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Abstract – An equivalent model for multibreed variance covariance estimation is presented. It
considers the additive case including or not the segregation variances. The model is based on
splitting the additive genetic values in several independent parts depending on their genetic ori-
gin. For each part, it expresses the covariance between relatives as a partial numerator relation-
ship matrix times the corresponding variance component. Estimation of fixed effects, random
effects or variance components provided by the model are as simple as any model including
several random factors. We present a small example describing the mixed model equations for
genetic evaluations and two simulated examples to illustrate the Bayesian variance component
estimation.

segregation variance / multibreed population / genetic evaluation / mixed model
equations / Gibbs sampler

1. INTRODUCTION

The additive genetic covariance between relatives in multibreed cases was
described by Elzo [6]. Nevertheless, this definition ignored the segregation
terms, which explain the difference in the additive variance of the F1 and F2
groups, as was pointed out by Lo et al. [17]. These authors describe the rules
to obtain G, the covariance matrix of the additive values, including both the
pure breed contributions and the segregation deviations
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and

gi j =
1
2

(giS ′ + giD′) , (2)

where P is the number of breeds involved in the founder generation, f ip is the
proportion of genes of the animal i coming from breed p, S and D are the
sire and the dam of animal i, S ′ and D′ are the sire and the dam of animal j,
σ2

p is the additive variance component of breed p and σ2
pp′ is the segregation

variance between breeds p and p′. These rules are closely related to the tabular
method to obtain inbreeding coefficients [9]. Lo et al. [17] also showed details
about the calculation of G−1, closely derived from the conventional rules to
obtain the inverse of the numerator relationship matrix [12, 19].

After this particular definition of G, the analysis of multibreed populations
is fully standard. The model y = Xb + Za + e is defined as

E (y) = Xb (3)

Var (y) = ZGZ′ + Iσ2
e , (4)

where b are the fixed effects including the breed effects and other systematic
effects, X is the incidence matrix relating fixed effects and records, Z is the
incidence matrix for random effects and σ2

e is the residual variance. It must
be noticed that the columns of X corresponding to breed effects consist of
the genetic contributions of each breed to each phenotype. The missing data
of the model, that is, the additive genetic values, are normally distributed as
a ∼ N (0,G) after discarding the breed effects. Genetic evaluations for this
model are also standard, that is, fixed and random effects can be predicted with
the mixed model equations [13] as described in [3].

[
X′X X′Z
Z′X Z′Z +G−1σ2

e

] [
b̂
â

]
=

[
X′y
Z′y

]
(5)

where the additive covariance matrix G can not be expressed as the numerator
relationship matrix times the additive variance components as in the conven-
tional animal model because both the pure breed and the segregation compo-
nents are mixtured into G.

For that reason, genetic variance components for the model defined in for-
mulas (3) and (4) are difficult to estimate. For instance, restricted maximum
likelihood estimates for multibreed models became more complicated than
in a conventional animal model; the details can be found in Elzo [7] and
Birchmeier et al. [2]. On the contrary, Bayesian inferences applied on this
model resulted in non standard full conditionals for the variance components,
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making a Metropolis-Hastings implementation involving the repeated evalua-
tion of the determinants of G necessary [4].

In this paper we will describe an equivalent model to (3) and (4) where G
will be splitted into several parts allowing a simple analysis of the variance
components. As an example, the Bayesian inference will be described for this
case in a simpler way than that described in the literature.

In Section 2, the equivalent model for multiple breed cases will be proposed.
In Section 3 we will illustrate the implementation of the genetic evaluation
in a small example and we will describe both the Bayesian and frequentist
inference on variance components in Section 4.

2. THE MODEL

Formula (1) shows that the variability of a genetic value gii can be splitted
into several independent sources, some of them related with the pure breed
variabilities and others related with segregation terms. The matrix G can then
be partitioned into several pieces just considering only one source of variability
and assigning 0 to the others. Lacy et al. [15,16] used this procedure to analyze
the partial inbreeding of the animals due to each founder of the population. We
will use it here to split the source of each genetic covariance gi j, i.e., each
element of G.

For instance, the partial G related with the breed p, G(p), can be obtained
by considering every genetic component but σ2

p null. Then, the rules in equa-
tions (1) and (2) become

g(p)
ii = f ipσ

2
p +

1
2
g(p)
S D (6)

and

g(p)
i j =

1
2

(
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iS ′ + g

(p)
iD′
)
. (7)

The partial G due to the segregation between breeds p and p′, G(pp′), can be
obtained after the same argument over σ2

pp′ .

g(pp′)
ii = 2

(
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)
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It can be noticed that G(p) or G(pp′) depend each on a single variance compo-
nent and they can be expressed as G(p) = Apσ

2
p or G(pp′) = App′σ

2
pp′ , being
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both Ap and App′ the partial numerator relationship matrices due to pure breeds
or segregation terms respectively. Although not explicitly described as partial
numerator relationship matrices, splitting the inbreeding of the animals into
several independent parts was described yet in [15, 16]. Following this idea,
Rodrigañez et al. [20] calculated the partial inbreeding coefficients by founder
origin by using a modification of the tabular method.

It is verifiable that

G =
∑
p

Apσ
2
p +
∑
p

∑
p′>p

App′σ
2
pp′ . (10)

Replacing (10) into (4) we have the variance of the model defined as

Var (y) = Z


∑
p

Apσ
2
p +
∑
p

∑
p′>p

App′σ
2
pp′

Z′ + R (11)

which can be analyzed by including the corresponding missing data ap and app
for each component as

y = Xb +
∑
p

Zap +
∑
p

∑
p′>p

Zapp′ + e (12)

which is just a conventional animal model with several random factors.
For instance, considering a case with two pure breeds, the model becomes
y = Xb+Za1 +Za2 +Za12 + e, being a1, a2 and a12 the breeding values split-
ted by origin. Assuming the variance components to be known, the Henderson
mixed model equations [13] will be



X′X X′Z X′Z X′Z
Z′X Z′Z + A−1α1 Z′Z Z′Z
Z′X Z′Z Z′Z + A−2α2 Z′Z
Z′X Z′Z Z′Z Z′Z + A−12α12




b̂
â1

â2

â12

 =


X′y
Z′y
Z′y
Z′y

 (13)

where αx = σ2
e/σ

2
x. Equations (5) and (13) provide equivalent results, being

verifiable that a = a1 + a2 + a12.
The inverses of the partial numerator relationship matrices involved in (13)

can be easily obtained from A−x = (I − P)′D−x (I − P), where P is a matrix
relating progeny to parents and Dx are the pivots recursively obtained by the
conventional algorithm [19]. Only D− is specific for pure breeds or segrega-
tions and they will be described in the next section.

Note that formula (13) uses generalized inverses to take into account that
some animals have null contributions from some breeds or segregations.
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In these cases, the inverse of the whole A−1
x does not exist because of the

existence of null rows. From here on, we will use A−x as the inverse of the cor-
responding nonzero part of A but keeping the pattern of null rows as in A. We
will use D−x and ax accordingly. We could not demonstrate the equivalence of
both models in cases including null contributions, but their equivalence will be
illustrated by using a small numerical example in Section 3.

In fact, the conventional strategies to set up the mixed model equations can
be applied as if all contributions were present, but the equations corresponding
to null contributions have to be discarded in order to solve the linear system in
equation (13).

Calculation of the diagonal elements of the partial numerator
relationship matrices

First, considering that in the new model G can be factored as in Aσ2

for each partial covariance matrix, recursive formulas to compute the tabular
method (6), (7), (8) and (9) can be written respectively as

A(p)
ii = f ip +

1
2
A(p)
S D

A(p)
i j =

1
2

(
A(p)
iS ′ + A

(p)
iD′
)

A(pp′)
ii = 2

(
f Sp f Sp′ + f Dp f Dp′

)
+

1
2
A(pp′)
S D

A(pp′)
i j =

1
2

(
A(pp′)
iS ′ + A

(pp′)
iD′
)

where Ai j is the element at the ith row and the jth column of the correspond-
ing partial A. Second, by defining ci = f ip for the pure breed contributions and

ci = 2
(
f Sp f Sp′ + f Dp f Dp′

)
for segregation effects, the tabular method can be ap-

plied in both cases by using the same algorithm

Aii = ci +
1
2
AS D

Ai j =
1
2

(AiS ′ + AiD′) .

The Quaas procedure [19] can be easily reformulated to include the contribu-
tions of each genetic origin. In fact, following his procedure (Sect. 3.1.a of the
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referred paper) for the complete numerator relationship matrix

vi = lii =



√
1 − .25 (uS + uD) i f 0 < S ,D√
1 − .25uS i f D = 0 < S√
1 − .25uD i f S = 0 < D

1 i f 0 = S = D

(14)

where L is the Choleski factor of A and v and u are working vectors (details
can be found in [19]), the partial relationship matrices A− for pure breeds or
segregation effects can be obtained only by setting a slight modification

vi = lii =



√
ci − .25 (uS + uD) i f 0 < S ,D√
ci − .25uS i f D = 0 < S√
ci − .25uD i f S = 0 < D√
ci i f 0 = S = D.

(15)

Other parts of the conventional algorithm to compute the diagonal elements of
A− do not suffer any modification, but skipping the animals with null contribu-
tions for some particular partial numerator relationship matrices. It is verifiable
that (14) is a particular case of (15) for single breed cases with all ci = 1.

3. NUMERICAL EXAMPLE TO ILLUSTRATE THE GENETIC
EVALUATION FOR THE MULTIPLE BREEDMODEL

In Table I, an example is presented including a herd effect with two levels (h)
and 11 animals. The four base animals were classified into two breeds (g) and
the true variance components are σ2

e = 4, σ2
1 = 1, σ2

2 = 2 and σ2
12 = 0.25.

We implemented the Cantet and Fernando [3] method for the animal model
y = X1h +X2g + a + e as presented in equation (5), where b′ = (h′ g′). In this
case, the number of equations is 15. The incidence matrix for the breed effect,
X2, includes the contribution of genes of each breed for each phenotype. We
discarded the equation for the first herd to allow the estimability of the system.
The relevant part of this formulation is the matrix G, which has been calculated
following the rules of Lo et al. [17] at equations (1) and (2).
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Table I. Pedigree and data file for the small example.

Animal Sire Dam Breed* Herd Record
1 - - 1 2 11.
2 - - 1 2 12.
3 - - 2 2 13.
4 - - 2 1 14.
5 1 2 - 1 15.
6 3 2 - 2 16.
7 3 4 - 2 17.
8 5 6 - 2 18.
9 7 6 - 1 19.
10 9 8 - 1 20.
11 5 8 - 1 21.

* Only base animals.

G =



1.00 0.00 0.00 0.00 0.50 0.00 0.00 0.25 0.00 0.12 0.37
1.00 0.00 0.00 0.50 0.50 0.00 0.50 0.25 0.37 0.50

2.00 0.00 0.00 1.00 1.00 0.50 1.00 0.75 0.25
2.00 0.00 0.00 1.00 0.00 0.50 0.25 0.00

1.00 0.25 0.00 0.62 0.12 0.37 0.81
1.50 0.50 0.87 1.00 0.93 0.56

2.00 0.25 1.25 0.75 0.12
1.62 0.56 1.09 1.12

S ym. 2.25 1.40 0.34
2.15 0.73

1.62



The results for the fixed and random effects are presented in column 1 of
Table II.

We also implemented the mixed model equations as presented in for-
mula (13), which consisted of 37 equations. The relevant parts are A1, A2

and A12. In order to allow an easy verification of formula (10), that is,
G = A1σ

2
1 + A2σ

2
2 + A12σ

2
12, we present them including the corresponding

null rows and multiplied by its variance component.
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Table II. Mixed model solutions for Cantet and Fernando [3] (Model 1) and the refor-
mulation presented here (Model 2) for the small data set.

Model 1 Model 2
ĥ1= 0 ĥ1= 0
ĥ2= –3.198032 ĥ2= –3.198032
ĝ1= 16.613064 ĝ1= 16.613064
ĝ2= 17.408480 ĝ2= 17.408480
â1= –0.293401 â1,1= –0.293401 â2,1= 0 â12,1= 0
â2= 0.293401 â1,2= 0.293401 â2,2= 0 â12,2= 0
â3= 0.688673 â1,3= 0 â2,3= 0.688673 â12,3= 0
â4= –0.688673 â1,4= 0 â2,4= –0.688673 â12,4= 0
â5= 0.237007 â1,5= 0.237007 â2,5= 0 â12,5= 0
â6= 1.216290 â1,6= 0.388451 â2,6= 0.827838 â12,6= 0
â7= 0.671231 â1,7= 0 â2,7= 0.671231 â12,7= 0
â8= 1.746217 â1,8= 0.749687 â2,8= 0.705225 â12,8= 0.291305
â9= 1.262473 â1,9= 0.229638 â2,9= 0.962010 â12,9= 0.070825
â10= 1.778623 â1,10= 0.555868 â2,10= 0.966027 â12,10= 0.256728
â11= 1.456135 â1,11= 0.780909 â2,11= 0.441093 â12,11= 0.234133

A1σ
2
1 =



1.00 0.00 0.00 0.00 0.50 0.00 0.00 0.25 0.00 0.12 0.37
1.00 0.00 0.00 0.50 0.50 0.00 0.50 0.25 0.37 0.50

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.25 0.00 0.62 0.12 0.37 0.81
0.50 0.00 0.37 0.25 0.31 0.31

0.00 0.00 0.00 0.00 0.00
0.87 0.18 0.53 0.75

S ym. 0.25 0.21 0.15
0.59 0.45

1.18



A2σ
2
2 =



0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.00 0.00 0.00 1.00 1.00 0.50 1.00 0.75 0.25
2.00 0.00 0.00 1.00 0.00 0.50 0.25 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.50 0.50 0.75 0.62 0.25

2.00 0.25 1.25 0.75 0.12
0.50 0.37 0.43 0.25

S ym. 1.75 1.06 0.18
1.18 0.21

0.25


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A12σ
2
12 =



0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00
0.25 0.00 0.12 0.12

S ym. 0.25 0.12 0.00
0.37 0.06

0.18



The A−x required to set up the mixed model equations are really the inverses
formed by the nonzero rows of each partial numerator relationship matrix. The
results of this model are presented in Table II in columns 2 to 4. It is easily veri-
fiable that the sum of the partial predictors for each animal equals the complete
predictor provided by the Cantet and Fernando’s [3] formulation at column 1.
The null partial results for some animals correspond to the discarded equations
because of their null contributions.

4. ESTIMATION OF VARIANCE COMPONENTS

Model (12) can be understood as a conventional animal model with several
random factors with different covariance matrices. Variance component esti-
mations on such kinds of models have been described in the literature under
both the restricted maximum likelihood or the Bayesian inference. The main
difference between the model presented here and other models involving, for
instance, permanent environmental and litter effects, is the particular nature of
the partial numerator relationship matrices A1, A2 and A12.

In this section we will use two simulated data sets and we will estimate the
variance components via the Gibbs sampler. We will also outline the estimation
of the variance components via the expectation maximization algorithm.

4.1. Data simulation

Two crossed populations were simulated in order to analyze the variance
component estimation. In both cases we simulated 4000 base animals in
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Table III. Marginal posterior moments for the variance components and the estimable
difference between genetic means.

Case I Case II

True Post. expect. Post. var. True Post. expect. Post. var.

σ2
a1

200 191.85 133.47 72 71.89 73.07

σ2
a2

168 169.94 144.30 128 140.38 118.41

σ2
s 8 11.72 38.07 98 93.41 127.59

σ2
e 400 401.52 46.47 400 403.16 47.39

µa2 − µa1 80 80.29 0.34 280 280.78 0.26

two pure breeds and four non-overlapping generations of random mating. The
total number of animals was 20 000 in both cases. Additive genetic values
were obtained after genetic simulation with 100 loci and AA = 2, Aa = 0 and
aa = −2, we simulated a fixed effect with 20 levels assigned at random and
the continuous residual deviates were obtained from a normal distribution with
σ2
e = 400. All animals were recorded and the pedigree was considered to be

completely known.

In case I, all genetic frequencies were 0.5 and 0.7 for breeds 1 and 2 respec-
tively, resulting in a segregation variance of σ2

12 = 8. In case II, all genetic
frequencies were 0.1 and 0.8, respectively, resulting in a segregation variance
of σ2

12 = 98. True values of both the variance components and the estimable
differences between genetic means are presented in Table III.

Both data sets were simulated with the same structure. They have the same
fixed levels and residual deviates and they only differ in the additive genetic
values. The number of animals with nonzero contributions was 16 826 for
breed 1, 16 716 for breed 2 and 10 958 for the segregation.

4.2. Bayesian analysis

We analyzed both data sets by using the Bayesian inference on model (12)
which consists of a conventional mixed model with several random effects.
Considering flat unbounded priors for both the variance components and the
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fixed levels to simplify the implementation, the joint posterior distribution is

p
(
a1, a2, a12, b, σ2

1, σ
2
2, σ

2
12, σ

2
e |y
)
∝
(
σ2
e

)− n
2 exp

{
− e′e

2σ2
e

}

(
σ2

1

)− q1
2 exp

−
a′1A

−
1a1

2σ2
1


(
σ2

2

)− q2
2 exp

−
a′2A

−
2a2

2σ2
2


(
σ2

12

)− q12
2 exp

−
a′12A

−
12a12

2σ2
12

 (16)

where e = y − Xb − Za1 − Za2 − Za12, n is the number of records and q1,
q2 and q12 are the number of animals with nonzero contributions of breed 1,
2 and segregation, respectively. Full conditional distributions from 16 are the
well known normal distributions for the levels of both b and a and inverted
chi-square distributions for variance components. Details of these conditionals
can be found in [21] and are not presented in this paper because they are fully
standard.

To evaluate the posterior density in (16) it suffices to compute for each
quadratic form

∑
φ2
i /di, where φ represents the Mendelian sampling terms.

Note that in this case, it only makes sense to consider the animals with nonzero
contributions.

The Bayesian inference for both cases was implemented by using a Gibbs
sampler. Just the special structure of the numerator relationship matrices and
the use of different amounts of animals in each part of equation (16) differed
in this analysis in relation to the conventional mixed models.

The burn-in lengths provided by the coupling argument [10] were 13 428
and 2426 in cases I and II, respectively, to reach a difference between chains
of 10−4. After burn-in, posterior distributions were obtained by averaging
50 000 cycles of a single chain. The effective chain lengths after burn-in were
274.56 and 131.08 for cases I and II, respectively.

Table III shows the true simulated values and the posterior expectations and
variances for both cases. It must be noticed that the accuracy of the segrega-
tion variance estimate is worse than the additive genetic variances of the pure
breeds.
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4.3. Restricted maximum likelihood

Restricted maximum likelihood [18] estimates of the variance components
for multibreed analysis is also a particular case of a mixed linear model with
several random factors. Then, the expectation-maximization algorithm [5] can
be implemented by using the iterative approach described in [11]. This algo-
rithm requires for each iteration the fixed and random solutions of the linear
system provided in formula (13). The genetic variance components can be cal-
culated at each iteration with

σ̂2
i =

1
qi

[
a′iA

−
i ai + tr

(
A−i C

ii
)]
,

where i represents pure breeds and segregations, σ̂2
i is the variance component

corresponding to pure breeds or segregation effects, qi is the number of animals
with nonzero contributions from this particular source of variability (number of
nonzero ci as described above) and Cii is the corresponding random by random
block of the generalized inverse of the coefficient matrix in formula (13). The
animals with null contributions have to be discarded both in a′iA

−
i ai and A−i C

ii.
The residual variance can be obtained at each round of iteration after the well
known formula

σ̂2
e =

1
n − r (X)

y′y − y′Xb −
∑
i

y′Zai

 ,

where σ̂2
e is the residual variance estimate at the current round of iteration, n

is the number of records, r (X) is the column rank of X and i goes through-
out the pure breeds and segregation effects. Note that we considered null the
elements of ai corresponding to animals with a null contribution from breed or
segregation i.

We did not implement this algorithm because it requires a high computation
demand. It requires the inversion of the coefficient matrix in (13) at each round
of iteration, whose rank is greater than in a conventional single breed analysis.

5. DISCUSSION

The model proposed in this paper is equivalent to the current model of
choice [2–4,17] for genetic evaluations in crossbred populations, including the
segregation components. When discarding the segregation terms, the proposed
model can also be used as an equivalent model to that proposed by Elzo’s
group [6–8]. It will provide equivalent results because it assumes the same
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distribution of records: the expectation is the same in both models and consid-
ering (10), equations (11) vs. (4) provide the same variance. They only differ
in the definition of the missing data, that is, the complete additive values in the
conventional model were replaced by the partial additive values. As far as these
values will be integrated out, both models will provide equivalent results, as
we illustrated in a small example assuming the variances to be known (Sect. 3).

Our proposal requires a linear mixed model very much larger than the clas-
sical one. For instance, examples including two founder breeds require a lin-
ear system around three times larger, depending on the number of equations
discarded because of the null contributions. Furthermore, the resulting linear
system in formula (13) is not expected to be more sparse than the linear system
in formula (5), because the sparsity of both approaches depends mainly on the
pedigree structure, that is, on (I − P).

Although its computational demand is expected to be higher, the proposed
model is a more natural approach in the sense that it defines a set of missing
data for each source of variability, as linear models in animal breeding usually
do. For that reason, it provides very simple formulas for the variance com-
ponent estimation. When using the Gibbs sampler, the variance components
will have the well known scaled inverted chi-square full conditional distribu-
tions, avoiding the use of the non standard forms described in Cardoso and
Tempelman [4]. Although not implemented in this paper, restricted maximum
likelihood estimates of the variance components via the EM algorithm (details
in [2]) will also be simpler when based on the quadratic forms of the partial
additive values.

The model can also be used to analyze models including genetic groups with
different genetic variances, as Alfonso and Estany [1] analyzed. Nevertheless,
the required number of equations will grow dramatically even for models with
a small number of genetic groups.

Even for single breed analysis, splitting the breeding values of the animals
into several independent parts by genetic origin can also be useful. For in-
stance, it can be used to evaluate the impact of some group of founders in the
breeding values of their descendants, for instance, multiple ovulation embryo
transfer nucleus or artificial insemination centers. Further research should be
focused to develop models to evaluate the impact of some non founder animals
in their descendants.

Although not described in this paper, the extension to multiple trait models
is expected to have the same difficulties as the conventional models including
several random factors.
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6. IMPLICATIONS

Variance component estimates in multiple breed populations have been im-
plemented by using particular and specific computer programs. General pur-
pose packages to estimate variance components, such as VCE5 [14], can not
be used currently for multiple breed analysis, but they can handle models with
multiple random factors. These packages will only require an extra coding
effort to calculate both the genetic contributions and the partial relationship
matrices outlined in algorithm (15), which can be easily implemented from the
code they actually include to calculate the diagonal elements of the numerator
relationship matrix (algorithm (14)).
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