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Abstract – A mixed hidden Markov model (HMM) was developed for predicting
breeding values of a biomarker (here, somatic cell score) and the individual probabilities
of health and disease (here, mastitis) based upon the measurements of the biomarker. At
a first level, the unobserved disease process (Markov model) was introduced and at a
second level, the measurement process was modeled, making the link between the
unobserved disease states and the observed biomarker values. This hierarchical
formulation allows joint estimation of the parameters of both processes. The flexibility
of this approach is illustrated on the simulated data. Firstly, lactation curves for the
biomarker were generated based upon published parameters (mean, variance, and
probabilities of infection) for cows with known clinical conditions (health or mastitis due
to Escherichia coli or Staphylococcus aureus). Next, estimation of the parameters was
performed via Gibbs sampling, assuming the health status was unknown. Results from
the simulations and mathematics show that the mixed HMM is appropriate to estimate
the quantities of interest although the accuracy of the estimates is moderate when the
prevalence of the disease is low. The paper ends with some indications for further
developments of the methodology.

hidden Markov model / mixed model / mastitis / somatic cell score

1. INTRODUCTION

Studies have shown variability among cows for natural resistance to intra-
mammary infection (IMI). Selection is therefore possible but direct measures
of IMI are not readily available. Usually, information on IMI is based upon
biomarkers such as somatic cell scores (SCS), electrical conductivity, immuno-
globulin or acute phase proteins (reviewed in [8]). One important difficulty
in using these biomarkers to find the most resistant animals is that factors known
to influence their expression may be different in healthy (IMI�) and in infected
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(IMI+) cows. Since these are usually unidentified, breeding values tend
to be biased. To reduce this bias and to infer more precisely the cows’ individual
probabilities to be IMI� or IMI+, several authors have used the mixture model
methodology on SCS [2,9,12,17]. A generalization of the mixture model is the
hidden Markov model (HMM) that presents the advantages of not only
estimating individual probabilities of being infected but also of predicting
individual probabilities of new infection and of recovery. Both are useful to
compute epidemiological measures of IMI spread within a population and to
assist mastitis control programs.

The objective of this study was to present the mathematical formalism behind
the HMM methodology as it may apply to the analysis of infectious disease
biomarkers assumed to be dependent upon the genetic make-up of the cows.
The fit of the HMM was assessed on simulated data based on parameters
obtained in a survey of clinical mastitis cases. Bayesian estimates of the param-
eters were obtained using the Gibbs sampler. Finally, limitations and possible
extensions of the current approach are discussed.

2. MATERIALS AND METHODS

Throughout, k indexes the individual cow, t (t = 1–T ) is the follow-up time
point during the lactation (e.g., month-in-milk), ytk is the value of the biomarker
observed at t on animal k, and ztk is the corresponding unknown health status
(IMI� or IMI+). Let ztk ¼ 0 if ytk is from an unknown IMI� sample and
ztk ¼ 1 if ytk is from an unknown IMI+ sample. For simplicity, T is assumed con-
stant for all cows. We use the notation of Ødegård et al. [17] in their finite mix-
ture model, with slight modifications.

2.1. General formulation of the model

Conditionally on the unknown vector z, it was assumed that the vector of
observations y could be described by the linear model:

y ¼ M0l0 þM1l1 þ Zaþ e;

where y is the (NT · 1) data vector of ytk , l0 and l1 are (T · 1) vectors of
fixed effects for data on an IMI� or IMI+ cow, respectively, a is the (Na · 1)
vector of random additive genetic effects; M0 is the (NT · T) matrix with ele-
ments = 1 if ztk ¼ 0 and ¼ 0 otherwise; M1 is the (NT · T) matrix with
elements = 1 if ztk ¼ 1 and ¼ 0 otherwise; e is the (NT · 1) vector of resid-
uals; Z is the (NT · Na) incidence matrix relating a to y, N is the number
of animals with data and Na is the number of animals with pedigree records.
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The conditional distribution of y, given the vector z, the location, and scale
parameters, was assumed to be:

ðyjl0;l1; r
2
0;r

2
1; a; zÞ � N M0l0 þM1l1 þ Zað Þ;R½ �

with R ¼ F0r2
0 þ F1r2

1, where Fi is the (NT · NT) diagonal matrix with
elements = 1 if ztk ¼ i and = 0 otherwise. The parameters r2

0 and r2
1 are the

residual variances associated to a record on an IMI� and IMI+ cow, respec-
tively. For the additive effects, it was assumed that ðajr2

aÞ � N ½0;A r2
a�, where

r2
a is the additive genetic variance and A is the matrix of additive genetic

relationship between animals.

2.2. Sampling distribution of the observations given group status

The density of the vector y for the subset of the Ni observations with ztk ¼ i,
i.e. {z = i}, given the location parameters and the residual variances, can be
written as:

prðyjli; r
2
i ; z ¼ if gÞ / ðr2

i Þ
Ni=2

� exp
�1

2r2
i

� �
y�Mili � Zað Þ0 Fiðy�Mili � ZaÞ

� �
:

2.3. Prior distributions of parameters and of the unknown
status vector

For i = 0 or 1, normal prior densities were assumed for the location
parameters:

prðliÞ / ðs2i Þ
�T =2 exp � 1

2s2i

� �
ðli � 1miÞ0ðli � 1miÞ

� �
;

where 1 is the (T · 1) vector of 1. The prior density for the additive effects,
conditionally on the additive variance, was:

prða r2
aÞ

�� / ðr2
aÞ

�N=2 exp � 1

2r2
a

� �
a0A�1a

� �
:

Under simple mixture models, the individual elements of the classification
vector z are assumed to be independent a priori and to follow the same
Bernoulli distribution with the mixing proportion as the parameter. Here,
under an equally simple mixed HMM, the variables ztk do not follow the same
distribution. The first element of the series ðz1kÞ follows a Bernoulli distribu-
tion with kk as the parameter while the other elements follow Bernoulli
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distributions with state transition probabilities from zt�1
k to ztk as parameters.

Formally, the unknown state at time t may be decomposed in:

pr ztk ¼ i
� �

¼ pðztk ¼ i zt�1
k ¼ 0Þ
�� pðzt�1

k ¼ 0Þ þ pðztk ¼ i zt�1
k ¼ 1Þ
�� pðzt�1

k ¼ 1Þ;

where pðztk ¼ i zt�1
k ¼ jÞ
�� are the state transition probabilities with i, j = 0 or 1.

The state transition probabilities are assumed to possess the first-order Markov
property namely that, given the present state, the future and past states are
independent or that the current value ztk

� �
depends solely on the most recent

past value ðzt�1
k Þ. Transition probabilities are also independent of the actual

time at which the transition takes place (stationarity assumption). Then, we
have pr ztk ¼ i zt�1

k ¼ j
��� �

¼ pij
k , for all t and ztk ¼ i zt�1

k ¼ 0
��� �

� Ber p00
k

� �
,

and ðztk ¼ i zt�1
k ¼ 1Þ
�� � Ber p01

k

� �
.

2.4. Priors for variance components and probabilities

Scale-inverse chi-square distributions with m degrees of freedom and scale
parameters; ðs2a; s20, and s21Þ were used for the variance components:

prðr2
aÞ / ðr2

aÞ
�ðmþ2Þ=2 exp � ms2a

2r2
a

� �
;

prðr2
0Þ / ðr2

0Þ
�ðmþ2Þ=2 exp � ms20

2r2
0

� �
;

prðr2
1Þ / ðr2

1Þ
�ðmþ2Þ=2 exp � ms21

2r2
1

� �
:

Finally, kk, p00
k , and p01

k were assigned uniform (i.e. Beta(1, 1)) prior
distributions.

2.5. Joint posterior distributions

For all cows, the joint posterior density of all unknown parameters is given by:

prðl0;l1; r
2
a;r

2
0; r

2
1; z; a; p

00; p01;kjyÞ
/ pr yjl0;l1; r

2
a; r

2
0;r

2
1; z; a; p

00;p01;k
� �

prðzjl0;l1; r
2
a;r

2
0; r

2
1; a; p

00; p01;kÞ
prðajl0;l1; r

2
a;r

2
0; r

2
1; p

00; p01;kÞ
pr l0ð Þpr l1ð Þpr r2

0

� �
pr r2

1

� �
pr r2

a

� �
pr p00
� �

pr p01
� �

pr kð Þ;

where ¼ k1; :::; kN½ �0;p00 ¼ p00
1 ; :::; p

00
N

	 

, and p01 ¼ p01

1 ; :::; p
01
N

	 
0.
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Explicitly, the joint posterior is:

ðr2
0Þ

�ðN0þmþ2Þ=2 exp� 1

2r2
0

ms20 þ y�M0l0 � Zað Þ0F0 y�M0l0 � Zað Þ
� �

ðr2
1Þ

�ðN1þmþ2Þ=2 exp� 1

2r2
1

ms21 þ y�M1l1 � Zað Þ0F1 y�M1l1 � Zað Þ
� �

s20
� ��T=2

exp � 1

2s20

� �
l0 � 1m0ð Þ0 l0 � 1m0ð Þ

� �

s21
� ��T=2

exp � 1

2s21

� �
l1 � 1m1ð Þ0 l1 � 1m1ð Þ

� �

ðr2
aÞ

�ðNþmþ2Þ=2 exp� 1

2r2
a

ms2a þ a0A�1a
� �

YN
k¼1

ðkkÞK
0;1
k þ1ð1� kkÞK

1;1
k þ1

YN
k¼1

ðp00
k Þ

n00k þ1ð1� p00
k Þ

n10k þ1
YN
k¼1

ðp01
k Þ

n01k þ1ð1� p01
k Þ

n11k þ1
;

where Ki;1
k is an indicator function which takes the value 1 if z1k ¼ i and 0

otherwise and nijk = number of transitions from ztk ¼ j to ztþ1
k ¼ i:

2.6. Fully conditional posterior distributions

The conditional posterior distributions of each parameter (or block of param-
eters) are required for implementing a Gibbs sampler. Conditional on y and z,
these conditional posterior densities are analytical because they only involve
one of the possible realizations in the space of all possible sequences of z.
For the location parameters, we have:

ðlt
ijH; y; zÞ � N

s2i
PN

k ytk � ak
� �

Ki;t
k þ mir2

i

s2i
PN

k g
i;t
k

� �
þ r2

i

;
s2i r

2
i

s2i
PN

k g
i;t
k

� �
þ r2

i

 !
;

where H refers to values of all parameters that the conditional distributions
depend upon (i.e. all parameters except the one under consideration), gi;tk is
the number of cows with IMI� (i = 0) or IMI+ (i = 1) unknown state at
the tth time.

Let W ¼ ½Z M0 M1� and the vector of parameters h ¼ ½a l0 l1�0.
Hence, one can write the model as: y = Za + M0l0 + M1l1 + e = Wh + e. By
partitioning the parameter vector h as h1 ¼ a and h2 = ½ l0 l1�0, we can compute
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the conditional posterior distribution of the vector of additive genetic values
as ðajH; y; zÞ � Nðâ1;C�1

11 Þ with â ¼ C�1
11 r1 � C12h2½ � and r1, C11, C12 = the

corresponding partition of C = [W0R�1W + A�1/r2
a] and r = W0R�1y.

The fully conditional posterior density of the genetic variance is:

prðr2
ajH; y; zÞ / ðr2

aÞ
�ðNþmþ2Þ=2 exp� 1

2r2
a

ms2a þ a0A�1a
� �

;

which is in the form of a scale-inverse chi-square density, with [N + m]
degrees of freedom and scale parameter [a0A�1aþ ms2a]. Likewise, the fully
conditional densities of the residual variances for IMI� and IMI+ observa-
tions are:

prðr2
i jH; y; zÞ / ðr2

i Þ
�ðNiþmþ2Þ=2

� exp� 1

2r2
i

ms2i þ ðy�Mili � ZaÞ0 Fi y�Mili � Zað Þ
� �

;

which are in the form of scale-inverse chi-square densities, with [Ni + m]
degrees of freedom, and with scale parameter ¼ ms2i þ ðy�Mili � ZaÞ0 �

�
Fiðy�Mili � ZaÞg for i = 0 and 1.

For the kth cow, the fully conditional posterior densities of the parameters kk,
p00
k , and p01

k are:

prðkkjH; y; zÞ / kK
0;1
k þ1ð1� kÞK

1;1
k þ1

;

prðp00
k jHÞ / ðp00

k Þ
n00k þ1ð1� p00

k Þ
n10k þ1

;

prðp01
k jH; y; zÞ / ðp01

k Þ
n01k þ1ð1� p01

k Þ
n11k þ1

which are in the form of beta distributions.
Finally, one must compute the fully conditional distribution for individual ztk.

These may be obtained either from the pr(z|H; y) or by considering
pr ztkjz �ztk

� �
;H; y

� �
, where z �ztk

� �
represent the hidden vector z without ztk ,

as suggested by one referee. Under the first alternative, pr zjHð Þ can be decom-
posed as:

pr zjH; yð Þ ¼ pr z1k jH; y
� � YT

t¼2

pr ztkjzt�1
k ;H; y

� �
;

which leads to a stochastic version of the forward–backward algorithm in which
z1k is sampled from a Bernoulli distribution with parameter pr z1k ¼ 0 \ y

� �
and

each ztk is sampled successively (for t = 2–T ) from Bernoulli distributions
with parameter nij;tk ¼ pr ztk ¼ ijzt�1

k ¼ j; y
� �

. The computations are reduced
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as components of nij;tk ¼ aj;t�1
k

pij
k
bi;t
k
bi;t
k

ai;t�1
k

bi;t�1
k

may be stored gradually as t increases from
1 to T:

aj;tk ¼ pr y1k; y
2
k ; :::; y

t
k

	 

\ ztk ¼ j

� �
;

bi;t
k ¼ pr ytþ1

k ; :::; yTk
	 


jztk ¼ i
� �

;

pij
k ¼ prðztk ¼ ijzt�1

k ¼ jÞ;
bi;tk ¼ prðytkjztk ¼ iÞ:

The forward and backward probabilities can be efficiently calculated by the
following recursion formulae [10]:

aj;tk ¼ a0;t�1
k pj0

k þ a1;t�1
k pj1

k

	 

bi;tk ;

bi;t
k ¼ b0;tþ1

k p0i
k b0;tþ1

k

	 

þ b1;tþ1

k p1i
k b1;tþ1

k

	 

with initial conditions given by: a0;1k ¼ kk b

0;1
k ; a1;1k ¼ 1� kkð Þ b1;1k , and

bi;T
k ¼ 1 for i = 0 and 1.
In the second alternative, pr ztkjz �ztk

� �
;H; y

� �
is reduced to

pr ztkjzt�1
k ; ztþ1

k ;H; y
� �

because of the first-order Markov property on z. Then,
pr ztk ¼ ijzt�1

k ¼ j; ztþ1
k ¼ r;H; y

� �
/ pr y1k jz1k ¼ i

� �
pr z1k ¼ i
� �

if t = 1. It is
proportional to pr ztk ¼ ijzt�1

k ¼ j
� �

pr ytkjztk ¼ i;H
� �

pr ztþ1
k ¼ rjztk ¼ i

� �
for

t = 2 to T � 1 and to pr yTk jzTk ¼ i
� �

pr zTk ¼ ijzT�1
k ¼ j

� �
if t = T. Note that this

alternative uses T different components while the first alternative generates a
realization of z directly from its conditional pðzjy;H) it presents also a more
complicated correlation structure (since each ztk depends on both zt�1

k and
ztþ1
k ) than the first alternative, which may lead to a slower mixing chain.

2.7. Implementation of a Gibbs sampler

The following steps describe how a Gibbs sampling can be implemented for
our model, using the stochastic version of the forward-backward algorithm to
sample z:
(1) Set initial values for parameters as needed.
(2) Select the block (h1) of the vector h, compute ~h1 ¼ C�1

11 r1 � C12h2�½ , and
replace a with ½~h1 þ C�0:5

11 rannor 0ð Þ� where rannor(0) is a random draw
from a standard normal distribution.

(3) Replace li (i = 0 and 1) with

s2i
PN

k ytk � ak
� �

K1;t
k þ mir2

i

s2i
PN

k ni;k
� �

þ r2
i

" #
þ s2i r

2
i

s2i
PN

k ni;k
� �

þ r2
i

 !0:5

rannor 0ð Þ
" #

:
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(4) Replace r2
a with ða0A�1aþ ms2aÞ=v2

Nþm, where v2
Nþm is a random draw

from a central chi-square distribution with [m + N] degrees of freedom.
(5) Replace r2

i with ms2i þ ðy�Mili � ZaÞ0 Fiðy�Mili � ZaÞ
� �

=v2
Niþm for

i = 0 or 1, where v2
Niþm is a random draw from a central chi-square dis-

tribution with [Ni + m] degrees of freedom.
(6) Compute f0;1k ¼ a0;1k b0;1

k ¼ prðz1k ¼ 0 \ yÞ and sample z1k from Berðf0;1k Þ.
(7) Compute and store f0j;tk for t = 2, ..., T and j = 0 or 1. Then, sample ztk

from Berðf0j;tk Þ if zt�1
k ¼ j for t = 2, ..., T.

(8) Sample kk and pij
k , from their corresponding beta distributions with

parameters Ki;1
k þ 1 and nijk þ 1, for i, j = 0 and 1, respectively.

(9) Repeat (2)–(8) q times for burn-in as needed. Then, sample all parame-
ters d times. The total number of cycles is q + d.

In this study, values for the hyperparameters are: s20 = 0.5, s21 = 1, m0 = over-
all average computed from the data, m1 = m0 + 3, m = 2, s2a ¼ h2s2p (s

2
p = vari-

ance computed from the data) and h2 = 0.1.

2.8. Simulations

The model was evaluated using simulated values for the biomarker (here,
SCS) with genetic effects considered as having the same distributions for cows
with IMI+ and IMI� samples. Each simulation was replicated 10 times. Simu-
lated rather than real data were used because a negative diagnosis, even based on
the absence of bacteria in cell culture, is not a guarantee of health and the oppo-
site has also been observed [22].

2.8.1. Simulated data

The results from the field study of de Haas et al. [6,7] on pathogen-specific
somatic cell count (SCC) curves among multiparous cows were used to simulate
the means of monthly samples from IMI� and IMI+ cows. Figure 3b of
de Haas’s paper [6], shows that in cows clinically infected with Escherichia coli,
SCC increase rapidly after infection occurring around the second month-in-milk,
peak at 2000 cells per lL above pre-infection values, and return to pre-infection
levels one month later. On the contrary, the presence of a long increased SCC,
without recovery within four consecutive months, was common in lactations
with clinical Staphylococcus aureus mastitis. In the cows without clinical mas-
titis, SCC followed an approximate inverse lactation curve. The SCC values
were log2-transformed in SCS and used to simulate the SCS means, as explained
below. In the simulations, it was also considered that cows might be classified as
high and moderate responders on the basis of the extent of their immune
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response to a particular infection [14]. Therefore, SCS were considered at higher
values and of longer duration in high than that in moderate responders (Fig. 1).

In the simulations, three discrete generations were considered with 400 cows
per generation. No selection was applied, sires were selected from 30 different
bulls, each cow was replaced by a daughter and mating was at random. Breeding
values for base animals were sampled from a normal distribution with null mean
and additive variance of 0.15 or 0.25. Values for the additive variance were
taken from the literature [4]. Breeding values for non-base animals were sampled
from a normal distribution with the mid-parent value as mean and vari-
ance = 0.15/2 or 0.25/2. Inbreeding was ignored.

Somatic cell scores under healthy (SCS0) and infected (SCS1) states were
simulated as follows:

SCS0 ¼ M0l0 þ aþ e0;

SCS1 ¼ M1l1 þ aþ e1;

where l0 and l1 are the (T · 1) vector means of both distributions, a is the
(N · 1) vector of breeding values (computed as above), and M0 and M1 are
the incidence matrices relating l0 and l1 to SCS0 and SCS1, respectively.
The number of observations per cow was set at T = 10 or 20. The vectors
e0 and e1 were sampled from two normal distributions with null means and
residual variances set at 1.0 and 1.4. The values for the residual variances
were found in the literature [13]. Each element of l0 and l1 was taken from
the curves observed in cows without and with mastitis, and for high and low
responders (Fig. 1). The cows were assigned to a group (IMI+ or IMI�)

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

SCS

Month-in-milk

Figure 1. Means of SCS for lactations without clinical mastitis (plain line) and
lactations with clinical mastitis associated with S. aureus (square) or E. coli (triangle)
occurring on the median MIM for multiparous cows (adapted from de Haas et al. [6]).
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at random using appropriate membership probabilities: the proportion of cows
with at least one IMI+ sample was set at Pcow = 20 and 50% and, among IMI+
cows, the proportion infected with E. coli was set at Pcoli = 0, 50, and 100%
(the other IMI+ cows were considered infected with S. aureus). If a cow was
assigned to the IMI+ group, the time at which the clinical episode starts (= t*)
was sampled from an exponential distribution with a scale parameter 3, which
is in agreement with the reported median time of first occurrence of mastitis,
i.e. two to three months [6].

2.8.2. Evaluation of the accuracy of the estimates

The estimates ðl̂t
i; r̂

2
0; r̂

2
1; r̂

2
a; âÞ of the parameters ðlt

i; r
2
0;r

2
1;r

2
a; aÞ were

computed, after burn-in, as the means of the posterior distributions. Their accu-
racies were assessed over the range of parameter values (sensitivity analysis) as
follows. For the predicted breeding values, the Spearman correlation coefficient
(corrBV) with the true breeding values was computed for each replicate and aver-
aged over the 10 replicates. For residual and additive variances, the differences
(biasr0, biasr1, and biasra) between estimates and simulated values were com-
puted for each replicate and averaged over the 10 replicates. For the location
parameters, the biases (biasl0 and biasl1) were calculated between the estimates
and �y ti, where �y

t
i ¼

P
k¼1;nit

ðytk ztk
�� ¼ iÞ=nit is computed with known values for ztk:

Finally, sensitivity (SE), specificity (SP), and probability of correct classification
(PCC), were computed at each iterative step as:

SE ¼
X
k¼1;N

X
t¼1;T

pð̂ztk ¼ 1 ztk ¼ 1
�� Þ;

SP ¼
X
k¼1;N

X
t¼1;T

prð̂ztk ¼ 0 ztk ¼ 0
�� Þ;

PCC ¼
X
k¼1;N

X
t¼1;T

pr ðztk ¼ 1 \ ẑtk ¼ 1Þ [ ðztk ¼ 0 \ ẑtk ¼ 0Þ
	 


:

After burn-in, these were averaged over the d Gibbs rounds and the
10 replicates.

3. RESULTS AND DISCUSSION

Results are shown in Tables I and II of the appendix. Visual inspection of the
algorithmic convergence showed that a total of 1000 cycles and a burn-in (q)
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of 200 runs were sufficient to remove the influence of the prior values and obtain
stable estimates. Thus, all results presented correspond to the last (d = 800) runs
of the Gibbs algorithm. This may seem very few cycles but results were checked
for three simulated data sets over a higher number of cycles of the Gibbs sam-
pler. Convergence rates were also checked with an EM algorithm and the Gibbs
sampler on models similar to those used in the simulation of this study but with-
out genetic covariance structure (SCSi = Mili + ei). Explanations may be linked
to the simplicity of the pedigree structure, small number of cows and the fact that
values for m0 and s2p were obtained from the data.

3.1. Overall accuracy of the estimates

Overall, the sensitivity was high (SE ~ 90%) but the specificity low (SP ~
60%). Because of this high sensitivity, we can be confident that a cow with
ẑtk ¼ 0 is healthy and spare the costs of further testing (e.g. bacteriological cul-
tures) or useless treatment. On the other end, the low specificity indicates that
cows with ẑtk ¼ 1 should be further tested to confirm the clinical suspicion.
These observations may suggest some economic interest in HMM.

Before any testing, the probability for a cow to be IMI+ can only be estimated
from the prevalence of the disease in the population, while, after testing, this prob-
ability is estimated from the posterior probability of being IMI+ given a positive
test (also called the positive predictive value). With SE = 90% and
SP = 60%, the difference between prior and posterior probabilities is maximum
at disease frequencies between 20 and 50%, with posterior probabilities 20%
higher than the prior probabilities. These frequencies are within the range of prev-
alence typically reported for mastitis, as illustrated in the following few studies. In
Finland, Pitkälä et al. [18] reported 31% of cows with SCC > 300 000 mL�1

(mastitis) in 2001. In Switzerland, Roesch et al. [19] reported 40% cows showing
at least one positive California Mastitis Test in at least one quarter at 31 days and
102 days post partum. In a survey of clinical and subclinical mastitis in England
and Wales, the mean incidence of clinical mastitis recorded by the farmer was
47 cases per 100 cows per year [3]. In Canada, Sargeant et al. [21] have observed
that 19.8% of cows experienced one or more cases of clinical mastitis during a
two-year observational study. Therefore, HMM may also be of interest in field
studies, when it is necessary to precisely identify infected cows.

Breeding values from theHMMseemed accurate in predicting the true additive
genetic merit of the cows. Indeed, the correlation (corrBV) between simulated and
estimated breeding values varied from 65 to 79% over the whole data sets. This is
close to the correlations of 70–75% computed as the square root of the coefficient
of determination (CD), where CD ¼ 1� PEV=V, PEV = prediction error
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variance = ½W0R�1 W þ A�1=r2
a�
�1

and V = true additive variance = Ar2
a

[11]. The PEV was computed with the values of the parameters used in the simu-
lation and weighted by the true proportion of IMI� and IMI+ per cow.

On the contrary, the HMM was less efficient in estimating the parameters
for the IMI+ group. Indeed, r̂2

1 had a tendency to underestimate and l̂t
1 to

overestimate the values used in the simulation. The biases varied from �1.33
to �0.13 (mean = �0.59) for r̂2

1 and from �0.02 to 3.26 (mean = 1.14) for
l̂t
1. The magnitude of the biases decreased when the amount of information

available on the IMI+ cows increased, as discussed in the sensitivity analyses
below.

3.2. Sensitivity analyses

The robustness of the HMM approach was assessed by computing the biases
in the estimates over a wide range of values for the simulated parameters. Over-
all, estimates of means and variances were rather insensitive to the values of the
corresponding simulated values but they were sensitive to the proportion of
cows with at least one IMI+ sample (Pcow) and to the proportion of E. coli
among infected cows (Pcoli). This suggests that HMM estimates are sensitive
to the amount of data available to compute them. For example, biases in the
estimation of both location parameters ðl̂t

0; l̂
t
1Þ were the highest when Pcow

was the lowest (Fig. 2), suggesting that it is necessary to have a sufficient
number of observations per cow when the disease prevalence is low.

Similarly, SE, SP, and PCC decreased as the proportion of E. coli infection
(Pcoli) increased (Fig. 3). This was not surprising because, in cows infected with

0

0.5

1

1.5

2

20% 50%

Difference

Proportion of infected cows

Figure 2. Differences between simulated and estimated values for the means of the
distributions for healthy (plain bar) and infected (open bar) cows as a function of the
proportion of infected cows.
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E. coli, only a few simulated SCS were higher than SCS for the IMI� samples,
as is observed in naturally occurring E. coli infections usually of short duration.

The level of response to infection influenced estimates of transition probabil-
ities, on the contrary to estimates of both location parameters and breeding val-
ues. For example, SE and PCC were higher among high (SE = 92%;
PCC = 64%) than moderate (SE = 80%; PCC = 60%) responders, suggesting
that HMM is more accurate when IMI� and IMI+ distributions are further apart.
Conversely, accuracy of r̂2

1 worsened when the distance between IMI� and
IMI+ distributions increased with biasr1 = �0.51 for moderate and biasr1 =
�0.80 for high responders.

Note that SE and SP were insensitive to change in disease frequency (Pcow),
as they should be by definition, conversely to PCC that is, by definition, a func-
tion of the disease frequency: PCC = [SE * pr(IMI+)] + [SP * pr(IMI�)].

Finally, note that SE and SP reported here are different from SE and SP in
Ødegård et al. [17] in which

SE ¼
P

i¼1;n tiPPMiP
i¼1;n ti

;

SPE ¼
P

k¼1;nð1� tiÞð1� PPMiÞ
n�

P
i¼1;n ti

;

where PPMi is the posterior mean of the estimates of zi averaged over Gibbs
samples (after burn-in), ti = 0 if IMI�, ti = 1 if IMI+, and i = 1–n cows.

50

60

70

80

90

100

0% 50% 100%

%

Proportion of E. coli among infected cows

Figure 3. Sensitivity (plain bar), specificity (open bar), and probability of correct
classification (slash bar) as a function of the proportion of E. coli among infected
cows.
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4. GENERAL DISCUSSION

The main advance of this paper is the presentation of an HMM in which
genetic random effects are added to the conditional model for the observed data.
In the subject-area literature, HMM with random effects have been used in a
very limited way. Only recently, has Altman [1] introduced a mixed HMM to
study lesion counts in multiple sclerosis patients. In her model, parameters for
the observed and hidden data are allowed to vary randomly among patients,
although they are assumed independent from each other (no genetic relation-
ship). This suggests a natural extension of the present HMM, i.e., allowing
the parameters of the hidden Markov chain to vary randomly among cows.
However, the interpretation of the results of such an extended model will be del-
icate because sets of identical genes may be associated to both IMI and SCS
(confounding effects). Stated otherwise, the total genetic effects on SCS would
be a combination of the effects of genes responsible for presence or absence of
IMI (resistance to infection) and for the magnitude of the SCS response after
IMI (tolerance after infection).

Structural equation modeling is a technique to evaluate models with different
hypothesized relationships among variables. In this context, it would be interest-
ing to evaluate the different models proposed in Figure 4 to determine the
amount of relationships between genes insuring tolerance or resistance to
infection.

In themodel proposed here, the biomarker value at one specific time is indepen-
dently influenced by the IMI status and by some genes. However, both the IMI sta-
tus and the biomarker values could also be under the influence of this same set of
genes (model b of Fig. 4). The relationship between genes, biomarker, and IMI sta-
tus canbecomeevenmore complicatedwithdifferent sets of correlatedgenes influ-
encing the expression of both traits (model e).This is important for the long term
because some epidemiological models predict that selection for resistant cows
(no infection) may not be as durable as selection for tolerant (infection but no dis-
ease) cows [16,20]. Increased resistancewould reduce disease transmission, reduc-
ing the fitness advantage of carrying the resistant genes, and possibly impose
pressure upon the pathogen to evade the control strategy. By contrast, as genes
conferringdisease tolerance spreadwithin apopulation, thedisease incidence rises,
increasing the evolutionary advantage of carrying the tolerance genes, without
leading to genetic changes in the parasite population.

Other extensions of the HMM are possible. Trends and seasonality
in SCS can be readily accommodated to relax the assumption of time-
independence between transition probabilities [15]. Prior information on the
parameters can be included to increase accuracy and speed up convergence.
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Location parameters can be made more realistic by considering the effects
affecting SCS values, such as age, herd or season. Elements of the M matrices
could take different values than zero or ones to reflect the different effects on
SCS for different parts of the lactation. The genetic variance could also be dif-
ferent for IMI� and IMI+ samples and would allow for genetic difference in the
response in SCS to IMI.

The first-order Markov assumption is also a limiting feature of the HMM and
mechanisms of transmission of the IMI between cows could also be considered
more precisely in deriving the transition probabilities. Indeed, transmission of
infection is a complex process that involves the mixed structure of the popula-
tion (as it determines the probability of contact between animals), the infectious-
ness of the contagious animal (or infective dose), and the susceptibility of a
healthy cow (i.e., its probability of getting infected after contact with a conta-
gious animal). To solve these issues, Cooper and Lipsitch [5] have proposed
to model the transition probabilities of the hidden Markov chain in terms of
the parameters of epidemiological models used to describe the transmission of
an infectious disease at the population level.

5. CONCLUSIONS

In summary, it is shown that the mixed HMM provides a good fit to the data
sets simulated in this study. The advantages of the HMM over other approaches
are the prediction of health or disease status, the reduction of confirmatory diag-
nosis costs and the increased accuracy in breeding values. However, future work
is necessary to extend the HMM proposed here, one of the most important
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IMI
(a)

G

Bio

IMI
(b)

G

Bio

IMI
(c)

G′

G

Bio

IMI
(d)
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G

Bio

IMI
(e)

G′

Figure 4. Five different hypothetical models of the relationship between genetic
background (G), intra-mammary infection (IMI), and biomarker (Bio). The first
model (a) is the model of this study (the dependent variables are the targets of one-
headed arrows).
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aspects concerning the quantification of the level of resistance and tolerance to
infection while considering the mechanisms of transmission between healthy
and sick cows.
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APPENDIX

Table I. Sensitivity (SE), specificity (SP), and probability of correct classification
(PCC) as a function of the level of response to infection, high (H) or moderate (M)
responders, number of samples per cow (T), percentage of cows with at least one
IMI+ sample (Pcow), percentage infected with E. coli (Pcoli) and residual and additive
genetic variances (r2

0; r
2
1;r

2
a). Data sorted by SE.

SE SP PCC T Pcow Pcoli r20 r21 r2a
High responders (H)
95.03 59.65 63.70 10 50 50 1.0 1.0 0.15
94.50 58.19 60.64 10 20 0 1.4 1.4 0.15
94.25 49.59 56.73 10 20 50 1.4 1.4 0.15
94.03 58.05 59.90 20 20 50 1.0 1.0 0.25
93.92 62.71 65.98 20 50 0 1.0 1.0 0.25
93.79 58.88 60.63 20 20 50 1.4 1.4 0.25
93.20 57.51 59.31 20 20 50 1.4 1.4 0.25
93.08 55.15 56.95 10 20 50 1.4 1.4 0.25
92.64 58.23 62.16 10 50 50 1.4 1.4 0.15
92.64 65.99 68.16 20 20 0 1.4 1.4 0.25
92.63 57.49 58.34 20 20 50 1.4 1.4 0.25
92.03 59.91 61.49 20 20 50 1.4 1.4 0.25
90.41 50.89 51.65 10 20 100 1.4 1.4 0.15
89.58 50.60 51.34 10 20 100 1.4 1.4 0.15
89.05 69.75 73.53 20 50 0 1.0 1.0 0.15
88.81 68.09 72.19 20 50 0 1.4 1.4 0.25
88.19 66.02 70.42 20 50 0 1.4 1.4 0.25
88.14 68.43 72.38 20 50 0 1.0 1.4 0.15
85.06 68.53 71.84 20 50 0 1.0 1.4 0.25
84.27 55.36 55.94 20 20 100 1.4 1.4 0.25
Moderate responders (M)
94.24 57.41 59.28 20 20 50 1.0 1.0 0.25
79.74 52.41 52.95 20 20 50 1.0 1.0 0.25
79.09 54.89 56.74 20 20 0 1.4 1.4 0.25
77.95 53.64 54.81 20 20 50 1.4 1.4 0.25
77.67 64.32 67.03 20 50 0 1.0 1.4 0.15
77.06 63.14 65.90 20 50 0 1.0 1.4 0.25
75.77 51.78 52.24 20 20 100 1.4 1.4 0.25
73.04 58.81 61.60 20 50 0 1.0 1.4 0.25
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Table II. Accuracy of the estimates of the mixed HMM as a function of the level of
response to infection, high (H) or moderate (M), number of samples per cow (T),
percentage of cows with at least one IMI+ sample (Pcow), percentage infected with
E. coli (Pcoli) and residual and additive genetic variances (r2

0; r
2
1; r

2
a). The accuracy is

determined by using the differences between values used in the simulations and
estimates of means (biasl0, biasl1) and residual variances (biasr0, biasr1) in IMI� and
IMI+ cows, respectively; the differences between values used in the simulations and
estimates of additive genetic variance (biasra); and the correlation between predicted
and simulated breeding values (corrBV). Data sorted by corrBV.

corrBV biasr0 biasr1 biasra biasl0 biasl1 T Pcow Pcoli r20 r2a r2a
High responders (H)
0.79 0.00 �0.66 �0.08 0.24 0.47 20 50 0 1.0 1.4 0.15
0.79 0.02 �0.65 �0.02 0.21 0.28 20 50 0 1.0 1.0 0.15
0.78 �0.02 �0.78 0.00 0.22 0.43 20 50 0 1.0 1.4 0.25
0.77 0.01 �0.70 0.01 0.28 0.51 20 50 0 1.4 1.4 0.25
0.77 0.02 �0.63 0.04 0.23 0.52 20 50 0 1.4 1.4 0.25
0.74 �0.01 �0.29 0.05 0.41 2.16 20 20 100 1.4 1.4 0.25
0.74 0.06 �0.46 �0.01 0.50 2.93 10 20 100 1.4 1.4 0.15
0.73 0.04 �0.57 0.02 0.31 0.80 20 20 0 1.4 1.4 0.25
0.73 0.09 �0.48 �0.03 0.55 3.26 10 20 100 1.4 1.4 0.15
0.72 0.03 �0.42 0.04 0.52 1.26 20 20 50 1.4 1.4 0.25
0.71 0.02 �0.46 0.04 0.42 1.22 20 20 50 1.4 1.4 0.25
0.71 0.03 �0.48 0.05 0.40 1.13 20 20 50 1.4 1.4 0.25
0.71 0.09 �0.65 �0.02 0.44 1.86 10 20 50 1.4 1.4 0.15
0.70 0.02 �0.44 0.04 0.38 1.17 20 20 50 1.4 1.4 0.25
0.70 0.09 �0.60 0.06 0.51 1.73 10 20 50 1.4 1.4 0.25
0.69 0.03 �0.57 0.04 0.36 0.87 20 50 0 1.0 1.0 0.25
0.69 0.11 �0.74 �0.03 0.40 1.69 10 20 0 1.4 1.4 0.15
0.68 0.08 �1.25 �0.02 0.38 1.48 10 50 50 1.0 1.0 0.15
0.67 0.03 �0.44 0.06 0.43 1.06 20 20 50 1.0 1.0 0.25
0.67 0.07 �1.21 �0.03 0.39 1.46 10 50 50 1.4 1.4 0.15
Moderate responders (M)
0.76 �0.02 �0.46 �0.02 0.24 0.00 20 50 0 1.0 1.4 0.15
0.75 �0.01 �0.13 0.05 0.48 1.61 20 20 100 1.4 1.4 0.25
0.75 �0.01 �0.14 0.07 0.47 1.30 20 20 50 1.0 1.0 0.25
0.75 �0.03 �0.21 0.04 0.32 0.70 20 20 0 1.4 1.4 0.25
0.74 �0.02 �0.18 0.06 0.32 0.82 20 20 50 1.4 1.4 0.25
0.73 �0.03 �0.46 0.04 0.32 0.19 20 50 0 1.0 1.4 0.25
0.72 �0.04 �0.36 0.05 0.39 �0.02 20 50 0 1.0 1.4 0.25
0.66 0.03 �0.45 0.06 0.44 1.22 20 20 50 1.0 1.0 0.25
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