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Abstract – Haplotyping in pedigrees provides valuable information for genetic studies (e.g.,
linkage analysis and association study). In order to identify a set of haplotype configurations
with the highest likelihoods for a large pedigree with a large number of linked loci, in our pre-
vious work, we proposed a conditional enumeration haplotyping method which sets a threshold
for the conditional probabilities of the possible ordered genotypes at every unordered individual-
marker to delete some ordered genotypes with low conditional probabilities and then eliminate
some haplotype configurations with low likelihoods. In this article we present a rapid haplotyp-
ing algorithm based on a modification of our previous method by setting an additional threshold
for the ratio of the conditional probability of a haplotype configuration to the largest conditional
probability of all haplotype configurations in order to eliminate those configurations with rela-
tively low conditional probabilities. The new algorithm is much more efficient than our previous
method and the widely used software SimWalk2.

haplotyping / pedigree / conditional probability / likelihood

1. INTRODUCTION

Haplotyping in a pedigree involves the consideration of the Space of All
Consistent Haplotype Configurations (SACHC) for the pedigree based on all
observed data (genotype data and pedigree structure). For a larger pedigree
with a larger number of linked loci, the size of SACHC is too large for an ex-
act method to be feasible. Most configurations in SACHC typically have very
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small conditional probabilities, so that only a relatively small subset of config-
urations with high conditional probabilities (or likelihood) is relevant [4]. Iden-
tifying a subset of configurations with the highest likelihoods and estimating
their conditional probabilities in SACHC is an important computational step
for genetic studies such as the calculation of haplotype frequencies and the es-
timation of identity-by-descent matrices. Likelihood-based sampling methods
are often employed to infer the most likely haplotype configuration or a set
of configurations with the highest likelihoods for a large pedigree with a large
number of loci (e.g., [7, 10]). These methods are flexible but can have high
CPU time requirements and may converge very slowly. Some rule-based algo-
rithms (e.g., [1, 6, 8]) can be applied to large pedigrees, but these algorithms
often assume zero recombinants or are more appropriate for pedigree data with
a small expected number of recombinations [3], such as high density marker
data in a short chromosomal region.

In our previous work [4], we proposed a conditional enumeration method
based on computations of conditional probabilities and likelihood, and on set-
ting a threshold λ (λ < 1) for the conditional probabilities of the possible
ordered genotypes at every unordered individual-marker. It is often efficient to
identify a set of configurations with the approximately highest likelihoods in
SACHC. However, the computing time of this method can increase substan-
tially, when (1) threshold λ is set very close to 1, (2) the pedigree contains
a high proportion of homozygous genotypes and is less informative, or (3)
inter-marker distances is large (say � 5 cM) and the pedigree contains a large
number of recombinations which can increase the haplotype uncertainty of the
individuals. In this study, we describe a rapid haplotyping algorithm based on
a modification of the conditional enumeration method. The modified enumera-
tion method is more efficient than the original method for large pedigrees with
large numbers of loci. We compare the modified method by simulation in large
pedigrees with the original method and with a sampling method implemented
in the software SimWalk2 [10, 11], which is widely used for haplotyping in
large pedigrees. SimWalk2 identifies a single haplotype configuration that is
often nearly optimal.

2. METHODS

In this study, we assume linkage equilibrium between markers in the
founders of the pedigree and we also assume that all individuals in a pedigree
have been genotyped for all markers without genotype errors. We use the same
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notation as in our previous work [4]. The combination of a specific individ-
ual and a specific marker locus is termed an individual-marker. The genotype
of some individual-markers in non-founders can be ordered by their parents’
genotypes. The observed data after this partial reconstruction are denoted by D.
Let U denote all the remaining heterozygous individual-markers in a pedigree,
each with an unordered genotype. Assume that the size of U is t. To recon-
struct a haplotype configuration for the entire pedigree, one needs to assign an
ordered genotype for each individual-marker in U.

Let {M1,M2, . . .,Mt} be a specific ordering of the individual-markers in U.
Let mi denote an ordered genotype assigned to individual-marker Mi, then a set
of assignments {m1,m2, . . .,mt} is a haplotype configuration for U. The joint
probability of this configuration conditional on the observed data (D) is [4]

Pr(m1,m2, . . . ,mt |D) =
t∏

i=1

pi, (1)

where pi = Pr(mi |m1, . . . ,mi−1,D) denotes the probability of an assigned or-
dered genotype mi at individual-marker Mi, conditional on a set of assign-
ments, m1,m2, . . ., mi−1, at the first i − 1 individual-markers M1,M2, . . .,Mi−1,
and observed data D. Also, mi is one of the two possible ordered genotypes ml

i
and ms

i , where ml
i (ms

i ) has the larger (smaller) conditional probability pli (psi )

at individual-marker Mi, and pj
i = Pr(mj

i |m1, . . . ,mi−1,D) for j = s, l, with
psi � pli, p

s
i + pli = 1, and pli � 0.5. Probability pi is equal to one of the condi-

tional probabilities psi and pli, so that pi � pli. Under the assumption of linkage
equilibrium between markers in the founders, probabilities pi, psi and pli can
be calculated by an approximation method using only the informative flanking
markers of the individual under consideration and its parents and offspring [4].

In our previous conditional enumeration haplotyping method (see [4] for
details), we set a threshold λ for the conditional probabilities of ordered geno-
types at every individual-marker, and assigned (one or two) ordered geno-
types to each individual-marker in U sequentially by using an optimal (marker)
search process. After the first i−1 individual-markers {M1,M2, . . .,Mi−1} have
been assigned ordered genotypes, for each set of assignments {m1, m2, . . . ,
mi−1} to these i − 1 individual-markers, we temporarily treat each of the re-
maining individual-markers (not including the first i − 1 individual-markers)
in U as Mi, and calculate the corresponding conditional probability pli for each
of these Mi. We find the individual-marker with the highest conditional prob-
ability pli among all the remaining individual-markers in U, and assign this
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individual-marker to Mi. This procedure is called an optimal (marker) search
process. At the individual-marker Mi, if pli � λ, we delete the ordered geno-
type ms

i , otherwise, both ordered genotypes, ml
i and ms

i are retained. After all
individual-markers in U have been processed by this algorithm, we can obtain a
subset of haplotype configurations with approximately the highest likelihoods.
When setting λ = 0.5, the conditional enumeration haplotyping method be-
comes a conditional probability haplotyping method [4] which is very fast and
identifies a single haplotype configuration by assigning a single ordered geno-
type ml

i to each individual-marker Mi, and the optimal (marker) search process
generates an optimal reconstruction order [4], {M1,M2, . . .,Mi}.

Here, we propose a more efficient modified conditional enumeration haplo-
typing method by setting an additional threshold α for the conditional prob-
abilities of haplotype configurations for U to eliminate some configurations
with low conditional probabilities.

For the haplotype configuration {m1,m2, . . .,mt}, let qi denote the ratio of
conditional probability pi to the larger conditional probability pli at individual-
marker Mi, i.e., qi = pi/pli and qi � 1. We define the important quantity Qi

as the product of q1, q2, . . . , qi (Qi =
i∏

k=1
qk). For any integer i � t, we have

Qi � Qt.

Let T denote the largest conditional probability of all haplotype config-
urations for U (T is unknown), and let R denote the ratio of the condi-
tional probability of the haplotype configuration {m1,m2, . . .,mt} to T , i.e.,
R = Pr(m1,m2, . . .,mt |D) / T and R > 0. If R is very small (e.g., R < 0.001,
then the conditional probability Pr(m1,m2, . . . ,mt |D) is very small relative to
the largest conditional probability T , and the configuration {m1,m2, . . .,mt}
can be ignored when our purpose is to identify a set of configurations with
the highest likelihoods. We describe an approximation method to estimate the
upper bound of R.

Corresponding to the configuration {m1,m2, . . .,mt}, we reconstruct an-
other haplotype configuration {ml

1, ml
2, . . . , ml

t} for U in the same order
{M1,M2, . . .,Mt}, but each ordered genotype ml

i is chosen with the larger con-
ditional probability Pr(ml

i |ml
1, . . . ,m

l
i−1,D) � 0.5 at each individual-marker Mi

(i = 1, 2, . . . , t). The conditional probability of configuration {ml
1, ml

2, . . . , ml
t}

is Pr(ml
1,m

l
2, . . . ,m

l
t |D) =

t∏
i=1

Pr(ml
i |ml

1, . . . ,m
l
i−1,D).
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Note that probability Pr(ml
i |ml

1, . . . ,m
l
i−1,D) is different from probability pli

(= Pr(ml
i |m1, . . . ,mi−1,D)). Since Pr(ml

1,m
l
2, . . . ,m

l
t |D) � T , we have

R =
Pr(m1,m2, . . . ,mt |D)

T
�

Pr(m1,m2, . . . ,mt |D)

Pr(ml
1,m

l
2, . . . ,m

l
t |D)

=

t∏
i=1

pi

t∏
i=1

pli

·

t∏
i=1

pli

Pr(ml
1,m

l
2, . . . ,m

l
t |D)

= Qt ·

t∏
i=1

Pr(ml
i |m1, . . . ,mi−1,D)

t∏
i=1

Pr(ml
i |ml

1, . . . ,m
l
i−1,D)

= Qt

t∏

i=1

ri = Qtr,

where ri = Pr(ml
i |m1, . . . ,mi−1,D)/Pr(ml

i |ml
1, . . . ,m

l
i−1,D) and r =

t∏
i=1

ri.

Hence we obtain R � Qtr. For any i � t, since Qi � Qt, we have

R � Qir. (2)

From Pr(ml
i |ml

1, . . . ,m
l
i−1,D) � 0.5, we have ri � 2 and r � 2t. But we can find

a smaller and more useful approximate upper bound on r. Consider the two
haplotype configurations {m1, m2, . . . , mt} and {ml

1, ml
2, . . . , ml

t} described
above. For a specific i (� t), at each individual-marker Mj ( j = 1, . . . , i − 1)
among the first i−1 individual-markers {M1, M2, . . . , Mi−1}, the assignment ml

j
to Mj in the latter configuration is the ordered genotype with the larger prob-
ability Pr(ml

j |ml
1, . . . ,m

l
j−1,D) at the individual-marker Mj conditional on the

assignments {ml
1, ml

2, . . . , ml
j−1} to the individual-markers {M1, . . .,Mj−1}. But

the assignment mj for Mj in the former configuration may be the ordered geno-
type with the smaller probability at the individual-marker Mj conditional on
the assignments {m1,m2, . . .,mj−1} at the individual-markers {M1, . . .,Mj−1}.
Based on pedigree knowledge, at the i-th individual-marker Mi, with very high
probability,

Pr(ml
i |m1, . . . ,mi−1,D) � Pr(ml

i |ml
1, . . . ,m

l
i−1,D), (3)

or ri � 1 (this inequality was confirmed in our data simulation). Even though
for some individual-marker Mi inequality (3) may not hold, since both prob-
abilities in inequality (3) are greater than 0.5, the two probabilities should be

very close to each other. Thus from the definition r =
t∏

i=1
ri, we obtain r � 1

approximately, and from inequality (2), for any i � t, we have

R � Qi. (4)
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Given a small threshold 10α (10α < 1; e.g., α = −3), for haplotype configu-
ration {m1,m2, . . .,mt}, if we can find an integer i (� t), such that Qi � 10α,
then R will be very small and the configuration is ignorable and can be deleted
when haplotyping in the pedigree. Since Qi is calculated from the conditional
probabilities of the first i assigned individual-markers in U, M1, M2, . . . , Mi,
by utilizing only these conditional probabilities (with no need for calculat-
ing the conditional probabilities at the remaining individual-markers, Mi+1,. . . ,
Mt) we can infer whether the corresponding configuration can be deleted from
SACHC. This elimination of configurations produces considerable saving in
the computing time required for haplotyping.

Based on this principle for haplotype configuration elimination, we now
modify our previous conditional enumeration haplotyping method. The new
algorithm employs two user-determined threshold parameters: threshold λ for
the conditional probabilities of ordered genotypes at every individual-marker
(λ � 0.5) [4] and threshold 10α for the ratio of the conditional probability of a
haplotype configuration to T (α < 0 and 10α � (1 − λ)/λ, see the Appendix).

Suppose that ordered genotypes have been assigned to the first i − 1
individual-markers, for each set of assignments {m1, m2, . . . , mi−1} to these
i − 1 individual-markers, we find the individual-marker Mi with the highest
conditional probability pli among all the remaining individual-markers in U.
And then we assign ordered genotypes to individual-marker Mi as follows
(i = 1, 2, . . . , t):

1. When pli � λ, assign ml
i to individual-marker Mi.

2. When pli < λ, if assigning ms
i to individual-marker Mi produces Qi � 10α,

then we only assign ml
i to individual-marker Mi, otherwise we retain both

ordered genotypes, ml
i and ms

i , for individual-marker Mi.

After all individual-markers in U have been processed with this algorithm, we
will have obtained a set of haplotype configurations SACHC* (⊆ SACHC)
for the pedigree. The elements (configurations) of SACHC* can be ranked by
their likelihoods, and SACHC* will always contain a subset of configurations
which have approximately the highest likelihoods among all configurations in
SACHC of the pedigree. This subset of configurations with approximately the
highest likelihoods can be obtained by eliminating configurations with lower
likelihoods in SACHC*, as desired. The likelihood of a configuration can be
calculated with the method described in [11] by adopting Haldane’s model of
recombination.

The number of haplotype configurations retained in SACHC*, the accuracy
and the computing time of the modified conditional enumeration method can
all be controlled with the chosen values for thresholds λ and α, and increase
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with increasing absolute values of λ and α. When λ approaches 1 and α ap-
proaches −∞ (10α approaches 0), the modified conditional enumeration haplo-
typing method approaches an exhaustive enumeration method (exact method).
The exhaustive enumeration method is computationally expensive or infeasible
for large pedigrees or large numbers of loci.

In the modified method, we calculate the conditional probabilities for
individual-markers in U by an approximation method [4], and we use inequal-
ity (4) which is only approximately true. Therefore, to guarantee the accuracy
of the method, one should choose high absolute values for threshold param-
eters λ and α subject to maintaining an acceptable computing time. We rec-
ommend that the value of λ be set larger than 0.65, and that α (α < 0) be
set according to the average distance (d) between adjacent markers, with a de-
crease in the absolute value of α for an increase in d. For example, if d � 2 cM,
we can set α � −1.0; if d � 5 cM we can set α as large as −0.3 (10−0.3 ≈ 0.5).

3. SIMULATION STUDIES AND RESULTS

To evaluate the performance of the modified method (abbreviated below as
the “modified method”), we compared this method with our original condi-
tional enumeration haplotyping method (“original method”) and the widely
used software SimWalk2 by analyzing three simulated pedigrees with differ-
ent inter-marker distances (results from additional simulation studies evaluat-
ing our original method and comparing it to SimWalk2 can be found in [4]).
The three simulated pedigrees had 163, 450 and 198 members with 18, 30
and 18 founders over 5, 8 and 6 generations, and a single linkage group con-
sisting of 10, 10 and 20 bi-allelic markers with allele frequency of 0.5 and
inter-marker distance of 10 cM, 5cM and 1.5 cM, respectively. Each father had
two spouses, and each full sib family had three children.

Table I presents the haplotyping results from the analyses of the three pedi-
grees with the modified and the original conditional enumeration haplotyping
methods. For the same λ value, when setting a sufficiently small value for α,
the modified method identified a set of top haplotype configurations with the
sum of likelihood ratios nearly identical to that of the set of corresponding top
configurations identified by the original method (top configurations are those
configurations with the estimated highest likelihoods, and a likelihood ratio is
the ratio of the likelihood of a top configuration to that of the true configu-
ration). However, the modified method uses much less computing time. The
computing time of the original method can become unacceptably long. For ex-
ample, in the analysis of the 198-member pedigree, when setting λ > 0.973,
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Table I. Comparison of the modified (“Modified”) and the original conditional enu-
meration haplotyping method (“Original”) based on analyses of three simulated pedi-
grees.

cMb Sum of likelihood ratios
Na (Locic) Method λ α of top configurationsd

100 2000 Timee

163 10 (10) Original 0.835 - 1.339 e8 5.807 e8 4:15:20
Modified 0.835 −2.0 1.338 e8 5.807 e8 0:06:47

0.96 −2.2 1.435 e9 5.153 e9 0:58:57
0.99 −2.2 1.435 e9 5.155 e9 1:01:34

450 5 (10) Original 0.78 - 5.826 e13 4.781 e14 50:05:55
Modified 0.78 −1.5 5.826 e13 4. 781 e14 0:31:13

0.95 −1.32 5.826 e13 4.841 e14 0:22:30
0.98 −1.75 6.870 e13 5.225 e14 2:26:50

198 1.5 (20) Original 0.973 - 618.452 1298.1 53:04:28
Modified 0.973 −3.0 618.452 1298.1 0:08:11

0.99 −2.8 818.384 2202.01 0:07:24
0.995 −3.0 818.384 2302.67 0:10:35

a N denotes the number of individuals in the pedigree.
b Distance between adjacent markers.
c The number of loci in the (single) linkage group.
d The sums of the likelihood ratios of the top 100 and 2000 configurations, where top con-
figurations are those with the estimated highest likelihoods; likelihood ratio is the ratio of the
likelihood of a top configuration to that of the true configuration. 1.339 e8 denotes 1.339 × 108.
e Time h:min:s on 2.00 GHz Intel (R) Xeon(TM) CPU (1 047 546 KB RAM, MS Window 2000).

the computing time (not listed in Tab. I) is much more than 53 h; in this case,
the modified method (with λ = 0.99 or 0.995) identified a set of haplotype
configurations quickly (in less than 11 min) whose sum of likelihood ratios
was much higher than that from the original method (with λ = 0.973).

We note that in the analysis of the 198-member pedigree using the original
method, when setting λ � 0.970, the computing time is very short (� 0:07:41,
see also Tab. II), but when setting λ � 0.973, the computing time increases sub-
stantially. The reason is that at many individual-markers in U, the larger condi-
tional probabilities of the ordered genotypes are less than 0.973 but greater than
0.970. When setting λ = 0.973, two ordered genotypes are retained for each of
these individual-markers, and the computing time increases exponentially with
the number of these individual-markers. However when setting λ � 0.970, we
only keep one ordered genotype for each of these individual-markers.
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Table II. Comparison among the original and modified conditional enumeration
haplotyping methods (denoted by “Original” and “Modified”, respectively) and
SimWalk2 (2.83) based on analyses of the 163-member and 198-member pedigrees.

Na cMb Methods λ α Highest log-likelihood Timee

(Locic) (Numberd)
163 10 (10) Original 0.835 - −266.223 (17) 4:15:20

Modified 0.98 −2.2 −265.221 (18) 0:58:57
SimWalk2 - - −271.001 (1) 1:09:11

198 2.0 (15) Original 0.97 - −281.575 (16) 0:07:41
Modified 0.995 −3.0 −281.575 (33) 0:10:35
SimWalk2 - - −369.891 (1) 160:42:34

a N denotes the number of individuals in the pedigree.
b Distance between adjacent markers.
c The number of loci in the (single) linkage group.
d The number of haplotype configurations with the estimated highest log-likelihood (e.g., for
the 163-member pedigree the original method identified 17 configurations with the same log-
likelihood of −266.233).
e Time on 2.00 GHz Intel (R) Xeon(TM) CPU (1 047 546 KB RAM, MS Window 2000).

We also note that the original and modified methods were run with many
different values for thresholds λ and α. In Tables I and II below we only present
the results for some representative values of the thresholds.

Table II presents results on the comparison of the modified method with
the original method and SimWalk2 (2.83), based on analyses of the 163- and
198-member pedigrees. Table II shows that the modified method can iden-
tify a set of haplotype configurations with much higher log-likelihood and in
much shorter time when compared to SimWalk2 which identifies a single con-
figuration. For the 198-member pedigree with denser markers, the modified
method identified 33 configurations with the same log-likelihood of −281.575
in about 10 min, while SimWalk2 identified a single configuration with the
log-likelihood of −369.891 in about 160 h.

4. DISCUSSION

The modified conditional enumeration haplotyping method is an efficient
algorithm for large pedigrees and large numbers of loci, in particular for the
case of tightly linked markers, where the existing sampling methods are always
computationally intensive.

For a large pedigree with high proportion of uninformative markers, we can
control the computing time more effectively by setting a (user-determined)
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control parameter (nc) for the maximum number of retained haplotype con-
figurations (the maximum size of SACHC*, e.g., nc = 10 000). After the first
i− 1 unordered individual-markers M1, M2, . . . , Mi−1 in U have been assigned
ordered genotypes, if the total number of retained haplotype configurations ex-
ceeds nc, the algorithm will adjust the values for thresholds λ and α so that only
a single ordered genotype (the one with larger conditional probability pli at Mi)
is retained for each of the remaining unordered individual-markers in U. This
step can reduce the computing time dramatically. We note that the enumera-
tion haplotyping methods use an optimal (marker) search process and assign
ordered genotypes at each step to the individual-marker which has the most in-
formation in the corresponding individual and its parents and offspring among
all remaining individual-markers in U.

In this contribution, we have assumed linkage equilibrium between markers
and that all individuals in a pedigree have been genotyped for all markers. We
have work in progress extending our methods to pedigrees with missing marker
data while accounting for founder allele frequencies and marker-marker link-
age disequilibrium among high-density single nucleotide polymorphism (SNP)
markers in the founders of a pedigree. The extension of the haplotyping method
to deal with missing data also involves developing an efficient genotype elim-
ination algorithm for large pedigrees with large numbers of loops for which
the existing methods may not work well or be computationally infeasible
(e.g., [2, 5, 9]; O’Connell 2006, personal communications). We will report on
this extension in a later communication.

The modified haplotyping method described above was implemented in a
C/C++ program, which is available upon request from the first author for aca-
demic research.
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APPENDIX: RELATIONSHIP OF TWO THRESHOLDS λ AND 10α

In the modified method, after a set of ordered genotypes {m1,m2, . . ., mi−1}
have been assigned to the first i−1 individual-markers in U, we decide whether
or not we should delete ms

i at individual-marker Mi based on two steps (see also
main text): (A) Conditional probability pli at the single individual-marker Mi

is compared to threshold λ; if pli � λ, then we delete ms
i . (B) When pli < λ,

the product Qi =
i∏

k=1
qk is compared to threshold 10α where Qi is calculated

from a group of conditional probabilities (pk and plk, k = 1, . . . , i) at a set
of i (� 2) individual-markers, under the assumption that ms

i was assigned to
individual-marker Mi; if Qi � 10α, then delete ms

i .
However, in step (B) a special case can occur, where pli < λ, Qi−1 = 1, and

Qi = qi = pi /pli (e.g., when the set of ordered genotypes {ml
1, ml

2, . . . , ml
i−1}

are assigned to the first i − 1 individual-markers). In this case, if assigning ms
i

to individual-marker Mi produces Qi = qi � 10α, according to step (B), we
should delete ms

i , but here we do not hope to delete ms
i because Qi (= qi) only
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contains information from the conditional probabilities (pi and pli) at the single
individual-marker Mi and deleting ms

i by use of Qi in step (B) would be equiva-
lent to decreasing the value of threshold λwithout using additional information
from the conditional probabilities at the first i−1 individual-markers. In this sit-
uation, step (A) suffices because pli has already contained the information from
the conditional probabilities at the single individual-marker Mi. To avoid delet-
ing ms

i by step (B) in the special case (pli < λ, Qi−1 = 1, and Qi = qi), in the
modified method we set a limit for 10α, 10α � (1−λ)/λ. Then in step (B), when
assigning ms

i to individual-marker Mi, we have Qi = qi = (1−pli)/pli > (1−λ)/λ,
so Qi > 10α, and ms

i will not be deleted in the special case.
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