are known incidence matrices. It is assumed that u is normally
distributed: u ~ N(0, A ® G), where matrix G is of dimension dxd (i.e., (3%X3)
in the case of the Brody function) and represents the genetic covariance matrix
between the curve parameters (A4;, B;, K;), and matrix A is the known genetic
relationship matrix. The environmental vector p; is also assumed normally dis-
tributed, with mean zero and covariance matrix P, of dimension d X d, which
represents the environmental covariance matrix between the curve parameters.
Let 0 be the vector of parameters to be estimated: 6 = (8, G, P, o).

In the EM framework, a possible and convenient choice for the missing data
is z = (¢, u). The likelihood of the complete data p(y, ¢, u) can therefore be

decomposed as follows: p(y, ¢, u) = p(yld, u)p(Plu)p(u).



586 F. Jaffrézic et al.

2.2. The SAEM algorithm for genetic studies

The Stochastic EM algorithm was first introduced by Celeux and
Diebolt [4], a Stochastic Approximation version was then proposed by Delyon
et al. [6] and improved by Kuhn and Lavielle [14, 15].

The general idea of the algorithm is to replace the Expectation phase of the
EM algorithm, i.e. the calculation of the conditional expectation of the like-
lihood of the complete data, by a stochastic approximation, since this expec-
tation cannot be analytically calculated in the case of nonlinear mixed effects
models.

At iteration [k], let Q(6)' be the expectation function of the complete like-
lihood conditional on the observations y and the vector of parameters 6 esti-
mated at iteration [k — 1].

0™ = E[Log p(y, ¢, u; O)ly, 6 11. 4)

The key idea is to recycle variates generated from the previous itera-
tions of the EM algorithm [17]. Therefore, instead of approximating Q(8)¥!
by the arithmetic mean of L evaluations of the complete likelihood, i.e.
(1/L) Z?Zl Log p(y, ¢'%1 uk(1; 9) calculated from L random draws of ¢ and
u, as for a classical Monte Carlo EM algorithm, it is replaced by the following
stochastic approximation:

L
20" = 00)~" + % 2, Log ply.¢"1.ult:0) - 0@ 1| (5)
t=1

where ¢ and u are simulated according to the conditional distribution
p(ly, 8%, either directly or using a Metropolis-Hastings algorithm [14].
Kuhn and Lavielle [15] also showed that the convergence of the algorithm
can be considerably improved by coupling it with an MCMC procedure, i.e.
by simulating M Monte Carlo chains for ¢ and u, and averaging the observed
likelihood values over the M chains. Thanks to the “recycling” process pre-
sented in the equation above and in contrast to the classical Monte Carlo EM
(MCEM) algorithm, the number of chains (M) and of random draws within
each chain (L) do not have to be very large. Five chains and 10 to 20 random
draws within the chains are often sufficient in practice. These numbers are very
small in contrast to the 200 to 5000 random deviates that are recommended
by McCulloch [21] to ensure convergence of the MCEM algorithm. However,
practical experience has shown that choosing L = 1 is often not sufficient to
obtain a good accuracy of the parameter estimations.
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Parameter 7y is a crucial parameter in this estimating procedure. It performs
a smoothing of the calculated likelihood values from one iteration to the other
and therefore considerably accelerates convergence compared to other MCMC
estimation procedures. In practice, this smoothing parameter is defined as fol-
lows. During the first K iterations, yx=1, i.e. there is no smoothing performed
and the algorithm is equivalent to an MCEM algorithm [28]. McCulloch [21]
showed that this algorithm converged very rapidly towards a neighborhood
of the ML estimates but then continued showing a great deal of variation.
Therefore, from iteration (K + 1) the smoothing starts in order to stabilize the
estimates and converges more rapidly towards the actual ML estimates [15].
Parameter y; is a sequence of stepsizes within the interval [0,1]. It is recom-
mended [15] to take y; = (k— K)~! for k > (K + 1). The choice of the iteration
number K can depend on the number of simulations performed at each iter-
ation. To ensure the algorithm has already converged into a neighborhood of
the MLE before the smoothing starts, it is recommended to use this algorithm
with several different starting values. A detailed description of the parameter
estimation is given in the Appendix.

An advantage of the stochastic EM approach is that it remains in the classi-
cal maximum likelihood framework. It therefore allows the calculation of the
likelihood value of the model using Importance Sampling and the calculation
of the SE of the parameters using Louis’ missing information principle [19] as
presented by Lavielle [16]. This enables significance tests on the parameters
(fixed effects and variance-covariance components) and also enables model
comparisons using classical criteria such as likelihood ratio tests, AIC or BIC
criteria.

A Matlab program is available for genetic analyses using the SAEM algo-
rithm from the second author (Cristian.Meza@math.u-psud.fr).

3. EXAMPLES
3.1. Growth curve analysis in beef cattle

Data analyzed in this study came from an INRA experimental Charolais
herd [23]. The data set comprised body weight records for 560 cows, born
over an 11 year period (from 1988 to 1998), from 60 sires and 369 dams. Data
were collected monthly from 1998 to 2003, but only 10 measurements from
each animal were included being at around 0, 112, 224, 364, 540, 720, 900,
1260, 1620 and 1980 days. Although the same ages were considered for each
animal, they were unequally spaced and some records were missing.
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Figure 1. Example of 10 observed phenotypic growth curves for beef cattle. The bold
and plain line represents the estimated mean curve obtained with the Brody function
and the bold and dotted line is the observed mean curve calculated on the whole data
set.

A Brody function was used to analyze these data and a sire model was con-
sidered. The model can be written as:

yij = Ai — Be X + (0)

where y;; is the body weight measurement for individual 7 at time ¢; (¢; cor-
responds to the ages of measurement divided by 100 000). The two individual
parameters of this nonlinear function: A; and K; have an interesting biological
interpretation. In fact, A; represents the adult body weight for individual i and
K; is its maturation rate. A reparameterization was used for the B; parameter
of the Brody function such that B; = A; — WO0;, where WO, is the observed birth
weight. The residual term €;; was assumed normally distributed with mean zero
and constant variance o-2. Parameters A; and K; were also assumed normally
distributed and were decomposed using a sire model, as a special case of the
animal model presented in the methodology section above (Eq. (3)).

3.1.1. Analysis with the SAEM algorithm

As shown in Figure 1, the Brody function is very appropriate to model the
growth curves in beef cattle. Estimates obtained for each of the parameters
are given in Table I. As expected, the genetic correlation between parameters
A and K was quite high (-0.80). It still is, however, different from 1 which
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Table I. Estimated genetic sire variances and correlation (VarG, CorrG) for the curve
parameters A and K and permanent environmental variances and correlation (VarE,
CorrE) for A and K with the SAEM algorithm for the beef cattle growth data using a
Brody function. (In brackets are the SE of the parameters).

Fixed effects

HaA 761 (4.08) ux 165 (1.32)
Variance components

VarGy 1270 (411)  VarEy4 4190 (309)
VarGg 54.8 (21.9) VarEg 518 (43.2)
CorrGyux  —0.80 CorrExx -0.71
Residual variance 687 (14.4)

Table II. Estimated genetic and environmental parameters with the SAEM algorithm
for 400 simulated data sets with a sire model and the Brody function (6 represents the
starting values).

m Lk VarG, VarGy CorrGax VarE, VarEx CorrEuxx o2
Simulated 760 165 1300 60 -0.80 4200 520 -0.72 690
6 800 200 15000 6000 0.0 15000 6000 0.0 12869
Mean 760.2 1649 1256.6 62.3 -0.80 4214.5 512.1 -0.72 690.4
Variance 31.9 226 103410 621.5 0.0121 106040 2275.1 0.0008 248.2
RMSE% 0.74 091 25.0 41.7 13.7 7.8 9.3 3.9 2.3

gives the possibility for a genetic selection for high growth rate while keeping
a reasonable adult body weight, which is the goal of beef cattle breeders.

In order to check the accuracy of the SAEM estimates, we simulated
400 data sets with these parameter values. Table II provides the mean, vari-
ance and relative mean square error (RMSE) for each of these parameters over
the 400 data sets. Estimations for all the simulated data sets were performed
with 700 iterations, with the smoothing parameter starting after 400 iterations,
5 chains and 8 simulations per chain at each iteration (which corresponds to a
total of 28 000 MC samples).

Analysis of these 400 data sets was performed using different starting val-
ues. The SAEM algorithm was found to be robust to the choice of starting
values for the variance parameters. However, starting values for the fixed ef-
fects should be quite close to the real parameter values. Good initial values for
the fixed effects can easily be obtained with the NLIN procedure of SAS® for
example. The algorithm was found to converge better when initial values for
the variance components were larger than the expected ones.
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A comparison with other nonlinear estimation procedures on these simu-
lated data sets is difficult due to the computing time required by Bayesian
analyses and the difficulty for approximated methods such as FOCE — First Or-
der Conditional Estimation [18] to analyze any sampled data set arising from
a simulation study. In addition, most softwares based on the Gaussian quadra-
ture such as SAS® NLMIXED do not allow a random structure as complex as
this one. Concerning the computing time, the phenotypic analysis of the real
data set was performed with both the SAEM algorithm and the Gibbs sam-
pling using the winBUGS program [27]. The SAEM algorithm converged and
provided accurate parameter estimations in less than 4 min (for 700 iterations,
5 chains and 8 simulations per chain), whereas the Gibbs sampling required at
least 50 000 iterations, which took about 30 min to run.

3.1.2. Model comparisons

A previous study showed that the structured antedependence (SAD) mod-
els performed well to analyze this growth pattern compared to the classical
random regression (RR) models [13]. The aim is now to compare these mod-
els and the proposed nonlinear approach. Model comparison was based on the
likelihood values and the BIC criterion, which was calculated using the follow-
ing formula: BIC = -2 LogL + n. Log(N) where —2 LogL is minus twice the
log-likelihood value, n. is the number of covariance parameters in the model
and N is the total number of observations. Notice that N in the previous for-
mula has to be replaced by (N-p) (where p is the number of fixed effects, also
equal to rank (X)) in the case of REML estimation.

In order to compare the different methodologies, the same mean curve
was used as fixed effects, i.e. the Brody curve presented above (f(f) =
a — bexp(—kt)). For the SAD and RR models, since the nonlinear parame-
ter k could not be estimated with ASREML [10], the value obtained with the
SAEM algorithm was used. The aim was to compare the flexibility of the three
approaches to model the covariance structure. To do so, the variances and cor-
relations were calculated at each of the 10 ages with the three methods (SAD,
RR, Brody). Since no analytical form is available for a nonlinear model to
calculate the variance and correlation functions, they were calculated by simu-
lations. In order to have a 'reference’ model, this analysis was performed in the
phenotypic case, and the three estimated covariance structures were compared
to a completely unstructured model.

To make sure the likelihood values were comparable, the 10 by 10 pheno-
typic covariance matrix was calculated with the parameters obtained with each
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Table III. Likelihood values and BIC criterion for the phenotypic analysis (the smaller
are the values the better is the model). ‘US’ is the completely unstructured model with
a 10 by 10 estimated covariance matrix; ‘SAD2 quad-const’ corresponds to a second
order structured antedependence model with a quadratic first order antedependence
parameter and constant second order; ‘RR cubic’ corresponds to a random regression
model based on a polynomial of order 3. Nb Par Cov is the number of parameters in the
covariance structure. To make the model comparisons easier a constant (¢ = —40 000)
was added to all the likelihood values.

Model Nb Par Cov -2Logl.  BIC
[N 55 901.6 1374.8
SAD?2 quad-const 7 15922 16524
RR cubic 11 27322 2826.8
BRODY 4 33824  3416.8

of the models and fixed in ASREML (for US, SAD, RR and Brody) to obtain
the likelihood values.

Table III gives the likelihood values and BIC criterion for the different mod-
els. The unstructured model (US) was found here to have the smallest BIC
value and is considered as the ‘reference’ model. It was found that although
the nonlinear shape of the curve is very appropriate to model the phenotypic
growth phenomenon, it is less flexible than the structured antedependence and
even the cubic random regression model to fit the covariance structure. In fact,
as shown in Figure 2, the Brody model did not fit the correlation pattern very
well; the estimated correlations were underestimated at early ages and slightly
overestimated at late ages. Similarly, the phenotypic variance shown in Fig-
ure 3 was overestimated at early ages and underestimated at late ages. On the
contrary, although the likelihood value and BIC criterion were higher for the
cubic random regression model than for the Brody function, Figure 2 shows
that the use of the nonlinear Brody function avoided the main drawbacks of
the random regression models based on polynomial functions, which are the
border effects.

The Brody model also requires the estimation of only very few parameters
and allows the direct prediction of individual genetic values for the adult body
weight and the maturation rate, which is quite difficult to define with other
longitudinal models.
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Phenotypic SAD correlation function
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Phenotypic US correlation function

Figure 2. Estimated phenotypic correlation functions obtained with the unstructured
(US), SAD, RR and Brody models presented in Table III.
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Figure 3. Estimated phenotypic variance functions obtained with the unstructured
(US), SAD, RR and Brody models presented in Table III.
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3.2. Growth curve analysis in the chicken

This data set corresponds to the last generation of selection from the ex-
periment presented by Mignon-Grasteau er al. [24]. Data originated from a
selection experiment on the form of the growth curve initiated by F. Ricard in
1960 on meat-type chickens. Line X+— was selected for high juvenile body
weight at 8 weeks and low adult body weight at 36 weeks. In contrast, line
X—+ was selected for low juvenile body weight and high adult body weight.
In line X++, chickens were selected for high body weights at both ages and,
in the opposite line, X— —, they were selected for low body weights at both
ages. Line X00 was an unselected control line. The data set comprised in total
265 chickens, from 71 sires, and about 12 measurements for each animal at
ages 0, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36 and 40 weeks. Only chickens with
more than 5 measurements were included in the analyses.

The Gompertz function was used and the model can be written as follows:

yij = A;exp(—B;exp(=K;t))) + €;; M

where A; is the asymptotic body weight of chicken i, i.e. the weight at an
infinite age. Parameter B; is equal to In(4;/W;y) where Wy, is the estimated
hatching weight of chicken i. Parameter K; corresponds to the maturation rate,
i.e. the rate at which the animal approaches its asymptotic weight. In this equa-
tion, the times #; correspond to the ages of measurement listed above divided
by 100. A sire model was used for each of these three parameters, and the dif-
ferent lines were fitted as fixed effects. As before, the three parameters of the
curve were assumed normally distributed and correlated. The residuals €; were
also assumed normally distributed with mean zero and constant variance 2.

As mentioned in the methodology section, the SAEM approach allows to
perform significance tests on the parameters. Using a likelihood ratio test, it
was found that the environmental covariance between parameters A and B of
the Gompertz function was not significant. It was therefore set to zero.

On the contrary, it was found that the line effects were all significantly differ-
ent for the three parameters of the curve. As expected and as shown in Table 1V,
the mean effect for parameter A, i.e. the asymptotic body weight, was found to
be the highest for lines X++ and X—+, and the lowest for lines X—— and X+—.
On the contrary, the maturation rate (parameter K) was found to be the lowest
for line X—+ and the highest for line X+—.

Table V provides the estimated genetic and environmental variance and cor-
relation parameters. Since they were calculated only on the last generation of
selection, they were found to be different from the results obtained by Mignon-
Grasteau et al. [24].
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Table IV. Estimated fixed effects with the SAEM algorithm for the chicken growth
data using a sire model and the Gompertz function. (In brackets are the SE of the
parameters).

Line X—+ Line X+— Line X++ Line X— — Line X00

ua o 3070(49.4) 1960 (47.3) 3110(44.0) 1750 (41.0) 2350 (30.2)
up  4.73(0.0971) 3.36(0.203) 4.36(0.13) 4.39(0.0502) 3.72(0.0573)
ux  12.7(0.454) 16.7(0.811) 16.5(0.586) 15.4(0.332) 14.8 (0.29)

Table V. Estimated genetic and environmental variances and correlations obtained
with the SAEM algorithm for the chicken growth data using a sire model and the
Gompertz function. On the diagonal are the variances and oft-diagonal are the corre-
lations. (In brackets are the SE of the parameters).

Genetic components

A 6220 (6960) -0.12 -0.36

B 0.0428 (0.008606) 0.96

K 1.28 (0.128)
Environmental components

A 49000 (7450) 0 -0.35

B 0.0194 (0.015) 0.88

K 2.25(1.58)
Residual variance 8970 (296.0)

The likelihood values were used to compare the Gompertz curve with two
other nonlinear curves: the Logistic function and the Brody function, in a phe-
notypic analysis. The Brody function was defined as in equation (2) and the
Logistic function was:

B 1+ B; exp(—Kitij) €

Yij (8
The three nonlinear curves had the same number of parameters, and the likeli-
hood (-2 LogL) values obtained were 696 for the Gompertz function, 1112 for
the Logistic function and 3776 for the Brody function (a constant ¢ = 46 000
was added to the three likelihood values to make them more easily compa-
rable). As expected, it was found that the Gompertz function was more ap-
propriate to model this growth phenomenon. It is useful, however, to have a
likelihood criterion for nonlinear model comparisons when a less well known
character is analyzed. Any nonlinear function can be defined in the available
SAEM program.
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Phenotypic analyses of these data with the Gompertz function were also per-
formed with winBUGS [27], for a Bayesian Gibbs Sampling analysis. Many
convergence problems were encountered, especially for fitting different line
effects for the B parameter, and the algorithm showed a great sensitivity to the
choice of the prior distributions. On the contrary, the SAEM algorithm proved
to be more robust to the choice of starting values and showed a much faster
convergence.

4. DISCUSSION

The Stochastic Approximation EM (SAEM) algorithm presented in this
paper is conceptually very simple and has several advantages compared to
a classical Monte Carlo EM algorithm [28]. Firstly, thanks to the “recy-
cling” of the simulated values from one iteration to the next, it consider-
ably reduces the number of Monte Carlo simulations required. Secondly,
the smoothing parameter considerably accelerates convergence to the MLE.
A comparison of the SAEM algorithm with approximated estimation proce-
dures such as First Order Conditional Estimation (FOCE), Laplacian meth-
ods or the Gaussian quadrature [5] was performed by Kuhn and Lavielle [15].
The SAEM algorithm was found to perform better than the other methods in
terms of robustness with regards to the choice of the starting values, espe-
cially for the variance components, and accuracy of the estimates. It is also
much faster to converge than classical Bayesian methods using the Gibbs
sampling. These properties of the SAEM algorithm were confirmed here
in the simulation study. The SAEM algorithm is implemented in a special-
ized software for the phenotypic analysis of nonlinear mixed effects models
called “Monolix”, which can be freely downloaded from the following ad-
dress: http://www.math.u-psud.fr/~lavielle/monolix/logiciels.
A Matlab program for the sire model extension is available from the second
author.

Another advantage of the stochastic EM algorithm is that it remains within
the maximum likelihood framework, and therefore allows to use classical
model comparison criteria such as AIC or BIC. It is possible, in particular,
to compare nonlinear mixed models to other longitudinal models such as ran-
dom regression or structured antedependence models. In this study, for exam-
ple, it was found that the structured antedependence models [13,25] were able
to better fit the covariance structure than the nonlinear Brody function. This
shows that it might be necessary to define more flexible nonlinear functions
for growth curves, which would still have interpretable parameters in terms of
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adult body weight and maturation rates, but would have additional parameters
to better capture the variance and correlation patterns of the data. For example,
functions defined by differential equations might be more appropriate. Indeed,
extension of the SAEM algorithm for differential equation models is under
investigation for phenotypic analyses. It was also found that, although math-
ematically equivalent, different parameterizations of the growth curve models
(Brody, Gompertz, Richards) may improve convergence.

The aim of this paper was to present this novel and efficient estimation
procedure, namely the SAEM algorithm. It was applied here for the genetic
analysis of nonlinear longitudinal characters such as growth traits. This algo-
rithm is, however, very general and can also be extended for estimation in the
context of mixture models, for the classification of genes with regards to their
expression profile dynamics, for example. Or, it can be used for inference in
generalized linear mixed models (GLMM), for the analysis of categorical traits
such as fertility, or the joint analysis of discrete and continuous variables for
the genetic analysis of disease resistance characters. Another extension of the
SAEM algorithm could also be for QTL detection for nonlinear traits, such as
growth trajectories [20], or for QTL detection of discrete traits such as disease
resistance characters.

It was found that the speed of convergence of the SAEM algorithm can be
improved by the use of a PX modification [8,22]. This proved to be particularly
efficient during the first iterations, when the parameters were highly correlated,
as is the case for growth curve models. A REML extension of the SAEM algo-
rithm is under development in the phenotypic case and proved to improve the
accuracy of the variance parameter estimates in similar proportions as in linear
mixed models.
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APPENDIX
PARAMETERS ESTIMATION WITH THE SAEM ALGORITHM

The complete likelihood function of the model defined by equations (1)
and (3) can be written as:

Log p(y, ¢,u;0) = Log p(ylp,u; 0) + Log p(dlu;6) + Log p(u; 0)

Log p(y, ¢, u;6) = —WLOg(Zﬂ) - N;[ Logo
1 N n; , N
5 21] Z;(”"f ~ f(i.60)° = 5 Log(P)
1 < ]
3 D @i~ Zuu = XY P $; = Zau ~ XiP)

i=1

N, 1
—T“Log(ll“l) - 5u'r-lu
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where N is the number of individuals with observations, Ny, = Zfi | i 1s the
total number of observations, d is the dimension of vector ¢;, for all individuals
i (d = 3 for a Brody function for example: ¢; = (A;, B;, K;)), and N, is the
number of animals in the relationship matrix. Let I' = A ® G be the genetic
covariance matrix.

In the E step, the conditional expectation of the complete likelihood is cal-
culated: E(Log p(y, ¢,u; 0)ly, 6 = 6'~).

The M step consists of maximizing this conditional expectation. By deriving
it with respect to each of the parameters, it follows that:

N N
BY = X P E | Y X @ - Za)
i=1 i=1

N

= > (xrpixy st
i=1
Ecw A un) sh

G - 2 for m = 1,...,d
(m) Ny Ny

where u; and u,, are of dimension (N, X 1).

plk Ec[2£1(¢i,l[k] - tlul llﬂl[k ) (¢1m tmum[k] - i,mﬂm[k])]
(Lm) — N
(k]
S 3(Lm)
N
k
o _ EeSi i = fa 67 Sy
Nior Nior

where E. denotes the conditional expectation E(.|ly, 0 = H[k]).

In the SAEM algorithm, the above conditional expectations are replaced
with the following stochastic approximations (for one Markov chain and at
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iteration k):

N
[k] _ olk=1] —1(p (K] _ 7 K]\ _ qlk=1]
sP = st sy > Xl - Zu) - 51 }
P
[kl _ olk=1] 7 4-1 [k=1]
Soum = Saqm T VKA UL = S5,,]

[k] _ ¢lk-1]
S 3Lm) = S 3m) T Yk

N
Z(¢i,l[k] - Zay™ - X:8MY (i
P

3(m)

~Zu"! - Xipu") - S [k‘”]

k k-1
SH =5t 4y,

D i~ flaij, o) - SL"_”}

i,j

where ¢! and u!¥l are simulated according to the conditional distribution
p(ly, 0%~ either directly or using a Metropolis-Hastings algorithm [14].
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