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Abstract – In this study we introduce a method that accounts for false positive and false nega-
tive results in attempting to estimate the true proportion of quantitative trait loci that affect two
different traits. This method was applied to data from a genome scan that was used to detect
QTL for three independent milk production traits, Australian Selection Index (ASI), protein
percentage (P%) and fat percentage corrected for protein percentage (F% – P%). These four
different scenarios are attributed to four biological pathways: QTL that (1) increase or decrease
total mammary gland production (affecting ASI only); (2) increase or decrease lactose syn-
thesis resulting in the volume of milk being changed but without a change in protein or fat
yield (affecting P% only); (3) increase or decrease protein synthesis while milk volume remains
relatively constant (affecting ASI and P% in the same direction); (4) increase or decrease fat
synthesis while the volume of milk remains relatively constant (affecting F% – P% only). The
results indicate that of the positions that detected a gene, most affected one trait and not the
others, though a small proportion (2.8%) affected ASI and P% in the same direction.

bivariate analysis / independent traits / pleiotropy / genome scan / false discovery rate

1. INTRODUCTION

As a result of complex biochemical, developmental and regulatory path-
ways, a polymorphism in a single gene will almost always influence multiple
traits, a phenomenon known as pleiotropy [6, 8]. In classical quantitative ge-
netics, pleiotropy is recognised by genetic correlations. The existence of a ge-
netic correlation between two traits implies that some genes must affect both
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traits, or that two genes affecting two different traits are in linkage disequi-
librium. However a low genetic correlation might mean that few genes affect
both traits, or that many genes affect both traits, but sometimes in the same
direction and other times in the opposite direction. In the case of many genes
affecting both traits an increase in one trait would not necessarily mean an in-
crease or decrease in the other. Knowledge of the pattern of pleiotropy would
increase our understanding of the biology underlying quantitative genetic vari-
ation and would help us to identify the genes causing variation in quantitative
traits (QTL).

Experiments mapping QTL should be able to describe the pattern of
pleiotropy across the traits studied, but they rarely report results in this way.
An exception is Lipkin et al. [5] who reported QTL affecting milk yield (M),
protein yield (P) and protein percentage (P%) in dairy cattle. They found that
of the QTL affecting at least one trait, 11% were significant for one trait only,
25% for two traits and 64% for all three traits. However, when QTL are tested,
some will be significant by chance alone (false positives) and some that are
real will not be significant (false negatives). Since protein percentage (P%) is
equal to protein yield (P) divided by milk yield (M) a gene must affect at least
two of these traits. However the occurrence of false negatives means that QTL
can have a significant effect on only one of the three traits.

In this study we introduce a method that accounts for false positive and
false negative results in attempting to estimate the true proportion of QTL that
affect two different traits. This method was applied to data from a genome
scan that was used to detect QTL for three independent milk production traits.
The results show that most QTL affect only one of four biological pathways
involved in milk production.

2. MATERIALS AND METHODS

The raw data for the analysis reported in this paper comes from a QTL map-
ping experiment. QTL express [7] was used to perform linkage analysis on
genotype data from a selective genotyping experiment consisting of six sires,
each with approximately 100 daughters selected for high and 100 daughters
selected for low Australian Selection Index (ASI). ASI is an economic in-
dex of milk, fat and protein yields, where ASI = (3.8∗protein) + (0.9∗fat) −
(0.048∗milk). Protein percentage, fat percentage and ASI phenotypes were
provided by the Australian Dairy Herd Improvement Scheme as deregressed
Australian Breeding Values (ABV). Fat percentage corrected for protein per-
centage was calculated as (F% – P%) = F% – 1.4299P% based on a regression
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analysis performed for fat percentage phenotypes on protein percentage phe-
notypes. ASI, protein percentage (P%) and F% – P% were used in the linkage
analysis. The correlation between deregressed ABV for ASI and P% was found
to be 0.07, 0 for ASI and F% – P% and P% and P% – F%, and this greatly sim-
plifies the analysis described below.

Linkage analyses were fixed at marker midpoints throughout the genome.
Only positions greater than 15 cM apart were chosen for this analysis, with
data extracted from the QTL express output. Each record consisted of the re-
sults from one chromosome position in one sire family and contained the p-
values from the t-test for a QTL at that position affecting ASI, P% and F%
– P%. Therefore the final data set consisted of three signed p-values (one for
each trait) for a total of 89 chromosomal positions, at least 15 cM apart, for
between one and six sires (an average of 4.6 sires per position), giving a total
of 410 QTL tests.

The aim of the analysis was to estimate, for each pair of traits, the proportion
of QTL that affected neither trait, one trait but not the other, both traits in the
same direction or both traits in opposite directions. Real heterozygous QTL
could be allocated into five different categories based on the effects they have
on two independent traits. A QTL could have an effect on both traits; here
these fell into one of two categories, 1 or 3. Since QTL effects were arbitrarily
estimated as either positive or negative those that fell into category 1 could
have either a positive or negative effect on both traits, i.e., they could affect
both traits in the same orientation. Those that fell into category 3 have an effect
on both traits, but, the effects were in the opposite orientation, e.g., positive for
trait 1 while negative for trait 2. Alternatively, a QTL could have an effect on
one trait (positive or negative) while having no effect on the other trait, here
these fell into categories 2 and 4 for the two different traits respectively. The
majority of chromosome positions have no effect on either trait, and here these
fell into category 5. The probabilities of these categories, r1, r2, r3, r4 and r5

are the probability of a real heterozygous QTL having those effects on the two
traits.

However, a significant effect at a given position can be a false positive and
this needs to be taken into account when estimating the number of real QTL.
An observed QTL could have a significant effect, where p is less than some
threshold, on both traits, categories, 1 or 3. Those that fell into category 1 had
a significant effect that was either positive or negative for both traits, i.e., they
effected both traits in the same orientation. Those that fell into category 3 had
a significant effect on both traits, however, the effects were in the opposite ori-
entation. Alternatively an observed QTL could have had a significant effect on
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one trait (positive or negative) while not being significant for the other trait,
categories 2 and 4. The majority of loci were not significant for either trait,
category 5. The probabilities of these categories, x1, x2, x3, x4 and x5, repre-
sented in Figure 1, are the probabilities of observing a significant QTL having
those effects on the two traits.

Real QTL effects were combined with what were observed, resulting in Fig-
ure 2. It was important to use traits that were independent of one another, so
that a false positive for one trait did not change the probability of a false posi-
tive for the other trait. Then, if it assumed that real QTL are always significant,
it was possible to model the probabilities of each observed category in terms
of r and p as shown in Figure 2. From Figure 2, equations for the probabilities
of observing categories 1, 2, 3, 4 and 5 were derived as
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Figure 1. Observed significant QTL effecting two traits.
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Figure 2. Combined real heterozygous and observed significant QTL effecting two
traits.
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The variances of the r̂’s were represented by the diagonal elements of the ma-
trix V(r̂) = TV(x)T ′, where V(x) is
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and the standard errors of the r̂’s were calculated as se(r̂) =
√
V(r̂).

Equating observed proportions to expected proportions provides maximum
likelihood estimates of the parameters in certain simple cases like these.

3. RESULTS

Because the method used here corrects for false positives, it is possible to
use any significance level (p). We performed the calculations using both p <

0.1 and p < 0.5. The method assumes that all real QTL will be significant, so
p < 0.1 may result in more false negatives than p < 0.5.

r5 is the proportion of chromosome positions that had no effect on either
trait, r2 is the proportion of chromosome positions that really effected trait 2
and not trait 1, r4 is the proportion of chromosome positions that really effected
trait 1 and not trait 2, r1 is the proportion of chromosome positions that really
effected both traits in the same orientation and r3 is the proportion of chromo-
some positions that really effected both traits in the opposite orientation. The
results from three independent traits, ASI, P% and F% – P% using p < 0.1, are
presented in Tables I, II and III. The positive/positive cell corresponds to the
category r1 and so also includes negative/negative QTL. The negative/positive
cell corresponds to category r3 and so also includes positive/negative QTL.
The 0/positive cell corresponds to category r2 and also includes 0/negative
QTL. The positive/0 cell corresponds to category r4 and also includes nega-
tive/0 QTL. These results indicate that of the chromosome positions that were
really heterozygous QTL, most had an effect on one trait and not the others
(categories r2 and r4). Negative estimates were due to sampling error given
that only 410 positions were used.
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Table I. Estimates of r1, r2, r3, r4 and r5 and their standard errors for Australian
Selection Index (ASI) and protein percentage (P%), using significance thresholds of
p < 0.1 (denoted by **) and p < 0.5 (denoted *).

ASI
+ve 0 −ve

P%
+ve

2.8% ± 1.0%** 4.5% ± 1.9%** −0.8% ± 0.3%**
17.1% ± 3.1%* −3.9% ± 6.5%* −1.5% ± 2.4%*

0
8.3% ± 2.2%** 85.2% ± 2.8%**
−2.4% ± 6.6%* 90.7% ± 8.3%*

** p < 0.1, * p < 0.5.

Table II. Estimates of r1, r2, r3, r4 and r5 and their standard errors for Australian
Selection Index (ASI) and fat percentage corrected for protein percentage (F% – P%),
using significance thresholds of p < 0.1 (denoted by **) and p < 0.5 (denoted *).

ASI
+ve 0 −ve

F% – P%
+ve

−0.7% ± 0.4%** 6.0% ± 2.0%** 2.0% ± 0.9%**
−1.3% ± 2.8%* 15.6% ± 6.5%* 0.4% ± 2.9%*

0
9.0% ± 2.2%** 83.7% ± 2.9%**

14.6% ± 6.4%* 71.2% ± 7.6%*

** p < 0.1, * p < 0.5.

Table III. Estimates of r1, r2, r3, r4 and r5 and their standard errors for protein per-
centage (P%) and fat percentage corrected for protein percentage (F% – P%), using
significance thresholds of p < 0.1 (denoted by **) and p < 0.5 (denoted *).

P%
+ve 0 −ve

F% – P%
+ve

0.5% ± 0.6%** 5.1% ± 2.0%** 1.0% ± 0.7%**
1.2% ± 2.9%* 14.6% ± 6.4%* −4.2% ± 2.7%*

0
5.9% ± 2.0%** 87.6% ± 2.8%**

17.1% ± 6.5%* 71.2% ± 7.6%*

** p < 0.1, * p < 0.5.

Repeated analysis using a more relaxed significance threshold of p < 0.5,
so as to minimise false negatives, for the three independent traits, ASI, P% and
F% – P%, are also presented in Tables I, II and III. The results still show that
most QTL really had an effect on one trait and not the others, except for those
QTL that had an effect on ASI or P%. If the QTL affected ASI or P% then the
QTL would most likely affect the other trait in the same direction (category r1).
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The apparent discrepancy between these results, and that using p < 0.1, could
be explained if genes that had a large effect on ASI or P% tended to have a
smaller effect on the other trait which is detected at p < 0.5, but not p < 0.1.

4. DISCUSSION

When three traits were considered, ASI, P% and F% – P%, it was found
that QTL predominantly only affected one of the three, except QTL affecting
ASI that also had a small effect on P% and vice versa. We used uncorrelated
traits here so that a false positive for one trait does not increase the probability
of a false positive for the other trait. Correlated traits would most definitely
have found genes that affect more than one trait, since that is the nature of
being correlated. The power of the experiment was maximised by reducing the
stringency of the test (i.e., to p < 0.5). However, the power was still likely to
be less than 1 and so inevitably some QTL where missed. This may mean we
underestimated the number of real QTL, however there is no reason to believe
that the pattern of the missed QTL would be any different to those detected.
This is, however, an area that could be investigated further.

Effects on each of these three traits correspond approximately to simple bi-
ological interpretations. QTL that affect only ASI, not P% or F% – P%, would
result from increased or decreased mammary gland production of milk with
no change in milk composition. In this case protein and fat yield would be
increased in the same proportions and so the composition of the milk would
remain relatively unchanged. QTL that affect only P% correspond to increased
or decreased lactose synthesis within the mammary gland resulting in the vol-
ume of milk being changed in the same direction, but without a change in
protein or fat yield. Protein synthesis would remain constant causing a change
in the percentage of protein in the milk and also a small change in ASI. QTL
that affect both ASI and P% in the same direction result from an increase or
decrease in protein synthesis while milk volume remains relatively constant.
QTL that affect only F% – P% correspond to increased or decreased fat syn-
thesis within the mammary gland, again while the volume of milk remains
relatively constant. The two trait analysis using p < 0.1 revealed that the QTL
appear to only affect one of these three traits. When the significance threshold
was relaxed to p < 0.5, QTL that had an effect on ASI also had an effect on P%
in the same orientation. This could be explained if QTL that had a large effect
on one of these traits did have a small effect on the other trait. For instance,
genes affecting lactose synthesis do have a large effect on P% and a smaller
effect on ASI, as pointed out already. Alternatively, genes that increase only
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Table IV. The results of sire-marker-trait tests that were significant for two traits,
protein yield (P) and protein % (P%) from Lipkin et al. [5].

P
+ve 0 −ve

P%
+ve 1.0% 4.6% 0.5%
0 2.1% 91.8%

Table V. The results of sire-marker-trait tests that were significant for two traits, milk
yield (P) and protein percentage (P%) from Lipkin et al. [5].

M
+ve 0 −ve

P%
+ve 0.5% 4.6% 2.1%
0 3.3% 89.5%

protein synthesis would increase ASI and P% in the same proportions. How-
ever, genes with a large effect on both of these traits appear to be rare. Only
the large effects were detected in the more stringent test using p < 0.1.

These results support the published literature, where QTL effecting pro-
tein synthesis have been rarely reported. According to a literature review by
Chamberlain [2] 0.94% of reported QTL affected protein yield (P) and pro-
tein % (P%). It has been shown that some genes affect milk production traits,
these also support our results. DGAT1 [4] predominantly affects fat synthesis,
GHR [1] predominantly affects milk volume as does ABCG2 [3].

The study of Lipkin et al. [5] used three traits, milk yield (M), protein yield
(P) and protein percentage (P%). They conducted 2844 sire-marker-trait tests.
The results, presented in Tables IV and V, show that most sire-marker-trait tests
appeared to affect protein yield, protein percentage or milk yield. However,
Lipkin et al. used a false discovery rate of 0.05, which means that only the
largest QTL effects would have been detected. The more lenient thresholds
used here of p < 0.5 and p < 0.1 are equivalent to FDR of 0.77 and 0.51
respectively, so more QTL with smaller effect would have been detected, and
so QTL with smaller effects on more than one trait were also more likely to be
detected. Of the small number of sire-marker-trait tests that were significant
for both P and P% (Tab. IV) most affected both traits in the same orientation.
This would occur where protein synthesis is increased or decreased, while the
volume of milk remained constant. Of the small number of sire-marker-trait
tests that were significant for both M and P% (Tab. V) most affected the two
traits in the opposite orientation. This would occur where lactose synthesis
is increased or decreased resulting in an increase in milk volume, while the
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yield of protein would remain unchanged. These results were confirmed in
the marker-trait tests, which summed across all sires, where most marker-trait
tests were significant for two or more traits. It appeared that the relationship
between the three traits was that a QTL affecting one trait must affect one of
the other two traits, but not necessarily all three, and based on the results of the
sire-marker-trait tests, not necessarily in all sires. As the power of the scan was
less than 1, QTL found to affect only one or two traits could have been due to
sampling error and in reality affect all three traits. However, QTL affecting all
three traits is inevitable considering that protein percentage is actually protein
yield/milk yield. This is a case of using correlated traits.

The results of Lipkin et al. [5] support the conclusion that QTL affecting
lactose synthesis exist. These QTL have an effect on ASI or P% and also have
a small effect on the other trait. However, QTL with a large affect on ASI and
P%, resulting from an increase or decrease in protein synthesis, are rare.

In this analysis it was fortuitous that ASI and P% were uncorrelated. In
general uncorrelated traits can be created by correcting one trait for the other
as was done here for fat % corrected for protein %. Therefore the approach
used here could be applied to correlated traits.
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