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Abstract – Parameter expanded and standard expectation maximisation algorithms are de-
scribed for reduced rank estimation of covariance matrices by restricted maximum likelihood,
fitting the leading principal components only. Convergence behaviour of these algorithms is ex-
amined for several examples and contrasted to that of the average information algorithm, and
implications for practical analyses are discussed. It is shown that expectation maximisation type
algorithms are readily adapted to reduced rank estimation and converge reliably. However, as
is well known for the full rank case, the convergence is linear and thus slow. Hence, these al-
gorithms are most useful in combination with the quadratically convergent average information
algorithm, in particular in the initial stages of an iterative solution scheme.

restricted maximum likelihood / reduced rank estimation / algorithms / expectation max-
imisation / average information

1. INTRODUCTION

Restricted maximum likelihood (REML) is one of the preferred methods for
estimation of genetic parameters in animal breeding applications. Algorithms
available to locate the maximum of the likelihood function differ in efficiency,
computational requirements, ease of implementation and sensitivity to start-
ing values in iterative schemes. The so-called ‘average information’ algorithm
has been found to be highly effective, often converging in few rounds of iter-
ation [40]. However, there have been some, albeit largely anecdotal, observa-
tions of convergence problems for analyses with ‘bad’ starting values, many

∗ Corresponding author: kmeyer@didgeridoo.une.edu.au
∗∗ AGBU is a joint venture between the NSW Department of Primary Industries and the Univer-
sity of New England.

Article published by EDP Sciences and available at http://www.gse-journal.org
 or http://dx.doi.org/10.1051/gse:2007032

http://www.edpsciences.org
http://www.gse-journal.org
http://dx.doi.org/10.1051/gse:2007032


4 K. Meyer

random effects or large numbers of traits. On the other hand, ‘expectation-
maximisation’ (EM) type methods are noted for their stability, yielding es-
timates within the parameter space and an increase in likelihood with each
iterate. Unfortunately, these desirable features often come at the price of rather
slow convergence rates.

Over the last decade or so, a number of new, ‘fast’ EM procedures have
been proposed. Of particular interest is the PX-EM or ‘parameter expanded’
algorithm of Liu et al. [20]. Foulley and van Dyk [6] considered its application
for several types of mixed model analyses, demonstrating a dramatic increase
in speed of convergence over the standard EM algorithm. Yet, there has been
virtually no practical use in variance component estimation so far.

Covariance matrices in multivariate analyses by and large have been treated
as ‘unstructured’, i.e. apart from symmetry and requiring eigenvalues to be
non-negative, no further assumption is made. There has been growing inter-
est, however, in analyses considering the leading ‘factors’ or ‘principal com-
ponents’ of a set of correlated effects only. As discussed by Kirkpatrick and
Meyer [16], omitting any factors explaining negligible variation reduces the
number of parameters to be estimated, yielding a highly parsimonious model.
The resulting estimates of covariance matrices then have a factor-analytic
structure e.g. [15] or, assuming specific variances are zero, have reduced rank
(RdR). Average information algorithms for these scenarios have been de-
scribed by Thompson et al. [39] and Meyer and Kirkpatrick [29], respectively.

On closer inspection, it is evident that the PX-EM algorithm [20] involves
a reparameterisation of the standard, linear mixed model of the same form
as REML algorithms to estimate RdR covariance matrices [29]. This can be
exploited to obtain EM type estimators for factorial and RdR models. After a
brief review of pertinent algorithms, this paper extends the approach of Foulley
and van Dyk [6] to EM and PX-EM estimation for models fitting the leading
principal components only. Convergence behaviour of the resulting algorithms
is examined for a number of practical examples, and contrasted to that of the
average information algorithm.

2. REVIEW

Maximum likelihood estimation of variance components almost invari-
ably represents a constrained optimisation problem which needs to be solved
iteratively [8].
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2.1. Average information algorithm

A widely used optimisation procedure is the Newton-Raphson (NR) algo-
rithm. It utilises both first and second derivatives of the function to be op-
timised, and thus provides an efficient search strategy e.g. [35]. A particular
variant of NR used in REML analyses is the ‘average information’ (AI) al-
gorithm, proposed by Thompson and co-workers (see [40]), which replaces
second derivatives of logL by the average of observed and expected values.
NR algorithms perform unconstrained optimisation while REML estimates are
required to be within the bounds of the parameter space [8]. Fortunately, con-
straints are readily implemented by estimating functions of the variance com-
ponents for which the parameter space is not limited. Pinheiro and Bates [36]
compare several options. The most commonly used is a parameterisation to
the elements of the Cholesky decompositions of the covariance matrices, tak-
ing logarithmic values of the diagonal elements [19, 31]. As well as enforcing
permissible estimates, this can improve rates of convergence of iterative max-
imisation schemes [7, 24]. In addition, NR type algorithms do not guarantee
logL to increase. While an initial, small step in the ‘wrong direction’ might
result in a better position for subsequent steps, NR algorithms frequently do not
recover from steps away from the maximum of logL (logLmax). The step size
in a NR iterate is proportional to the product of the inverse of the information
(or AI) matrix and the vector of first derivatives of logL. A simple modifi-
cation to control ‘overshooting’ is to reduce the step size until an increase in
logL is achieved.

Optimisation theory divides the convergence of NR algorithms into two
phases [1]: Phase I comprises iterates sufficiently far away from logLmax

that step sizes need to be ‘damped’ to increase logL. Convergence in this
phase is generally at least linear. Jennrich and Sampson [14] suggested a
simple strategy of successive ‘step halving’ for this purpose. More sophis-
ticated, ‘backtracking’ line search algorithms are available which attempt to
optimise step sizes and guarantee convergence; see, for instance, Boyd and
Vandenberghe [1], Chapter 9. In particular, Dennis and Schnabel [4] describe
a quadratic approximation to choose a scale factor τ. Utilising derivatives of
logL yields an estimate of τ without the need for an additional function eval-
uation. If this step size fails to improve logL, updates can be obtained using
a cubic approximation. Phase II, the ‘pure’ Newton phase, is reached when
no further step size modifications are required. Typically, this phase shows
quadratic convergence rates and involves relatively few iterates.

In addition, successful optimisation via NR algorithms requires the Hessian
matrix (or its approximation) to be positive definite. While this is guaranteed
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for the AI matrix, which is a matrix of sums of squares and crossproducts, it
can have eigenvalues close to zero or a large condition number (i.e. ratio of
largest to smallest eigenvalue). Such ill-conditioning can result in a vector of
overly large step sizes which, in turn, may need excessive scaling (τ � 1) to
enforce an increase in logL, and thus hamper convergence. It is then advisable
to modify the Hessian to ensure that it is ‘safely’ positive definite. Strategies
based on the Cholesky decomposition of the Hessian matrix have been de-
scribed [5, 37] that are suitable for large optimisation problems. For problems
small enough to compute the eigenvalues of the Hessian matrix, we can di-
rectly modify the vector of eigenvalues and compute a corresponding modified
Hessian matrix, or add a small multiple of the identity matrix. The latter re-
sults in an update of the parameters intermediate between that from a NR step
and a method of steepest descent algorithm. Choices of modification and for
minimum eigenvalues are discussed by Nocedahl and Wright [35], Chapter 6.

2.2. Expectation maximisation algorithm

A widely used alternative to NR for maximum likelihood estimation is the
EM algorithm, described by Dempster et al. [3]. It involves computing the ex-
pectation of the (log) likelihood, pretending any ‘missing data’ are known, the
so-called E-step. Secondly, in the M-step, this expectation is maximised with
respect to the parameters to be estimated; see, for example, Ng et al. [34] for
an exposé, or McLachlan and Krishnan [21] for an in-depth treatment. The
popularity of the EM type algorithm is, in part at least, due to its property of
monotone convergence under fairly general conditions, i.e. that the likelihood
increases in each iterate. In addition, for variance component problems based
on the linear, mixed model, estimates are guaranteed to be within the param-
eter space, and terms in the estimators are usually much easier to calculate
than those for NR type methods. An early formulation for an EM type algo-
rithm to estimate covariances for multiple trait models has been presented by
Henderson [11].

The main disadvantage of EM type algorithms is that they can be rather
slow to converge. While NR methods are expected to exhibit quadratic rates
of convergence, EM algorithms are expected to converge linearly [34]. This
behaviour has motivated numerous modifications of the basic EM algorithm,
aimed at improving its rate of convergence. In the simplest cases, it is at-
tempted to predict changes in parameters based on changes over the past it-
erates, e.g. the ‘accelerated EM’ [17], which employs a multivariate form of
Aitken acceleration. Other modifications involve approximations to derivatives
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of the likelihood to yield Quasi-Newton e.g. [13, 22] or gradient type pro-
cedures e.g. [12, 18]. In addition, several generalised EM type algorithms
have been proposed over the last decade. Strategies employed in these in-
clude maximisation of the likelihood conditional on subsets of the parameters,
switching between the complete and observed likelihoods, or alternating be-
tween schemes to augment the observed by the missing data; see Meng and
van Dyk [23] for a review.

Less attention has been paid to the effects of choice of parameterisation
on convergence behaviour of EM type algorithms. Thompson and Meyer [38]
showed that estimation of linear functions of variance components, similar in
form to mean squares between random effects in balanced analyses of variance,
instead of the variance components could dramatically improve convergence
of the EM algorithm. While a reparameterisation to the non-zero elements of
Cholesky factors of covariance matrices is routinely used with NR and Quasi-
Newton type algorithms e.g. [31,33], this has found virtually no use in practical
EM estimation of variance components. Largely this is due to the fact that
estimates are ensured to be within the parameter space, so that there is no
pressing need for a reparameterisation.

Lindstrom and Bates [19] described an EM algorithm for maximum like-
lihood and REML estimation in linear mixed models which utilised the
Cholesky factorisation of the covariance matrices to be estimated. More re-
cently, Meng and van Dyk [24] and van Dyk [41] proposed EM type algo-
rithms which transformed the vector of random effects in the mixed model to
a vector with diagonal covariance matrix, showing that substantial reductions
in numbers of iteration could be achieved. The transformation utilised was the
inverse of the Cholesky factor of the covariance matrix among random effects,
and parameters estimated were the elements of the Cholesky factor.

2.3. Parameter expansion

Probably the most interesting proposal among the modern ‘fast’ EM type
methods is the Parameter Expanded (PX) algorithm of Liu et al. [20]. Like the
approach of Meng and van Dyk [24] it involves conceptual rescaling of the
vector of random effects. However, there are no specific assumptions about the
structure of the matrix α defining the transformation. Liu et al. [20] considered
application of PX-EM for a number of examples, including a random coeffi-
cient, mixed model. Foulley and van Dyk [6] derived detailed formulae for
PX-EM based on the standard mixed model equations for common univariate
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models. As for the standard EM algorithm, the likelihood is ensured to increase
in each iterate of the PX-EM algorithm [20].

Briefly, the basic procedure for PX-EM estimation of variance components
is as follows [6]: The E-step of the PX-EM algorithm is the same as for stan-
dard EM. Similarly, in the first part of the M-step, covariance matrices for ran-
dom effects, Σ, are estimated ‘as usual’, i.e. assuming α is equal to an identity
matrix. Subsequently, the elements of α are estimated as additional parameters
– this represents the expansion of the parameter vector. However, expansion
is only temporary: pre- and postmultiplying the estimate of Σ by α̂ and α̂′,
respectively, then yields an updated estimate of Σ, effectively collapsing the
parameter vector again to its original size. Finally, estimates of the residual
covariances are obtained as in the standard EM algorithm, after adjusting esti-
mates of random effects for α̂.

For most algorithms, computational requirements of REML estimation in-
crease with the number of parameters, both per iterate and overall. Hence it
seems somewhat counter-intuitive to estimate a substantial number of addi-
tional parameters. For instance, if we have q traits in a multivariate analysis,
there are q(q + 1)/2 elements of Σ to be estimated and, making no assump-
tions about the structure of α, an additional q2 elements of α. However, the
PX-EM algorithm can yield dramatically faster convergence than the standard
EM algorithm [6, 20].

Loosely speaking, the efficacy of the PX-EM algorithm can be attributed to
the additional parameters capturing ‘information’ which is not utilised in the
standard EM algorithm. In each iterate of the EM algorithm we treat the current
values of the parameters as if they were the ‘true’ values, i.e. the values max-
imising the likelihood. Hence, before convergence, in the E-step the ‘missing
data’ are imputed and the expectation of the complete likelihood is computed
with error. This error is larger, the further away we are from logLmax. The
deviation of α̂ from the identity matrix gives a measure of the error. Adjusting
the estimate of Σ for α̂ effectively involves a regression of the vector of pa-
rameters on the vector of differences between α̂ and its assumed value in the
E-step. Liu et al. [20] described this as a ‘covariance adjustment’.

3. ALGORITHMS

3.1. Standard EM

Consider the standard linear, mixed model

y = Xβ + Zu + e (1)
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with y, β, u and e denoting the vectors of observations, fixed effects, random
effects and residuals, respectively, and X and Z the corresponding incidence
matrices.

The model given by (Eq. 1) is general and encompasses multiple random
effects, as well as standard multivariate and random regression models. How-
ever, for simplicity of presentation, let u represent a single random effect for
q traits, with subvectors ui for i = 1, . . . , q and covariance matrix G = ΣU ⊗A.
For u representing animals’ genetic effects, A is the numerator relationship ma-
trix. ΣU is the q × q covariance matrix between random effects with elements
σU i j, and ⊗ denotes the direct matrix product. Assume u and e are uncorre-
lated, and let Var(e) = R. Further, let ΣE be the matrix of residual covariances
with elements σE i j for i, j = 1, . . . , q. Ordering e according traits within indi-
viduals, R is block-diagonal with the k-th block equal to the submatrix of ΣE
corresponding to the traits recorded for individual k.

This gives the vector of parameters to be estimated, θ′ =(
vech (ΣU)′ |vech (ΣE)′

)
of length p (with vech the operator which stacks the

columns in the lower triangle of a symmetric matrix into a vector e.g. [9]).
Standard formulation considers the likelihood of θ, given the data. Vectors u
and β in (Eq. 1) cannot be observed and are thus treated as ‘missing data’ in
the EM algorithm. In the E-step, we need to compute the expectation of the
complete data log likelihood (logQ), i.e. the likelihood of θ given y, β and u.
This can be split into a part due to the random effects, u, and a part due to
residuals, e, [6],

logQ = −1
2

(
const. + E

[
log |G| + u′G−1u + log |R| + e′R−1e

])
(2)

= const. + logQU + logQE

with e = y − Xβ − Zu. Each part comprises a quadratic form in the respective
random vector and the inverse of its covariance matrix, and the log determinant
of the latter. Strictly speaking, (Eq. 2) (and the following equations) should be
given conditional on θ being equal to some current value, θt, but this has been
omitted for clarity; see, for instance, Foulley and van Dyk [6] or Ng et al. [34]
for more rigorous formulations.

In the M-step, we take first derivatives of logQ with respect to the elements
of θ, θk. The resulting expressions are equated to zero and solved for θk, k =
1, . . . , p.
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3.1.1. Random effects covariances

For θk = σU i j and ΔUi j = ∂ΣU/∂σU i j,

∂logQU
∂σU i j

= −1
2

(
tr
(
Σ−1
U Δ

U
i j ⊗ I

)
− E[û′

(
Σ−1
U Δ

U
i jΣ
−1
U ⊗ A−1

)
û
])
= 0. (3)

Matrix ΔUi j has elements of unity in position i, j and j, i, and zero otherwise.

With all subvectors of u of the same length, NU , and using that E
[
û′iA

−1û j
]
=

û′iA
−1û j + tr

(
A−1CUU

ij

)
, we obtain – after some rearranging – the well known

estimators [11]
σ̂U i j =

(
û′iA

−1û j + tr
(
A−1CUU

ij

))
/NU (4)

where C is the inverse of the coefficient matrix in the mixed model equa-
tions (MME) pertaining to (Eq. 1), and CUU

i j is the submatrix of C correspond-
ing to the vectors of random effects for traits i and j, ui and u j.

3.1.2. Residual covariances

Similarly, estimators for the residual covariances σE i j are obtained setting
∂logQE/∂σE i j = 0. Inserting R−1R into the trace term (in Eq. 3) and rearrang-
ing, yields [11]

tr
(
EijR
)
= ê′Eijê + tr

(
EijWCW′

)
(5)

with Ei j = R−1
(
∂R/∂σE i j

)
R−1 and W = (XZ).

Expand ΣE as
∑q

m=1

∑q
n=m Δ

E
mnσE mn, with ΔEmn = ∂ΣE/∂σE mn. Using that R

is block-diagonal, we can then rewrite the left hand side of (Eq. 5) as

tr
(
EijR
)
=

q∑
m=1

q∑
n=m

N∑
k=1

tr
(
Σ−1
E (ΔEi j)

k Σ−1
E (ΔEmn)k

)
σEmn =

q∑
m=1

q∑
n=m

FE
ij,mn σEmn

(6)
with N the number of individuals, and (ΔEi j)

k for the k-th individual equal to ΔEi j
with rows and columns pertaining to traits not recorded set to zero. Likewise,
the right hand side of (Eq. 5) can be accumulated across individuals,

ê′Eijê + tr
(
EijWCW′

)
=

N∑
k=1

tr
((
êkêk

′
+ XkCXXXk′ + XkCXUZk′

+ ZkCUXXk′ + ZkCUUZk′
)
Σ−1
E

(
ΔEi j)

kΣ−1
E

)
= tEi j

(7)



PX-EM for PC models 11

with Xk, Zk and ek the sub-matrices and -vector of X, Z and e, respectively, for
the k-th individual. This yields a system of q(q + 1)/2 linear equations to be
solved to obtain estimates of θE = vech (ΣE)

θ̂E = F−1
E tE (8)

with elements FE
i j,mn and tEi j of FE and tE as defined in (Eq. 6) and (Eq. 7),

respectively.

3.2. PX-EM

For the ‘Parameter Expanded’ EM algorithm, (Eq. 1) is reparameterised to

y = Xβ + Z (I ⊗ α) u+ + e (9)

with Var
(
u+
)
= Σ+U ⊗ A. The elements of α represent the additional pa-

rameters to be estimated, i.e. the expanded parameter vector is Θ′ =(
vech(Σ+U )′ |vech(ΣE)′ |vec (α)′

)
(with vec the operator which stacks the

columns of a matrix into a vector [9]). Depending on assumptions on the struc-
ture of α, there are up to q2 additional parameters.

In the E-step, logQ is conditioned on α = α0. Choosing α0 = I, the E-step is
identical to that described above for the standard EM algorithm, i.e. the differ-
ence between u+ and u is merely conceptual. This implies that steps to set up
and manipulate the MME are largely ‘as usual’, making implementation of the
PX-EM algorithm a straightforward extension to standard EM. For the repa-
rameterised model (Eq. 9), e = y−Xβ−Z (I ⊗ α)u+. Hence, forΘk = αi j only
derivatives of logQE are non-zero. For unstructured α, ∂logQE/∂αi j has a sin-
gle non-zero element of unity in position i, j. As shown by Foulley and van Dyk
[6], equating derivatives to zero then yields – after some manipulations – a
linear system of q2 equations to be solved, θ̂α = F−1

α tα with θα = vec(α).
Elements of Fα and tα are

Fαi j,mn = tr
(
Z′jR−1Zn

(
û+m (û+i )′ + CUU

mi

))
(10)

tαi j = û+i Z
′
jR
−1y − tr

(
Z′jR−1X

(
β̂ (û+)′ + CXU

i

))
(11)

where u+i and Zi denote the subvector and -matrix of u+ and Z, respectively,
for trait i, and CXU

i is the submatrix of C corresponding to the fixed effects and
random effects levels for trait i.
Σ+U is estimated assuming α = I, i.e. estimators are as given in Section 3.1.1

(replacing σU i j with σ+U i j). Similarly, estimates of the residual covariances
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are obtained as for the standard EM algorithm (Sect. 3.1.2). Foulley and
van Dyk [6] recommended to use ê = y − Xβ̂ − Z (I ⊗ α̂) û+, i.e. to adjust
for the current estimate α̂ � I. The M-step is completed by obtaining estimates
for ΣU , collapsing Θ into θ. The reduction function is Σ̂U = α̂ Σ̂+U α̂

′ [20].

3.3. Reduced rank estimation

Considering the direct estimation of principal components (PCs), Meyer and
Kirkpatrick [29] reparameterised (Eq. 1) to

y = Xβ + Z (I ⊗Q)u� + e = Xβ + Z�u� + e. (12)

The eigenvalue decomposition of the covariance matrix among random effects
is ΣU = EΛE′, with E the matrix of eigenvectors of ΣU and Λ the diagonal
matrix of corresponding eigenvalues, λi. As it is standard practice, let eigen-
vectors and -values be in descending order of λi.

For Q = E, u� comprises random effect values for the PCs of the q traits
considered. For Q = EΛ1/2, PCs are standardised to variances of unity and
ΣU = QQ′. This is the parameterisation used by Meyer and Kirkpatrick [29],
who truncated Q to columns 1, . . . , r < q to obtain reduced rank estimates of
ΣU . A more convenient alternative is Q = L with L the Cholesky factor of ΣU .
This uses that L = EΛ1/2T with TT′ = I [9]. Assuming that the Cholesky de-
composition has been carried out pivoting on the largest diagonals, this implies
that we can obtain reduced rank estimates of a matrix considering the leading
PCs only, by estimating the non-zero elements of corresponding columns of L.

At full rank (Eq. 12) gives an equivalent model to (Eq. 1). Truncating Q to
the first r < q columns, yields an estimate of ΣU which has, at most, rank r.
Clearly, (Eq. 12) is of the same form as (Eq. 9). However, there is a major con-
ceptual difference: essentially, the roles of extra parameters and those of inter-
est are reversed. The ‘modifiers’ of Z are now the parameters to be estimated,
rather than auxiliary quantities. Conversely, the covariance matrix of random
effects, Var(u�) is assumed to be an identity matrix for standard EM and AI
REML algorithms. In a PX-EM algorithm, these covariances are estimated as
additional parameters, Var(u�) = α�, which is symmetric with r(r + 1)/2 ele-
ments α�i j.

3.3.1. Random effects parameters

The mechanics of taking derivatives of logQE with respect to the elements
of Q are analogous to those for αi j in the full rank PX-EM algorithm. However,
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there is no conditioning on Q = Q0 = I. Consequently, we need to distinguish
MME involving Z and Z�. For generality, let Θk = f

(
qi j
)

where qi j is the
i j-th element of Q and f (·) is some function of qi j (but not involving any other
elements of Q). This gives a matrix of derivatives ΔQi j = ∂Q/∂Θk which has

a single non-zero element ωi j = ∂qi j/∂ f
(
qi j
)

in position i, j. In most cases,
ωi j is unity. However, if we choose to take logarithmic values of the diagonal
elements of L, ωii = log(qii).

For ∂Z�/∂Θk = Z
(
I ⊗ ΔQi j

)
,

∂logQE

∂Θk
= E
[
ωi jû�

′ (I ⊗ ΔQi j
)′
Z′R−1ê

]
. (13)

Using that ê = y − Xβ − Z�u�, expanding Q to Q =
∑r

m=1
∑q

n=m Δ
Q
mn f (qmn)

and equating (Eq. 13) to zero then yields, after some rearrangement,

r∑
m=1

q∑
n=m

ωmntr
(
Z′jR−1ZnE

[
û�mû

�
i
′]) f (qmn) = û�i

′Z′jR−1y − tr
(
Z′jR−1XE

[
β̂û�i

′])

(14)
with u�i the subvector of u� for the i-th principal component. Subscript ranges,
i = 1, . . . , r and j = i, . . . , q as well as m = 1, . . . , r and j = m, . . . , q
in (Eq. 14), pertain to Q consisting of the first r columns of the Cholesky
factor L, and are readily adapted to other choices of Q.

This gives a system of r(2q − r + 1)/2 linear equations to estimate θQ con-
sisting of the non-zero elements of vech (Q),

FQ θ̂Q = tQ (15)

with elements

FQ
i j,mn = ωmntr

(
Z′jR−1Zn

(
û�mû

�
i
′
+ CUU

mi

))
(16)

tQi j = û�i
′Z′jR−1y − tr

(
Z′jR−1X

(
β̂ û�i

′
+ CXU

i

))
. (17)

C in (Eq. 16) and (Eq. 17) is the inverse of the coefficient matrix in the MME
pertaining to (Eq. 12), i.e. involving Z� rather than Z, and with numbers of
equations proportional to r rather than q, with submatrices as defined above.
Similarly, u�i and β are the (sub-)vectors of effects in (Eq. 12). Terms Z′jR−1Zn,

Z′jR−1X and Z′jR−1y, however, are submatrices and -vectors of the data part
of coefficient matrix and right hand side of the mixed model equations on the
‘original scale’, i.e. pertaining to (Eq. 1). Hence, implementation of an EM
algorithm for reduced rank estimation requires part of a second set of MME –
proportional to the number of traits q – to be set up for each iterate.



14 K. Meyer

Table I. Characteristics of the data structure and model for examples.

Example 1 Example 2 Example 3
No. of traits or RRa coefficients 8 4 13
No. of records 20 171 8845 28 637
No. of animals in data 5605 3743 908
No. of animals in pedigreeb 8044 3786 1150
Random effects fittedc A A, M, C A, P
No. of covariance componentsd 56 40 194
Source [29] [32] [26]

a Random regression.
b After pruning.
c A: Direct additive genetic, M: maternal additive genetic, P: direct permanent environmental,
and C: maternal permanent environmental.
d For full rank analysis.

3.3.2. PX-EM: auxiliary parameters

Estimates of α� can be obtained in the same way as the estimates of co-
variance components due to random effects in the standard EM algorithm
(see Sect. 3.1.1 above).

α̂�i j =
(
û�i
′A−1û�j + tr

(
A−1CUU

ij

))
/NU (18)

for i = 1, . . . , r and j = i, . . . , r, and with C as in (Eq. 16) and (Eq. 17).
Updated estimates of Q are then obtained as the first r columns of the

Cholesky decomposition of Q̂α̂�Q̂
′
.

3.3.3. Residual covariances

Again, residual covariances are estimated as in the standard EM algo-
rithm (Sect. 3.1.2), but with ê = y − Xβ̂ − Z�û�.

4. APPLICATION

4.1. Examples

The performance of algorithms described above was examined for three,
relatively small practical examples analysed previously. Table I summarises
characteristics of the data and analyses. Further details can be found in the
respective publications.
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Example 1 (from Meyer and Kirkpatrick [29]) consisted of four ‘carcass
traits’ measured by live ultra-sound scanning of beef cattle in a single herd.
Treating records for males and females as different traits, resulted in 8 traits
in a multivariate analysis. With distinct subsets, the 16 residual covariances
between traits measured on animals of different sex were zero. The model of
analysis was a simple animal model, fitting animals’ direct additive genetic
effects as the only random effect.

Example 2 comprised records for birth, weaning, yearling and final weights
of Polled Hereford cattle in the Wokalup selection experiment see [32]. While
most animals had records for the first two weights, only replacement animals
remaining in the herd after weaning had records for the later weights (35–40%
of those with birth weight). The model of analysis fitted direct and maternal
additive genetic effects, assuming direct-maternal covariances were zero, as
well as maternal permanent environmental effects as random effects.

Example 3 considered repeated records for mature cow weights, also from
the Wokalup selection experiment, taken between 19 and 84 months of age.
Cows were weighed monthly, except during the calving season. This resulted
in up to 63 records per animal, with 75% of cows having at least 13 records.
With short mating and calving periods in the experiment, there was a strong
association between age at and month of weighing. Previous analyses at the
phenotypic level [25] thus had found a strong annual, cyclic pattern in both
weights and variances. Hence, analyses fitted a random regression (RR) on
quadratic B-splines of age at weighing, with 11 equi-distant knots at 6 months
intervals resulting in 13 RR coefficients, for both additive genetic and perma-
nent environmental effects of the animal. Measurement error variances were
assumed to be heterogeneous with 12 classes, corresponding to the calendar
month of recording.

4.2. Analyses

Full rank and RdR estimates of covariance matrices were obtained by
REML, employing an AI, standard EM and PX-EM algorithm as well as a
combination, consisting of 4 initial iterates of the PX-EM algorithm followed
by AI (PX+AI). Residual covariance matrices were assumed to have full rank
throughout. The same set of starting values for the covariance components to
be estimated was used in all analyses for a particular example. Calculations
were carried out using our REML program Wombat [28].

All analyses parameterised to the leading columns of the Cholesky decom-
position of the covariance matrices to be estimated, pivoting on the largest
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diagonal elements. PX-EM and standard EM-algorithms for RdR estimation
were implemented as described above (Sect. 3.3). In calculating the sparse
inverse of the coefficient matrix (C), only the elements corresponding to the
non-zero elements in the Cholesky factorisation of the original matrix were
determined. Any other elements which might have been required to compute
the terms in (Eq. 14) were treated as if they were zero. Convergence was as-
sumed to have been reached when the change in logL between iterates (ΔL)
was less than 10−6 or if the relative change in the vector of parameters to be

estimated,
√
|θ̂t − θ̂t−1|/|θ̂t |, was less than 10−7 [6] (with |·| denoting the vector

norm, and θ̂
t

the estimate of θ from iterate t).
The AI algorithm used was as described by Meyer and Kirkpatrick [29], but

parameterising to the leading columns of Cholesky factors (see Sect. 3.3) and
calculating the average information as described in the Appendix. Pivots were
constrained to a minimum value of 10−6 and transformed to logarithmic scale if
small values (< 0.2) were encountered during the course of iterations. In each
iterate, logLwas forced to increase by scaling step sizes if necessary, using the
line search procedure of Dennis and Schnabel [4]. In addition, the AI matrix
was ensured to be ‘safely’ positive definite, by adding an appropriate multiple
of the identity matrix to it, if the smallest eigenvalue was less than the mini-
mum of 0.002 and 10−6 × λ1, with λ1 representing the largest eigenvalue of the
AI matrix. The AI algorithm was deemed to have converged if the ΔL < 10−5

and the corresponding Newton decrement [1] was greater than −0.01.

4.3. Results

4.3.1. Example 1

Starting values for covariance components for Example 1 were the set of
‘bad’ values used by Meyer [28] to compare PX-EM, EM and AI algorithms
for standard, full-rank multivariate REML analyses. These consisted of esti-
mates from four-trait analyses for measures on females, repeated for males
and all genetic covariances set to 0.01. Analyses were carried out fitting from
1, . . . , 8 principal components for additive genetic effects. Characteristics of
the convergence patterns are summarised in Table II, and Figure 1 shows val-
ues of the relative log likelihood, i.e. logL deviated from the highest value
found across all corresponding analyses (logLmax), for selected numbers of
PCs fitted. With very stringent convergence criteria, almost all analyses for a
given number of PCs converged to the same value, up to the third decimal.
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Table II. Number of iterates (N) needed and deviation of log likelihood (logL) from
best value (D, multiplied by 1000) for change in logL between iterates to reach a
minimum value, and N for logL to reach a given D, for Example 1.

Fita Change in logL less than Deviation less than
0.00001 0.00005 0.00010 0.00050 –0.20 –0.10 –0.05

N D N D N D N D N N N

8 AIb 15 0c 14 0 13 0 11 –1 4 5 5
PX+AI 46 –1 24 –1 18 –2 14 –2 7 8 8
PX-EM 573 –1 374 –4 313 –8 205 –33 114 143 178
EM 600 –1 401 –4 338 –9 221 –35 124 156 196

7 AI 10 0 9 0 8 0 7 0 4 4 4
PX+AI 16 0 14 0 13 0 12 0 7 7 7
PX-EM 601 –1 402 –4 338 –9 219 –36 120 153 195
EM 604 –1 405 –4 342 –9 222 –36 122 156 198

5 AI 15 0 14 0 13 0 12 0 7 7 8
PX+AI 16 0 14 0 14 0 13 0 8 8 9
PX-EM 481 0 346 –2 301 –5 211 –26 115 144 177
EM 499 0 364 –2 318 –6 225 –27 126 157 192

3 AI 76 0 71 0 68 0 63 –1 46 49 51
PX+AI 40 0 35 0 33 0 28 –1 14 15 17
PX-EM 571 0 367 –4 299 –8 172 –37 86 111 150
EM 620 0 415 –4 348 –8 209 –40 105 142 191

2 AI 84 0 81 0 80 0 77 0 66 67 68
PX+AI 49 0 45 0 44 0 41 0 30 31 32
PX-EM 578 0 446 –2 402 –5 305 –28 195 232 271
EM 595 0 464 –2 419 –5 322 –28 210 249 289

a No of genetic principal components.
b AI: Average information, EM: expectation maximisation, PX-EM: parameter expanded EM,
PX+AI: 4 PX-EM steps followed by AI.
c A value of 0 denotes a deviation < 0.001.

Both EM and PX-EM required hundreds of iterates to locate the maximum
of logL. With a linear convergence pattern, reaching a stage where the ΔL
dropped to less than 10−5 generally doubled the amount of iterates required,
compared to a less stringent value of 0.005, while increasing logL by less
than 0.04. For all orders of fit, estimates of the matrix of auxiliary parameters
for PX-EM, α�, approached an identity matrix in relatively few iterates. While
the PX-EM yielded slightly bigger improvements in logL than the EM algo-
rithm initially, there was only little advantage over standard EM overall, even
when all PCs were fitted. In stark contrast, there were substantial differences
between the two algorithms for full rank estimation on the original scale [28],
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Figure 1. Change in relative log likelihood (logL) for Example 1 in the first 40 iterates
for various algorithms, fitting 8 (top left), 6 (top right), 4 (bottom left) and 2 (bottom
right) principal components. ( PX-EM, EM, AI, and
PX+AI algorithm)

i.e., as suggested by Meng and van Dyk [23], parameterisation to the elements
of the Cholesky factor greatly improved convergence of the EM algorithm.

In contrast, the AI algorithm converged in few iterates. With a quadratic con-
vergence pattern, generally only a few additional iterates were required when
increasing the stringency of the convergence criterion tenfold or more. The
eigenvalue for the last PC of the 8 traits was very small (< 0.001). In turn,
this yielded an AI matrix with small minimum eigenvalue, so that a constant
needed to be added to its diagonal and multiple steps requiring step size scal-
ing. Omitting this PC (Fit 7) removed the need for these control measures and
improved the rate of convergence. Reducing the rank of fit further had com-
paratively little effect on the convergence of the AI algorithm, as long as the
eigenvalues of the PCs not fitted were small. Fitting less than 5 PCs, however,
there was a trend for the number of iterates required to increase with the num-
ber of PCs omitted. This was especially evident for an analysis fitting 2 PCs
(see Fig. 1). While this did not cause a need for step size scaling or modifica-
tion of the AI matrix, there was a sequence iterates with small changes in logL
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only. For these scenarios, a few initial iterates of the PX-EM algorithm tended
to ‘bypass’ this area of search and thus reduced the number of iterates required
by roughly 40%.

4.3.2. Example 2

For Example 2, analyses were carried out fitting all 4 PCs for direct ge-
netic (A), maternal genetic (M), permanent environmental (C) and residual (E)
covariance matrices (Model 4444), fitting 3 PCs for A and M and 2 PCs for C
(Model 3324), and fitting 2 PCs for A, M and C (Model 2224), yielding 40,
33 and 30 parameters to be estimated, respectively. Convergence characteris-
tics are summarised in Table III. As for Example 1, the PX-EM and EM (not
shown) algorithms required substantial numbers of iterates to locate the max-
imum of logL, while the AI algorithm converged in about 20 iterates. With
multiple random effects and highly correlated traits, both RdR analyses shown
omitted only PCs with small eigenvalues and thus converged more quickly than
the full rank analysis.

4.3.3. Example 3

For Example 3, RdR analyses considered 7 and 9 PCs (Model 79), 5 and
7 PCs (Model 57), and 5 PCs (Model 55) for both genetic and permanent envi-
ronmental covariances, respectively c.f. [26]. For this example, the number of
iterates required for the (PX-)EM algorithm were excessive, especially for the
analysis fitting only 5 PCs for both random effects. With relative ‘good’ start-
ing values, full rank AI (Model 13 13) converged quickly despite representing
a highly overparameterised model, requiring 30 iterates for ΔL to drop below
0.0005 with a corresponding deviation from logLmax of −0.01; see Table III.
For RdR analyses, the number of AI iterates required was again reduced at first
(Model 79) but tended to increase when PCs with non-negligible eigenvalues
were omitted. The latter was due to a series of AI steps with small, monotoni-
cally declining improvements in logL, yielding more a linear than a quadratic
convergence pattern.

5. DISCUSSION

RdR estimation of covariance matrices decreases the number of parameters
to be estimated. Moreover, omitting PCs with negligible eigenvalues alleviates
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Table III. Convergence characteristics for Examples 2 and 3.

Fita Change in logL less than Deviation less than
0.00005 0.00010 0.00050 –0.20 –0.10 –0.05
Nb Db N D N D N N N

Example 2
4444 AIb 29 0 23 –1 15 –2 6 7 8

PX+AI 21 0 17 –1 16 –1 8 9 10
PX-EM 591 –8 500 –14 323 –55 190 259 353

3324 AI 21 0 21 0 18 0 11 12 13

PX+AI 20 0 20 0 19 0 12 12 13
PX-EM 546 –5 468 –10 284 –54 173 221 293

2224 AI 20 0 19 0 17 0 10 11 12
PX+AI 22 0 21 0 19 0 12 13 14
PX-EM 734 –2 701 –4 631 –21 535 564 593

Example 3
13 13 AI 62 –3 62 –3 30 –10 10 11 14

PX+AI 75 –2 52 –5 33 –10 16 17 19
PX-EM 1690 –38 1346 –61 792 –185 763 1062 1476

79 AI 25 –30 25 –30 25 –30 13 18 22
PX+AI 39 –1 33 –4 33 –4 15 20 22
PX-EM 3198 –36 2663 –72 1632 –320 1947 2422 2936

57 AI 60 0 56 0 48 –2 26 29 32
PX+AI 76 0 73 0 67 –1 46 50 53
PX-EM 7923 –22 7551 –47 3623 –1611 6818 7172 7518

55 AI 115 –1 107 –1 88 –6 47 54 62
PX+AI 116 –1 108 –1 89 –6 47 55 63
PX-EM 7250 –111 5605 –221 2689 –874 5828 7495 9249

a Numbers of principal components fitted for covariance matrices estimated, numbers for A, M,
C and E for Example 2, and A and R for Example 3; cf. Table I.
b See Table II for abbreviations.

problems associated with attempting to estimate parameters close to the bound-
ary of their permissible space, and tends to improve convergence rates com-
pared to full rank analyses. One of the main obstacles in multivariate analyses
involving more than a few traits is the computational effort involved. While the
size of the MME to be manipulated in REML estimation is proportional to the
number of PCs fitted for random effects, the number of operations required in
each iterate increases more than quadratically with the number of PCs. Thus
even a small reduction in the number of PCs considered can have a dramatic ef-
fect on the computational requirements e.g. [27]. For Example 1, for instance,
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total computing times required using the AI algorithm (with a convergence
criterion of ΔL < 0.0005) were 2678, 1076, 723 and 624 seconds for analyses
fitting 8, 7, 6 and 5 PCs, respectively (using a 64-bit dual core processor, rated
at 2.6 Ghz). The combination of greater stability and faster convergence in es-
timation and reduction in computational requirements per iterate makes RdR
analysis a powerful strategy for higher dimensional multivariate analyses.

Caution is required, however, when reducing the number of PCs fitted be-
yond those with negligible eigenvalues. As results show, this can increase the
number of REML iterates required. Moreover, estimates of both the directions
and eigenvalues of the subset of PCs fitted tend to be biassed in this case [30].

The examples chosen represent diverse and difficult analyses involving
many parameters and, at full rank, somewhat overparameterised models, ap-
plied to relatively small data sets. All algorithms examined were capable of
maximising logL. The AI algorithm generally required substantially fewer it-
erates than the PX-EM or EM algorithm, but stringent control of the AI steps
and care in choosing an appropriate parameterisation were needed throughout.
Earlier work [2, 28], considering the PX-EM algorithm for full rank estima-
tion found it to be most useful in conjunction with the AI algorithm, replacing
the first few iterates to reduce problems due to poor starting values or initial
overshooting. As shown, the PX-EM algorithm is readily adapted to RdR esti-
mation, and again is most useful combined with the AI algorithm for scenarios
where AI performs relatively poorly initially.

6. CONCLUSION

The PX-EM algorithm is a useful, additional ‘weapon’ in our armoury for
REML estimation of variance components. Reduced rank estimation is highly
appealing and can reduce the number of iterates required as well as the compu-
tational requirements per iterate, thus making multivariate analyses involving
more than a few traits more feasible.
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APPENDIX

The mn-th element of the average information is calculated as b′mPbn,
with work vector bm = (∂V/∂θm)Py and projection matrix P = V−1 −
V−1X

(
X′V−1X

)−
XV−1. As Py = R−1ê [8], bm is readily determined from the

vector of residuals. Moreover, for parameters representing covariance com-
ponents (or functions thereof) due to random effects fitted and full rank es-
timation, bm can conveniently be calculated from the corresponding vector of
random effects. For the model given by (Eq. 1), bm = Z

(
(∂ΣU/∂θm)Σ−1

U ⊗ I
)
û.

The reduced rank equivalent suggested earlier [29] (Eqs. A.14, A.15), however,
is inappropriate, resulting in poor convergence rates.

Hence, (in the notation of Sect. 3.3) for θm = qi j and r < q, bm needs to be
evaluated as

bm = Z
((
Δ
Q
i jQ
′ +Q(ΔQi j)

′) ⊗ A
)
Z′R−1ê. (19)

For genetic effects, this requires the numerator relationship matrix which can
be quite dense. Hence, (Eq. 19) is best obtained in two steps, using that A =
LAL′A, with LA the Cholesky factor of A which can be set up from a list of
pedigree information e.g. [10].
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