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Abstract

Viability selection influences the genotypic contexts of alleles and leads to quantifiable departures
from Hardy-Weinberg proportions. One measure of these departures is Wright's inbreeding
coefficient (F), where observed heterozygosity is compared with expected heterozygosity. Here, |
extend population genetics theory to describe post-selection genotype frequencies in terms of
post-selection allele frequencies and fitness dominance. The resulting equations correspond to
non-equilibrium populations, allowing the following questions to be addressed: When selection is
present, how large a sample size is needed to detect significant departures from Hardy-Weinberg?
How do selection-induced departures from Hardy-Weinberg vary with allele frequencies and levels
of fitness dominance! For realistic selection coefficients, large sample sizes are required and
departures from Hardy-Weinberg proportions are small.

Introduction

Natural selection modifies the probabilities that alleles
are found in either homozygous or heterozygous form.
Given that one allele is A, what is the probability that the
homologous copy of this gene is also A? In Hardy-Wein-
berg populations this is simply equal to p, the allele fre-
quency of the A allele. When the assumptions of the
Hardy-Weinberg principle are violated, such as when via-
bility selection is present, this result cannot be expected to
hold. While this has been known for decades, many cur-
rent studies assume Hardy-Weinberg proportions (p2: 2pq
: ¢?) without explicitly considering the impact of selec-
tion. When viability selection results in significant depar-
tures from Hardy Weinberg (DHW), the genetic footprint
of natural selection can be observed in sequence data [1-
3]. Tests of Hardy-Weinberg proportions have been used
to detect genotyping errors [4-6]. However, it is an open
question whether natural selection confounds such tests.
Consequently, one can ask: When does natural selection

result in significant departures from Hardy-Weinberg pro-
portions?

Population genetics theory indicates that when fitnesses
are non-multiplicative (w452 # wy,wpg), genotype frequen-
cies differ from Hardy-Weinberg proportions [7]. For
example, one expects to only find post-selection copies of
a recessive lethal in heterozygotes. While equations
describing genotypic frequencies in terms of allele fre-
quencies are deducible for overdominance, mutation-
selection balance, and other equilibria, existing theory is
lacking when it comes to non-equilibrium populations
[8]. There is a need to determine when viability selection
leads to significant departures from Hardy-Weinberg pro-
portions [9]. Classical population genetics contains recur-
sion equations that describe post-selection genotype
frequencies in terms of pre-selection allele frequencies.
However, DHW calculations require allele and genotype
frequencies to be from the same time point (i.e. post-
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selection). In this paper population genetics theory is
extended, and novel equations are derived for non-equi-
librium populations at a single time point. These equa-
tions allow the magnitude of viability selection-induced
DHW to be quantified and statistical significance to be
assessed.

A number of statistical tests of Hardy-Weinberg propor-
tions exist [10-13]. However, these tests do not distin-
guish between different causes of DHW (such as genetic
drift, population subdivision, genotyping error, and natu-
ral selection). By coupling population genetics theory to
tests from statistical genetics one can determine whether
observed departures from Hardy-Weinberg are due to
selection. Sample sizes needed to detect selection are
found, and they are substantial.

Methods

Description of model

A classical population genetics model is used: Hardy-
Weinberg plus selection. Consider a single locus with two
segregating alleles. Assume that mutation rates are negli-
gible, and generations are discrete and non-overlapping.
The population is assumed to be panmictic and large,
yielding a deterministic model. Viability selection acts
upon zygotes prior to adulthood, with constant genotypic
fitnesses denoted by w4, w,5, and wyg. Genotype frequen-
cies are represented by uppercase letters: P, 4, P45, and Pgp.
Allele frequencies are represented by lower case letters,
with pre-selection allele frequencies in boldface (p and q)
and post-selection allele frequencies in normal typeface (p
and q). After random mating, genotype frequencies are
found in Hardy-Weinberg proportions. Genotype fre-
quencies are subsequently weighted by fitness, resulting
in the following classic equations from population genet-
ics:

2
w
Ppp=— A (1a)
P wAA+2pqw AB+q WBB
2pqw
Pys = PqW AB , (1b)
P WAA+2pqw AB+q WBB
2
w
Pys =— 9 WBB 5 (1¢)
P WAA+2PpqwAB+q WBB

The above equations can be algebraically manipulated,
yielding an equality that contains only post-selection gen-
otype frequencies [14].

2 2
Pyp —4_ Was (2)

PpyPpgg WaaWpp
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Post-selection genotype frequencies are mathematically
related to genotype fitnesses [15], and the ratio of geno-
typic fitnesses in the right hand side of equation (2) can
be replaced by a single parameter that represents the
extent of fitness dominance (k). Note that k is always pos-
itive.

2
k= Wan 3)
WaaWgp

Post-selection genotype frequencies

Post-selection genotype frequencies differ from Hardy-
Weinberg expectations. As per classical population genet-
ics: genotype frequencies sum to one, and allele frequen-
cies are simply weighted genotypic frequencies. These
properties, in addition to equation (2), can be combined
to obtain post-selection genotype frequencies as a func-
tion of post-selection allele frequencies (p) and the ratio
of genotypic fitnesses (k). Factoring with respect to P,;
produces a second order polynomial equation:

(1-k)Pyg? + (2k)Pap + 4kp(1 -p) = 0 (4)

For all possible values of p and k, the discriminant is pos-
itive (i.e. solutions of the quadratic equation are real).
However, only one root of the quadratic equation pro-
duces valid genotype frequencies. The positive root of the
quadratic equation results in heterozygote frequencies
between zero and one (see equation 6 below). Con-
versely, the negative root results in P,z < 0 when k < 1, and
P,z > 1 when k > 1. The equations below reduce the
description of a post-selection population genetic state to
a single allele frequency rather than a collection of geno-
type frequencies.

2
P =p+ k—\/ 4p(p2—(i)_k}ge—1)+k 5)
Py = _k+\/4P(PIi)kk(k—l)+k2 6)
2
A | 4p(2121—33(k—1)+k -

Departures from Hardy-Weinberg proportions

Using the above equations, the magnitude of viability
selection-induced DHW can be quantified. Multiple
measures of DHW exist, with one common measure being
Wright's inbreeding coefficient [3,16]. This is equal to one
minus the observed heterozygosity over expected hetero-

Zygosity.
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F=1-LAB (8)
2pq

Note that genotype and allele frequencies in equation (8)
are all post-selection. When F is negative there is an excess
of heterozygotes, and when F is positive there is a deficit
of heterozygotes relative to Hardy-Weinberg expectations.
Just as inbreeding can lead to DHW, so too can natural
selection. Let F,,;be a measure of selection-induced DHW.
F,,; is derived from equations (6) and (8):

- k= 4p(p-1)k(e—1)+1c2 ©)
2p(1-p)(1=k)
Statistical measures of DHW
Genotype frequencies in a sample of size n need not equal
the true genotype frequencies of a population. The
observed numbers of each genotype are denoted n,,, 1,3,

and ngg (where ny 4+ 1,5 + ngg = n). The observed numbers

of each genotype in a sample follow a multinomial distri-
bution, and can be used to calculate the magnitude of

DHW for a sample ( F ):

13, —1— nXxXnAB
1 1
2X(nAA +5nAB)><(nBB +E"AB)

(10)

Given a sample of size n, the test statistic X2 can be calcu-
lated. If sample size is large, X2 is conveniently related to F
[17]. When a null hypothesis of Hardy-Weinberg propor-

0
0.25 0.5 0.75

strong selection

Figure |

The magnitude of selection-induced departures from Hardy-Weinberg proportions. F

weak selection
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tions is true, X2 is approximately distributed as a chi-
square with one degree of freedom. When a null hypoth-
esis of Hardy-Weinberg proportions is false, X2 is approx-
imately distributed as a non-central chi-square [17].
Denoting the non-centrality parameter as A:

A =nF? (11)
The significance level of a test is equal to o (where a the
false positive rate), and the power of test is equal to 1-
(where B is the false negative rate). With one degree of
freedom, A equals 3.84 foran a. of 0.05 and a 3 of 0.5 [18].
Consequently, equation (11) can be rearranged to yield
the sample size required to detect selection at a signifi-
cance level of 0.05 and 50% power.

2

k= 4p(p—1)k(le—1)+1:>

(12)
2p(1=p)(1-F)

n=3.84| 1+

Results

Magnitude of selection-induced departures from Hardy-
Weinberg proportions

The sign and magnitude of selection-induced departures
from Hardy-Weinberg are determined by allele frequen-
cies and fitness dominance. Departures from Hardy-
Weinberg can be measured by an inbreeding coefficient
(F,;). Note that while F-statistics are used, this does not
imply that any actual inbreeding is present. Equation (9)
describes the magnitude of selection-induced DHW, and
F,,is plotted as a function of k and p in Figure 1. DHW due
to viability selection is maximized at intermediate allele
frequencies, and minimized when one allele is rare. This

<-0.2

1:25 1.5 1.75 2

strong selection

<o is a function of allele fre-

quency (p) and fitness dominance (k); negative values of F indicate an excess of heterozygotes, while positive values of . indi-
cate a deficit of heterozygotes, the dashed line corresponds to Hardy-Weinberg proportions.

Page 3 of 6

(page number not for citation purposes)



Genetics Selection Evolution 2009, 41:15

A Y Weak selection (k = 0.99) B ) Strong selection (k = 0.9)
10 10
H)NLJ .
n n
10] 10]
o 0
]()u 1 ]0()
P p
C Unequal allele frequencies (p =0.1) D Equal allele frequencies (p = 0.3)
10’ 10°
10 1
n n
3
10 10
10’ 10’
0.75 1.5 0.75 1.5
k k
Figure 2

Sample size as a function of allele frequency and fit-
ness dominance. Sample sizes (n) required to detect selec-
tion at a significance level of 0.05 and a power of 0.5 are
plotted as a function of allele frequency and fitness domi-
nance; scale on the y-axis is logarithmic; A) Weak selection
(k = 0.99); B) Strong selection (k = 0.9); C) Unequal allele
frequencies (b = 0.1 and g = 0.9); D) Equal allele frequencies
(p =0.52and g =0.5).

is because inbreeding coefficients are relatively insensitive
to DHW when minor allele frequencies are close to zero.
k < 1 results in a deficiency of heterozygotes relative to
Hardy-Weinberg expectations, while k > 1 results in a sur-
plus of heterozygotes. When k takes on intermediate val-
ues (i.e. selection is weak), F,,; is close to zero.

http://www.gsejournal.org/content/41/1/15

Large sample sizes are needed to detect selection-induced
DHW

To detect selection, sample sizes ranging from thousands
to millions are required.

In Table 1 sample sizes are listed for multiple types of fit-
ness dominance, allele frequencies, and strengths of selec-
tion. Statistical significance is set at 0.05, and power is set
at 50%. With the sample sizes indicated, statistically sig-
nificant selection will still only be detected 50% of the
time. Equation (11) indicates that statistical power can be
increased above 90% by tripling the sample sizes in Table
1. Note that small sample sizes are more likely to result in
observed allele frequencies that differ from the true allele
frequencies of a population. When selection coefficients
are large (k = 0.9), sample sizes on the order of 103 are
required to detect selection. When selection coefficients
are small, even larger sample sizes are needed. For exam-
ple, k= 0.99 requires sample sizes on the order of 10°. Fig-
ure 2 depicts the sample size needed for a range of allele
frequencies and selection coefficients. Weak selection and
unequal allele frequencies require larger sample sizes,
while strong selection and equal allele frequencies require
smaller sample sizes. When alleles are found at intermedi-
ate frequencies, required sample sizes are largely inde-
pendent of p. The analytic theory used to generate sample
sizes was verified by MATLAB simulations. (see Table 2).
Here, sample genotype frequencies were drawn via multi-
nomial sampling and tested for significant DHW. This
was done 10000 times for each set of parameters, and
observed power closely matched expected power.

Discussion

Magnitude of selection-induced departures from Hardy-
Weinberg proportions

For moderate levels of fitness dominance (i.e. k close to
one), the magnitude of F,,is small. Consequently, Hardy-
Weinberg proportions reasonably approximate post-
selection genotype frequencies. As a point of comparison,
a population containing an uncommon (p = 0.1) com-
pletely dominant allele that reduces viability by 1% has

Table I: Sample size needed to detect selection at 0.05 significance with 0.50 power.

Fitness dominance Deleterious dominant

Deleterious recessive

Overdominance Underdominance

Unequal allele frequencies (p = 0.1)

Weak selection (s = 0.01) 4.66 x 106 4.72 x 108 1.21 x 08 I.16 x 106
Medium selection (s = 0.05) 1.74 x 105 1.86 x 105 5.30 x 104 4.22 x 104
Strong selection (s = 0.1) 3.99 x 104 4.57 x 104 1.48 x |04 9.35 x |03
Equal allele frequencies (p = 0.5)
Weak selection (s = 0.01) 6.08 x |0¢ 6.08 x [0¢& 1.55 x 105 1.52 x 105
Medium selection (s = 0.05) 2.34 x [0* 2.34 x |0* 6.46 x 103 5.84 x |03
Strong selection (s = 0.1) 5.54 x 103 5.54 x 103 1.69 x 103 1.39 x 103
o = 0.05 and B = 0.5; sample sizes are computed using equation (12); fitness dominance parameters are as follows: deleterious dominantk = | - s,
deleterious recessive allele k = 1/(l - s), overdominance k = (I + s)2, underdominance k = (I - s)
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Table 2: Verification of analytic theory via MATLAB simulation.

http://www.gsejournal.org/content/41/1/15

Allele frequency (p) Fitness dominance (k) Sample size (n) Significance (¢) Expected power (1-)

Observed power
(simulated)

0.5 0.9 5537

0.5 0.9 15148
0.1 0.9 39944
0.1 0.9 109222

0.05 0.5 0.4942
0.05 0.9 0.9003
0.05 0.5 0.4947
0.05 0.9 0.8971

Sample sizes were obtained from equations (1 1) and (12); for each parameter set, true post-selection genotype frequencies were obtained from
equations (5), (6), and (7); sample genotype counts were then generated via multinomial sampling, and chi-square tests were performed; MATLAB
simulations were run 10000 times for each parameter set, and the proportion of tests that resulted in detectable DHW were recorded.

the same magnitude of DHW as a population where every
mating involves 4th cousins (F =~ 0.0009). In the context of
forensic genetics, the National Research Council set nota-
ble levels of DHW at F > 0.01 for cosmopolitan popula-
tions [19]. Given an actual F of this magnitude, a sample
size of 38400 would be required to reject a null hypothe-
sisof F=0 (a0 = 0.05, B = 0.5).

An interesting property of Hardy-Weinberg Equilibrium is
that one can infer complete single-locus genotypic states
from partial data (i.e. one can infer P,g, Pgg, p, and ¢ from
P,4). This also holds for post-selection frequencies in a
one-locus, two-allele system. An exception involves heter-
ozygote frequency data (which maps to a pair of possible
allele frequencies). Given genotypic fitnesses and single
genotype frequency, p can be found via equation (5), (6),
or (7). Subsequently, p and k can be used to obtain the
post-selection frequencies of other genotypes. In practice,
however, one is much more likely to have complete geno-
type frequency data than complete knowledge of geno-
typic fitnesses.

Large sample sizes are required to detect selection-
induced DHW

Statistically significant DHW requires large departures
from neutrality and is maximized at intermediate allele
frequencies. For example, a sample size of 1000 is too
small to reliably detect significant DHW for a recessive
gene that confers a 20% fitness advantage (i.e. power is
less than 0.5 forp = 0.5, k = 0.83, o = 0.05, and n = 1000).
As shown in Figure 2, sample sizes become prohibitively
large when k is close to one. It is known that non-central
chi-square tests can over-estimate statistical power when
alternative hypotheses differ greatly in their expectations
[20]. However, selection-induced departures from Hardy-
Weinberg proportions are of small magnitude. As verified
by MATLAB simulations, equations (11) and (12) accu-
rately determine the sample size needed to detect selec-
tion-induced DHW.

Implications

If only two alleles are segregating, heterozygosity tests of
neutrality require large sample sizes [21,22]. Many alleles
are nearly neutral [23], with values of k close to one. How-
ever, the scope of undetectable selection extends over a
much wider range of parameter space than the range of
nearly neutral genes. DHW is a poor indicator of natural
selection in the wild. This qualitative conclusion is
unlikely to be changed when the assumptions of this
paper's model are relaxed. Mutation, assortative mating,
and finite population size are all likely to further obscure
the signature of selection on genotype frequencies. Also
note that genes under directional selection are less likely
to be observed at intermediate allele frequencies (i.e. fre-
quencies favourable to the detection of significant DHW).

A lack of significant DHW does not imply neutrality.
There are large regions of parameter space where viability
selection can lead notable changes in allele frequencies
over time without producing significant DHW in any sin-
gle generation. Multiple mechanisms can result in a fail-
ure to detect selection even when it is present (i.e. there is
a type Il error). For example, population structure can
modify genotype frequencies, masking the effects of selec-
tion. Evolutionary geneticists are more likely to detect the
footprint of natural selection via use of multilocus linkage
disequilibrium data and Poisson random field models
[24,25]. Positive selection results in linkage disequilib-
rium adjacent to the selected locus, the extent of which
can be used to estimate the age of alleles. While genotype
frequencies at a single locus can be used to detect selection
in the most recent generation, linkage disequilibrium data
bears the footprint of past selection. Alternatively, natural
selection can be measured over multiple generations in
the wild [26] or via experimental evolution studies. If gen-
otype frequencies are obtained from wild populations,
care must be taken to ensure that genotyped individuals
share the same age.
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