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Abstract
A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that
individual variation exists both in the degree of the linear change of performance (slope) beyond a
particular threshold of the independent variable scale and in the magnitude of the threshold itself;
these individual variations are attributed to genetic and environmental components. During
implementation via a Bayesian MCMC approach, threshold levels were sampled using a Metropolis
step because their fully conditional posterior distributions do not have a closed form. The model
was tested by simulation following designs similar to previous studies on genetics of heat stress.
Posterior means of parameters of interest, under all simulation scenarios, were close to their true
values with the latter always being included in the uncertain regions, indicating an absence of bias.
The proposed models provide flexible tools for studying genotype by environmental interaction as
well as for fitting other longitudinal traits subject to abrupt changes in the performance at particular
points on the independent variable scale.

Introduction
Reaction norm models have been proposed as an alterna-
tive for fitting Genotype by Environment interactions
(GxE) in evolutionary biology and animal breeding [1]. In
reaction norm models, the environment is often
described by a continuous variable, and the phenotypes
are partially explained by the regression of the genotypic
values on the environmental values. When an environ-
mental variable is observed on a continuous scale (i.e.,
temperature), it is expected to have a direct one-to-one
relationship between the environmental scale and values.
Consequently, the reaction norm model can be fitted by
regressing the genotypic values on the observed environ-
mental scale [2,3]. When the observed environmental
scale is not continuous (i.e., herd classes), the genotypic

values can be regressed on the effect of the categorical var-
iable defining the different environments using, for exam-
ple, least squared means of the class effects [4] or inferring
the environmental values jointly with the remaining set of
parameters in the model [5].

In animal breeding applications of reaction norm models,
it was assumed that both the mean and the variances are
either continuous, monotone functions of the environ-
mental values [4,6] or that they are such only when the
environmental values exceed a certain threshold [2,7,3].
In past studies involving thresholds, the same threshold
was assumed for all animals, and it was estimated based
on the quality of the fit of the average performances as a
function of environmental values.
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The objective of this study was to present a Bayesian hier-
archical model for fitting a longitudinal trait showing an
abrupt linear change at some value of the independent
variable. Simulations were inspired by reaction norm
models, and the procedure postulates that the effect of the
environmental variable is not existent until it exceeds a
certain unknown value particular for each individual with
data. Furthermore, the model allows for partitioning indi-
vidual variability on the threshold into genetic and envi-
ronmental components.

Methods
Model and Prior specification
A general description of hierarchical Bayesian modelling
can be found in [8]. Here the first stage of the hierarchy
describes the data generating process, or the conditional
distribution of the observed phenotypes given the model
parameters. The following model was assumed:

yijk = CGk + j + j × max{0, THIij - 0, j} + ijk,

where yijk is the ith observation measured on animal j in
contemporary group k (CGk), and THIij is the temperature
and humidity index [2,7] associated with the ith observa-
tion of animal j. Random variables j, j and 0, j associ-
ated with the animal j represent an intercept (j), or
individual value in the absence of heat stress, slope (j),
or a change in the performance per unit of change in the
THI index above the individual threshold (0, j). In this
study, the heat load function [7] was defined in a way that
was similar to previous studies on genetics of instantane-
ous heat stress on daily milk production [2]. Finally, ijk is
a random homoskedastic error term associated with each
particular observation.

The data was assumed to be normally distributed as fol-
lows:

The second stage of the hierarchy consisted of specifying
prior distributions for all parameters in the first stage.

where U indicates the uniform distribution and K is the
number of levels of the contemporary group effect.

The underlying variables associated with the jth animal, j,
j and 0, j, were assumed to follow the multivariate nor-
mal distribution:

where , , and , 0

and 0 are vectors including scalar parameters of individu-

als (j, j and 0, j).

Parameters of a given individual were considered to be
conditionally independent and affected at their mean

level by systematic (,  and ) and genetic effects

(a, a and ); the residual (co)variance matrix between

underlying variables was R0, which is equivalent to a

(co)variance matrix between permanent environmental
effects on the observed measures scale.

In a third hierarchical stage, prior distributions for system-
atic and genetic effects and the residual (co)variance
matrix between underlying variables were defined. Sys-
tematic effects were considered to be uniformly distrib-
uted, and genetic effects were assumed to follow a
multivariate normal distribution according to the genetic
infinitesimal model [9]:

where G0 is the (co)variance matrix between the additive
genetic effects for the underlying variables. The residual
(co)variance matrix was assumed to follow a uniform dis-
tribution.

In the fourth and last hierarchical stage, a prior distribu-
tion was assigned to the genetic (co)variance matrix for
the underlying variables. A uniform distribution was
assumed as in the case of the residual (co)variance matrix.

Fully conditional posterior distributions
The fully conditional posterior distributions must be
obtained in order to perform a Bayesian MCMC estima-
tion procedure using the Gibbs sampler algorithm. After
defining the joint posterior distribution as the product of
the conditional likelihood and all the prior distributions
[8], the terms involving the parameter of interest in the
joint posterior distribution were retained. For the model
described, all the fully conditional posterior distributions
are exactly the same as those described for a hierarchical
model assuming intercept and linear terms [10], except
those involving the individual thresholds. For all the posi-
tion parameters, both in the first and second hierarchical
stages, the fully conditional posterior densities were pro-
portional to normal distributions; the fully conditional
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distribution for the residual variance in the first stage fol-
lowed a scaled inverted chi squared distribution, and the
genetic and residual (co)variance matrices in the third and
second stages followed inverted Wishard distributions.

For the thresholds, the fully conditional posterior distri-
bution had the following form:

which can be explicitly expressed as:

The first term comes from the likelihood; J refers to the
subset of records belonging to animal j. The second term
comes from the prior (second hierarchical stage); note
that the relationship between the animal j and the other
individuals in the population are taken into account
throughout the given values of the additive genetic effects.
In this second factor, scalars ri, j refer to the relevant ele-
ments of the inverse of R0, which is the residual (co)vari-
ance matrix in the second hierarchical stage. This fully
conditional posterior distribution does not have a known
closed form; thus a Metropolis step [11] was used to sam-
ple from it.

In the model presented, the definitions of the genetic and
phenotypic variances in a given environment are slightly
more difficult than in the standard reaction norm models
because a non-linear function of random correlated varia-
bles is involved. Thus, a Monte Carlo approximation of
the phenotypic variance was determined for a particular
value of THI during the measurement day. For example, in
a particular environment (THI value) this quantity was
calculated in the rth round of the Gibbs sampler:

where n is the number of records, and , with expected

value , is a vector of size n with typical elements

defined as below:

In this expression  and  are the sampled val-

ues for the additive genetic effects for the animal j during

the rth iteration;  and  are random deviates

sampled from , where  is the value of

the residual (co)variance matrix in the second hierarchical

stage sampled;  and  are sampled values of the

overall mean for the threshold level and slope. They were
computed during the rth iteration by applying the appro-
priate vectors of linear contrast to the sampled vector of

systematic effects,  and . Finally, in the equation

of the overall phenotypic variance,  is the value of

the residual variance in the first hierarchical stage. We

used the aggregated phenotypes (i.e. )

instead of the sampled values , and  to

avoid the variation due to systematic effects in the second
hierarchical stage.

For the case of the additive variance, its Monte Carlo
approximation can be computed by calculating this quan-
tity in each round of the Gibbs Sampler:

where N is the number of animals in the pedigree; A-1 is

the inverse of the additive relationship matrix;  is a
vector of overall additive genetic effects sampled during

the iteration r; and  is the expected value of the

random variable . The jth element of the vector 
was computed in each round of the Gibbs sampler using
this expression:

where  and  have the same mean-

ing as those previously described in the equation for .

Note that non-zero expected values are considered in the
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equations for computing both phenotypic and genetic

variances; the derived random variables,  and ,

are non-linear functions of random correlated variables,
thus their expected values are non-zero [12]. Also note
that the relationships between records were not consid-
ered when computing the phenotypic variance due to
complexity.

Based on these computed variance components, relevant
genetic parameters and other genetic quantities can be
easily defined for different environments (THI values).
For example, heritability or expected genetic response to a
selection index could be defined for different environ-
mental values [13].

Data
Simulated data sets were used to investigate the perform-
ance of the Bayesian implementation of the model
described above.

Different combinations of heritabilities and correlations
for the underlying variables were investigated: low (0.1),
medium (0.2) and high (0.5) heritabilities; and low (0.2,
0.3) and high (0.7, 0.9) correlations, in absolute value. In
addition, two different data set designs were considered,
approximately 20 (S20) and 10 (S10) records per animal.
Thus, 12 different scenarios were investigated, and for
each one ten replications were run.

For both data size scenarios the same genetic structure was
considered but with different sizes. For S20 in the first
generation, 40 males and 200 females were generated,
and in the second generation, each sire was mated to five
females, producing four full sibs from each mating. Thus,
the entire population consisted of 1,040 animals. For S10
in the first generation, 80 males and 400 females were
generated, and in the second generation, each sire was
again mated to five females, producing four full sibs. In
this case the entire population consisted of 2080 animals.
This genetic structure resembles prolific species popula-
tions like swine or rabbit.

For both data structures 21,500 records were generated
according to the described model and assigned to the total
number of animals in the population. For generating
records only an overall mean (with a value of 90) was con-
sidered in the first hierarchical stage as the CG effect, and
overall means for the threshold (19) and for the slope (-
0.5) were the only considered systematic effects in the sec-
ond hierarchical stage. THI values were generated by sam-
pling from a Normal distribution with mean 18.0 and
variance 10.0, resembling the distribution of THI values
in a temperate climate.

Gibbs Sampler implementation
For each replication, a Gibbs Sampler algorithm was run
for 100,000 rounds, of which the first 10,000 were dis-
carded as burn-in period; afterwards one tenth of the
rounds were retained. The threshold level was sampled via
a Metropolis step by using a proposal density that was
normally distributed and centered on the previous value
of the threshold. The variance of the proposal density was
constant across animals. During the burn-in period, the
value of the variance of the proposal was tuned for an
average acceptance rate of around 0.5 under all the scenar-
ios. In a post-Gibbs analysis, the convergence of the
chains were assessed both by visual inspection of the trace
plots for the most relevant parameters and through the
Geweke test [14], in addition the effective sample size
(ESS) was computed using the function effective Size ()
from the coda package in R [15].

Results
Tables 1 and 2 show the results of the simulation averaged
over 10 replications for the 12 investigated scenarios. For
all the parameters and models, the true values were well
within the uncertain regions, which is an empirical indi-
cation of the unbiasedness of the inferential method. In
addition the means for all the parameters were very close
to their respective true values.

As expected, inference efficiency, measured through the
marginal posterior standard deviation averages across
parameters in Tables 1 and 2 (except residual variance),
was reduced as the correlations between underlying varia-
bles was reduced. On the contrary, algorithm efficiency,
measured through the ESS averages across parameters in
Tables 1 and 2 (except residual variance), decreased as cor-
relations increased. In both correlation scenarios, increas-
ing heritability increases inference efficiency for genetic
correlations but reduces efficiency for the estimation of
heritabilities and environmental correlations. In general,
the algorithm average efficiency increases with heritability
but some exceptions can be found, particularly under data
structure S10.

Figure 1 shows the marginal posterior distributions and
trace plots for the overall mean of the threshold level
obtained in one replication in the scenarios of high corre-
lation and low, medium and high heritabilities when the
data structure was S10. The reduction in quality of the
chain as heritability decreases can be observed in Tables 1
and 2.

Patterns of heritability with change in the THI during the
measure day are shown in Figure 2; these plots are esti-
mated from one replication in the scenarios of high corre-
lations and all the cases of heritability with the S10 data
structure. Relatively flat patterns were observed, and the

û r[ ] p̂ r[ ]
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95%HPD region always well covering the true pattern,
computed using the approximate formulas as previously
described.

Table 3 shows averages across replications of Pearson cor-
relations between predicted and true breeding values for
the underlying variables for the 12 investigated scenarios.
The predictors were assumed to be the average of the mar-
ginal posterior distributions. The observed values of these
correlations, i.e. accuracies, correspond well with the her-
itabilities and correlations used during the simulation.

Table 4 shows averages across replications of Pearson cor-
relations between true and predicted values for the under-
lying random variables defining the model in the first
stage of hierarchy, under the 12 investigated scenarios.

Discussion
The model presented in this study provides greater flexi-
bility over traditional reaction norm models when the
environmental variable is known, as it allows a semi-par-
ametric form for the reaction norm function. This is a
semi-parametric model in the sense that the point in

which the linear change is assumed to start is defined by
the data themselves. The forms of the functions before
and after this point are defined parametrically a priori, i.e.,
constant before the change point and a linear function
afterwards. To increase flexibility, higher order polynomi-
als or spline functions could be fitted within each one of
these two separate periods, with the advantage that within
each one of the periods, the functions would remain lin-
ear on the parameters. The presented inferential proce-
dure gave unbiased estimates because the uncertain
regions always covered the true value of the parameters.

Several alternative algorithms have been proposed for
non-parametric or semi-parametric curve fitting. One of
them is a Reversible Jump MCMC algorithm where the
optimal number of change points (parameters in the
model) is estimated [16]. The model presented in this
study is a simplified version of this semi-parametric pro-
cedure, as the number of parameters is fixed a priori. How-
ever, the indicated study focuses on fitting averages along
the independent variable trajectory; in our case we fit indi-
vidual sources of variation throughout this trajectory. For
this purpose and from a computational point of view, the

Table 1: Parameter estimates for 6 parameter scenarios when 20 records were considered per animal (averages over 10 replications)

1 2 3

True PMa PSDb ESSc True PM PSD ESS True PM PSD ESS

T 19 18.96 0.15 352 19 19.10 0.16 416 19 19.08 0.16 399
h2

I 0.5 0.52 0.06 2110 0.2 0.20 0.05 583 0.1 0.14 0.05 318
h2

S 0.5 0.56 0.08 617 0.2 0.23 0.07 392 0.1 0.12 0.06 112
h2

T 0.5 0.48 0.18 91 0.2 0.36 0.15 98 0.1 0.37 0.16 95
g, I-S 0.3 0.26 0.11 818 0.3 0.30 0.23 301 0.3 0.54 0.27 75
g, I-T -0.2 -0.21 0.24 159 -0.2 -0.23 0.36 63 -0.2 -0.06 0.36 61
g, S-T -0.2 -0.31 0.23 141 -0.2 -0.19 0.33 99 -0.2 0.02 0.39 83
p, I-S 0.3 0.35 0.09 768 0.3 0.31 0.06 601 0.3 0.30 0.05 507
p, I-T -0.2 -0.23 0.23 129 -0.2 -0.22 0.16 209 -0.2 -0.29 0.14 217
p, S-T -0.2 -0.15 0.23 109 -0.2 -0.21 0.14 214 -0.2 -0.25 0.12 203
2

e 10 9.97 0.10 8142 10 9.98 0.10 9000 10 9.99 0.10 9000

4 5 6

True PM PSD ESS True PM PSD ESS True PM PSD ESS

T 19 18.93 0.15 79 19 18.98 0.17 50 19 19.07 0.15 38
h2

I 0.5 0.50 0.06 1411 0.2 0.20 0.05 489 0.1 0.11 0.04 177
h2

S 0.5 0.52 0.07 433 0.2 0.22 0.06 297 0.1 0.15 0.06 110
h2

T 0.5 0.47 0.11 61 0.2 0.33 0.12 48 0.1 0.31 0.10 55
g, I-S 0.7 0.68 0.07 330 0.7 0.68 0.16 103 0.7 0.67 0.21 76
g, I-T -0.7 -0.68 0.12 51 -0.7 -0.56 0.24 29 -0.7 -0.44 0.31 33
g, S-T -0.9 -0.88 0.06 48 -0.9 -0.72 0.15 61 -0.9 -0.72 0.18 54
p, I-S 0.7 0.74 0.05 245 0.7 0.69 0.04 218 0.7 0.72 0.03 212
p, I-T -0.7 -0.64 0.13 48 -0.7 -0.72 0.09 39 -0.7 -0.79 0.08 30
p, S-T -0.9 -0.87 0.07 65 -0.9 -0.92 0.05 57 -0.9 -0.92 0.04 59
2

e 10 9.99 0.10 4018 10 9.97 0.10 5860 10 9.95 0.10 6458

a Marginal Posterior Mean, b Marginal Posterior standard deviation, c Effective sample size
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(page number not for citation purposes)



Genetics Selection Evolution 2009, 41:10 http://www.gsejournal.org/content/41/1/10
proposed hierarchical structure is particularly suitable,
since the dimension of the problem became greater than
when fitting changes in the mean. By using this hierarchi-
cal structure, updating mixed model equations in each
round of the Gibbs Sampler can be avoided; only the right
hand side needs to be modified. In addition, this hierar-
chical structure jointly with the Bayesian estimation pro-
cedure allows for a more appropriate prior assumption
that takes advantage of the family structure in the popula-
tion. Other general procedures for finding change points
in continuous functions are the so-called change point
techniques. These approaches were previously used in ani-
mal breeding to find points of change when fitting heter-
ogeneous residual variance analysing test day milk records
[17]. These approaches provide greater flexibility than the
models presented because they allow for non-linear func-
tions within each one of the defined regions. However
these techniques are more complex because of the non-
linearity and the values of two successive functions at
change points need to be constrained explicitly to be iden-
tical. Our parametrization model can be considered a
truncated power representation of a linear spline [18],

and in these cases the aforementioned constraints are
implicitly considered [19].

Like other previously proposed reaction norm models
[2,7,3], the described model could be used for studies and
evaluations for genetic tolerance to high heat. The model
allows the identification of not only those individuals in
the population that are less sensitive to temperature
changes after a particular threshold, but also those that
became heat stressed at higher values of temperature or
THI value. And this individual variation can be parti-
tioned into environmental and genetic components, both
for the threshold and the intensity of sensitivity to heat
stress. This makes it possible to identify genetically supe-
rior individuals for a particular underlying variable of
interest: intercept, slope, threshold, or some index involv-
ing these variables.

The load function used in this study is the same used for
fitting the effect of instantaneous THI on milk production
[2]. However it is relatively straight forward to consider
more complex functions, for example, those used for stud-

Table 2: Parameter estimates for 6 parameter scenarios when 10 records were considered per animal (averages over 10 replications)

1 2 3

True PMa PSDb ESSc True PM PSD ESS True PM PSD ESS

T 19 19.04 0.20 54 19 19.08 0.15 181 19 19.15 0.15 174
h2

I 0.5 0.51 0.04 1683 0.2 0.19 0.04 675 0.1 0.11 0.03 272
h2

S 0.5 0.55 0.07 188 0.2 0.26 0.07 286 0.1 0.11 0.05 79
h2

T 0.5 0.61 0.17 36 0.2 0.43 0.17 58 0.1 0.38 0.15 60
g, I-S 0.3 0.26 0.09 270 0.3 0.29 0.18 310 0.3 0.37 0.32 51
g, I-T -0.2 -0.04 0.21 68 -0.2 -0.03 0.34 57 -0.2 -0.03 0.43 28
g, S-T -0.2 -0.30 0.18 77 -0.2 -0.34 0.25 82 -0.2 -0.51 0.28 57
p, I-S 0.3 0.38 0.08 264 0.3 0.30 0.05 526 0.3 0.29 0.05 289
p, I-T -0.2 -0.38 0.26 37 -0.2 -0.31 0.18 122 -0.2 -0.31 0.15 120
p, S-T -0.2 0.00 0.27 51 -0.2 -0.17 0.15 139 -0.2 -0.15 0.11 175
2

e 10 10.07 0.11 3124 10 9.94 0.11 7308 10 9.99 0.11 6390

4 5 6

True PM PSD ESS True PM PSD ESS True PM PSD ESS

T 19 18.98 0.22 28 19 19.10 0.25 17 19 19.12 0.53 8
h2

I 0.5 0.49 0.04 795 0.2 0.22 0.04 337 0.1 0.10 0.03 136
h2

S 0.5 0.54 0.06 141 0.2 0.22 0.05 82 0.1 0.12 0.05 63
h2

T 0.5 0.52 0.11 25 0.2 0.37 0.11 26 0.1 0.36 0.14 9
g, I-S 0.7 0.67 0.08 109 0.7 0.67 0.11 55 0.7 0.70 0.19 23
g, I-T -0.7 -0.63 0.13 17 -0.7 -0.39 0.25 16 -0.7 -0.18 0.31 20
g, S-T -0.9 -0.85 0.09 12 -0.9 -0.70 0.16 20 -0.9 -0.65 0.20 25
p, I-S 0.7 0.74 0.05 113 0.7 0.72 0.03 72 0.7 0.72 0.03 57
p, I-T -0.7 -0.74 0.12 19 -0.7 -0.82 0.08 14 -0.7 -0.82 0.07 12
p, S-T -0.9 -0.89 0.07 31 -0.9 -0.91 0.05 25 -0.9 -0.95 0.03 14
2

e 10 10.02 0.11 1949 10 9.95 0.11 2623 10 10.01 0.11 1624

a Marginal Posterior Mean, b Marginal Posterior standard deviation, c Effective sample size
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Marginal posterior distribution and trace plots for the overall mean of the threshold level in three different scenarios for S10Figure 1
Marginal posterior distribution and trace plots for the overall mean of the threshold level in three different 
scenarios for S10. a) high correlation and high heritability, b) high correlation and medium heritability, c) high correlation and 
low heritability.

a)

b)

c)
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ying cumulative effect of THI on carcass weight in pigs
[7,3].

In the described model, the covariate (THI) is assumed to
be known; however, a traditional reaction norm model
could be fitted by predicting an unobserved environmen-
tal covariate from the contemporary groups. This exten-
sion can be implemented either in two steps as in
Kolmodin et al. [4] or more complexly as in Su et al. [5] by
integrating out all the possible values of the contemporary
group effects. In these models with unknown covariates, it
could be equally reasonable to assume that no effect is
observed on the phenotypic performance until some
threshold in the environmental scale is reached, beyond
which some kind of change in the performance could be
expected.

The presented model was applied to study variability on
the onset of heat stress tolerance on milk production in
dairy cattle. In this study the population size was around
90,000 animals and over 300,000 test-day records were
considered. For this data set 250,000 Gibbs iterations
took approximately 5.0 CPU days.

Although the methodology presented has been illustrated
by focusing on the genetics of heat stress tolerance, more
applications could be considered. In particular those lon-
gitudinal traits showing a threshold response, i.e., those
traits with an abrupt change in the response beyond some

Patterns of heritability with change in the THI in three differ-ent scenarios for S10Figure 2
Patterns of heritability with change in the THI in 
three different scenarios for S10. high correlation and 
high heritability, b) high correlation and medium heritability, 
c) high correlation and low heritability; the line represents 
the true pattern, points are the estimated value for the par-
ticular THI pattern and the segments represent 95% highest 
density regions.

a)

b)

c)

Table 3: Pearson correlations between predicted and true 
breeding in the 12 investigated scenarios (average across 
replications)

Number of records per animal = 20

1a 2 3 4 5 6

Intercept 0.79 0.57 0.78 0.57 0.47 0.44
Slope 0.71 0.51 0.71 0.50 0.43 0.37
Threshold 0.35 0.25 0.65 0.37 0.17 0.26

Number of records per animal = 10

1 2 3 4 5 6

Intercept 0.77 0.59 0.77 0.58 0.46 0.44
Slope 0.63 0.47 0.66 0.47 0.32 0.36
Threshold 0.24 0.16 0.57 0.34 0.12 0.17

a Scenario numbers correspond to headers in Table 1 and 2 where 
true parameter values can be found

Table 4: Pearson correlation between predicted and true 
underlying variables in the 12 investigated scenario (average 
across replications)

Number of records per animal = 20

1a 2 3 4 5 6

Intercept 1.00 1.00 1.00 1.00 1.00 1.00
Slope 0.85 0.84 0.89 0.87 0.84 0.87
Threshold 0.42 0.42 0.81 0.80 0.41 0.80

Number of records per animal = 10

1 2 3 4 5 6

Intercept 0.99 0.99 0.99 0.99 0.99 0.99
Slope 0.75 0.74 0.82 0.82 0.73 0.82
Threshold 0.30 0.31 0.75 0.74 0.30 0.74

a Scenario numbers correspond to headers in Tables 1 and 2 where 
true parameter values can be found
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point on the explanatory variable scale could be fitted
using the model presented.

Conclusion
A model for fitting traits in which the response to an envi-
ronmental variable is subject to an abrupt linear change
was presented. The described statistical procedure per-
formed satisfactorily under the simulated scenarios in
estimating the model parameters. As an application exam-
ple, the model could be useful for identifying animals
with higher adaptation to environmental changes, to heat
in particular. These animals will be characterized by a
smaller phenotypic decline in the performance as well as
a later onset of environmental stress. In addition, the pro-
posed methodology can attribute the individual variation
on these two expressions of tolerance to environmental
stress to genetic and systematic components, which would
be useful for the detection of genetically superior breeding
animals to be used in selection.
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