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Abstract
Selection for resistance to an infectious disease not only improves resistance of animals, but also
has the potential to reduce the pathogen challenge to contemporaries, especially when the
population under selection is the main reservoir of pathogens. A model was developed to describe
the epidemiological cycle that animals in affected populations typically go through; viz. susceptible,
latently infected, diseased and infectious, recovered and reverting back to susceptible through loss
of immunity, and the rates at which animals move from one state to the next, along with effects on
the pathogen population. The equilibrium prevalence was estimated as a function of these rates.
The likely response to selection for increased resistance was predicted using a quantitative genetic
threshold model and also by using epidemiological models with and without reduced pathogen
burden. Models were standardised to achieve the same genetic response to one round of selection.
The model was then applied to footrot in sheep. The only epidemiological parameters with major
impacts for prediction of genetic progress were the rate at which animals recover from infection
and the notional reproductive rate of the pathogen. There are few published estimates for these
parameters, but plausible values for the rate of recovery would result in a response to selection,
in terms of changes in the observed prevalence, double that predicted by purely genetic models in
the medium term (e.g. 2–5 generations).

Introduction
Preventive measures and lost production due to endemic
disease form an important component of the costs of pro-
duction in many livestock production systems [1], and
they also affect animal welfare and marketability of breed-
ing stock. It is well known that, for many diseases, resist-
ance has a genetic component [2] and selection for disease

resistance has long been considered a promising way to
reduce disease prevalence e.g. [3].

Selection for resistance to an infectious disease has the
added benefit that it may reduce the pathogen burden,
especially when the population under selection is the
main reservoir of pathogens. This will lead to an addi-
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tional reduction in prevalence, in addition to the direct
genetic effect, as a result of reduced contamination from
infectious animals, e.g. [4].

The phenotype used in selection for disease resistance is
often a score, which includes a class of healthy animals,
and one or more classes of affected animals. In the case of
endemic diseases the vast majority of animals at any one
time may be classified as healthy, and this limits the
opportunity for intense selection. In a threshold model,
that is appropriate for this type of data, prevalences that
are much lower than 50% also lead to low heritabilities
on the observed scale. A successful selection programme
can therefore be expected to decrease the subsequent
response to selection through increased resistance and
decreased pathogen burden.

Anderson and May [5] describe the spread of a micropar-
asitic (viral or bacterial) infection through a population of
animals using a so-called SIR model, based on the rates at
which susceptible (S) animals are infected (I) and then
recover or are removed (R). A key parameter is R0, which
is the number of secondary infections caused by the first
infected animal. One or more of these rates can be under
genetic control and hence affect R0. This model can be
extended in various ways; for instance Bishop and Mac-
Kenzie [6] have described how a disease that is spread
from animal to animal may or may not lead to an epi-
demic, and Nath et al. [7] have explored the consequences
of selection to alter different model parameters. To make
these models more applicable to typical livestock bacterial
infections, Bishop et al. [8] have considered a disease in
which the pathogen survives for some time in the environ-
ment (E) from where it can infect susceptible animals.
This was termed a SEIR model.

In the above models, the assumption is that recovered ani-
mals are no longer susceptible to the disease, and in a
closed population without re-infection these models will
therefore always lead to zero prevalence, either because
there are no susceptible animals left or because the disease
has died out. This outcome is inappropriate for typical
endemic diseases, which often have a more or less stable
prevalence over time. This stable prevalence, the endemic
equilibrium, may be due to recovered animals losing their
resistance and becoming susceptible again, or it may sim-
ply be a consequence of a continued introduction of new
susceptible animals, e.g. offspring.

Building on the SEIR model [8], we introduce two new
aspects to the model: (i) a period of latency (L) in which
animals are infected but not yet infectious and (ii) loss of
immunity so that recovered (R) animals can revert back to
susceptible. This creates a SELIRS model. Further, we con-
sider the SELDCRS model in which animals can be dis-

eased and infectious (D) or a carrier, which is infectious
but no longer clinically diseased (C). This model can be
used to distinguish direct effects related to the number of
diseased animals from indirect effects related to pathogen
burden, by manipulating relative rates associated with D
and C.

Footrot is an infectious disease of sheep caused by bacteria
(Dichelobacter nodosus) that survive in soil for a limited
time. The prevalence in adult sheep in Britain is around
6% [9]. Resistance to footrot has been shown to be herit-
able [10-12], and selection for increased resistance is fea-
sible.

The aim of this study was to develop SELIRS and SELD-
CRS epidemic models, in which pathogens survive in the
environment for a limited time. The models were applied
to footrot in sheep and used to predict the changes in
prevalence of footrot over time if selection is for resistance
to the disease, accounting for the disease dynamics. The
predicted progress in terms of reduction in prevalence was
compared with a model that ignores epidemiological
effects.

Methods
Definition of epidemic models
Case 1: Infectious and diseased animals are equivalent
An overview of all symbols and abbreviations used and
their definitions is given in Table 1. Consider a popula-
tion of N individuals which, at time j, consists of S suscep-
tible, L latently infected, I infected and R recovered
animals. It is assumed that it is only category I animals
that show clinical signs of disease and are infectious. Envi-
ronmental contamination is quantified by the concept of
an infectious dose; therefore at time j there are E infectious
doses of the pathogen in the environment. Following
Bishop et al., [8], and approximating the discrete process
(e.g. daily steps) by a continuous one, the SELIRS model
is defined by the following five differential equations:

dS/dt = -ES+R. (1)

dE/dt = I-E-NE. (2)

dL/dt = ES-L. (3)

dI/dt = L-I. (4)

dR/dt = I-R. (5)

where  is the rate at which susceptible animals become
infected (latent) per infectious dose,  is the rate of loss of
immunity,  is the rate at which latent animals develop
clinical signs and become infectious,  is the rate at which
infectious doses are shed by infected animals,  is the rate
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at which infectious doses die (other than by host ani-
mals),  is the rate at which a host animal physically
removes infectious doses (e.g. by ingestion, adherence to
the animal or squashing them) and  is the rate at which
infectious animals become immune. All rates are non-
negative.

Two properties of this model are of importance, the
notional reproductive rate (R') and the equilibrium prev-
alence. In standard epidemiological models the basic
reproductive ratio, R0, is the number of infections caused
by a single infected animal in a wholly susceptible popu-
lation, during the course of its infectious period. The
equivalent in the SELIRS model is the number of second-
ary infections due to a single infectious animal, for the
time period over which the infectious material remains in
the environment. Bishop et al. [8] have derived an expres-
sion for the notional reproductive rate in a SEIR model as:

where  =  + N, i.e. the total rate at which the infection
is removed from the environment. The same expression
may be used as an approximation to R' in an SELIRS
model (see Appendix 1), however it is not exact as the loss
of immunity potentially increases the number of second-
ary infections in situations where the environmental con-
tamination is long-lived and the period of immunity is
short.

An equilibrium state will be reached when the number of
animals in each state is the same from one day to the next.
In other words, the rates of change for the numbers of
each category of animal (equations 1, 3, 4, 5) are all zero,
i.e. dS/dt = dL/dt = dI/dt = dR/dt = 0. It can be shown (see
Appendix 1) that the corresponding equilibrium number
of diseased and infectious animals (I*) is:

Combined with (6), it follows that the equilibrium prev-
alence (p*), i.e. I*/N, is

Hence, after rearrangement, R' may be defined as a func-
tion of the equilibrium prevalence as follows:

Note that in equation (7)  (infection shedding rate from
animal) and  (infection rate) occur as the product 
indicating that the rate of infection depends jointly on the
number of infective units spread by infected animals and
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Table 1: Summary and definition of symbols used in epidemiological models

Symbol Definition

S The number of susceptible animals
E The number of infectious doses in the environment
L The number of latently infected animals
I The number of diseased and infectious animals in SELIRS model
D The number of diseased and infectious animals in SELDCRS model
C The number of infectious carriers in the SELDCRS model
N The total number of host animals in the population
R The number of recovered animals
 The rate at which latently infected animals develop clinical signs and become infectious
 The rate at which infectious doses (bacteria) die in the environment, other than by host animals
 The rate at which infectious doses (bacteria) are physically removed by each host animal in the population
 The total rate at which infectious doses (bacteria) are removed from the environment, calculated as  + N
 The rate at which diseased and infectious animals stop showing clinical signs and are no longer infectious, in the SELIRS model
 The rate at which diseased animals stop showing clinical signs, while continuing to be infectious in the SELDCRS model
 The rate at which infectious animals that no longer show clinical signs of the disease stop being infectious in the SELDCRS model
 The rate at which recovered animals lose resistance and become susceptible
 The rate at which susceptible animals become infected by 1 unit of infectious dose in the environment
 The rate at which an infectious animal sheds infectious doses in the environment
p The prevalence of the disease as observed from clinical signs
R' The notional reproductive rate of the infectious disease
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the number of units required for an animal to become
infected. This means that there is no need for an exact def-
inition of the infective dose.

Case 2: Infectious animals with and without clinical signs
In many instances animals may be infectious, even when
no clinical signs of disease are apparent, a phenomenon
in some circumstances referred to as 'carrier status'. Defin-
ing clinical disease and infectious status as two separate
but overlapping categories also allows greater flexibility in
the exploration of the disease dynamics. This is achieved
in the SELDCRS model, in which animals can be diseased
and infectious (D) or infectious carriers who no longer
show clinical signs (C), with N = S+L+D+C+R. Equations
(1) and (3) describing change in S and L remain the same,
with the remaining equations being:

dE/dt = (D+C)-E. (9)

dD/dt = L-D. (10)

dC/dt = D-C. (11)

dR/dt = C-R. (12)

Where the new symbols are:  is the rate at which diseased
animals no longer show clinical signs and move to the car-
rier state, and  is the rate at which carrier state animals
cease to be infectious. The total time an animal is infec-
tious is 1/+1/, rather than simply 1/ as in the SELIRS
model. This accounts for the supposition that infected
animals may stop showing clinical signs yet continue to
be infectious, rather than assuming that only animals with
clinical signs are infectious. For the SELIRS and SELDCRS
models to be equivalent in terms of transmission of infec-
tion then the total infectious period must be the same in
both models, i.e. 1/ = (1/+1/). Note that this is pro-
posed solely as a theoretical tool to distinguish between
the effects of recovery on the animal it self (clinical signs)
and on the population (infectious), which are con-
founded in the SELDIRS model. It is not proposed as a
selection strategy. Table 2 shows a contrast of similar
parameters in the SELIRS and SELDCRS models.

For purposes of comparing the SELDCRS model with
quantitative genetic models that ignore the transmission
of infection (see below), the pathogen burden (E) in the
population can be made independent of changes in the
rate at which diseased animals apparently recover () if
any reductions in the number of diseased animals (D) are
compensated by an increase in the number of carriers (C),
i.e. the total time that an animal is infectious (1/+1/) is
kept constant. Properties of the SELDCRS model are
derived in Appendix 1, with R', the reproductive rate of the
disease, being defined as:

and the equilibrium prevalence p*, being defined as:

Equation (14) can alternatively be written as:

There are two differences between the equations defining
equilibrium prevalence in the SELIRS and SELDCRS mod-
els (equations 8 and 15). First, if the assumption is
invoked that the total infectious period is kept constant,
then with decreasing 1/ the term R' is constant in SELD-
CRS but will decrease with decreasing 1/ in SELIRS. Sec-
ondly, under the same assumption of constant infectious
period, inspection of equations 8 and 15 reveals that the
SELDCRS model will lead to the lower equilibrium prev-
alence, given the same values for all other parameters. The
equilibrium prevalence will be relatively insensitive to
change in R' if it has a high value (i.e. not close to 1).

Predicting responses to selection
Improvement of resistance to disease by genetic selection
in its simplest form, i.e. disregarding information from
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Table 2: Contrast of similar parameters in the SELIRS and SELDCRS models

Model Symbol Definition

(1) The number of diseased and infectious animals
SELIRS I From state I, animals recover and move to state R (recovered) at rate , and hence are no longer infectious
SELDCRS D From state D, animals cease showing clinical signs at rate  but continue to be infectious – this is state C (carrier)

(2) The number of animals that are infectious but do not show clinical signs
SELIRS This does not occur in SELIRS; only animals showing clinical sign are infectious
SELDCRS C From state C, animals move to state R (recovered) at rate , and hence are no longer infectious
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relatives, consists of selection of those animals that do not
show clinical signs at the time point at which the observa-
tions are made. The expected response to selection on
such a binary trait depends on the heritability of resistance
and the prevalence. This can be calculated assuming a
threshold ('all or none') model with an underlying nor-
mally distributed liability with heritability hL

2, which
depends on the heritability of the binary trait (h01

2) as:

hL
2 = p(1 - p)z-2h01

2,

where p is the prevalence of the binary trait and z is the
ordinate of the standardised normal distribution corre-
sponding to p [13].

For the case where the number of healthy animals availa-
ble for breeding exceeds the number required for selec-
tion, and again disregarding information from relatives,
the response to selection is calculated as if the selected
proportion is equal to 1-p, and on the underlying scale the
response is RL = ihL

2 with i the selection intensity corre-
sponding to 1-p. Because of reductions in prevalence, the
response to selection is not linear but decreases with
increasing values of 1-p.

In the context of the disease dynamics, selection for
'healthy' animals may be thought of as selection on one or
more of the following:

a. The recovery rate  or  (i.e. infectious or diseased ani-
mals recover quicker, e.g. due to an acquired immune
response)

b. The susceptibility of animals  (i.e. susceptible animals
are more resistant to infection per se, requiring exposure to
a greater number of infectious doses before becoming
infected)

c. The rate of shedding of bacteria  (i.e. infectious ani-
mals spread fewer bacteria) – this is comparable to selec-
tion for reduced egg counts with nematode infections

d. The rate at which immunity is lost  (i.e. longer lasting
immunity)

e. The rate at which latently infected animals become
infectious  (i.e. longer latency, as seen in scrapie).

Note that  and  occur only as products in R' and p*,
therefore their effects can be considered jointly in this
model.

In the simplest analogy to the threshold model, one can
think of the model parameters, particularly  and  (i.e.
recovery rate) or  (susceptibility) as being analogous to

the liability, with heritable between-animal variation.
This being the case, we can then assume that the liability
and one or more of these parameters have the same distri-
bution and heritability, and responses to selection can be
calibrated between the threshold model and the SELIRS or
SELDCRS models. Note that because of (6) selection on 
(or ) is equivalent to selection on R', given a constant .

The response to selection for a binary disease trait can
now be estimated in two ways; based on the threshold
model and on the SELIRS or SELDCRS model. The thresh-
old model is fully described by the prevalence and herita-
bility of resistance, but the epidemiological models
require a greater number of parameters. While estimates
for most are available, prediction of the response to selec-
tion also requires knowledge of variation in the parameter
under selection. One way to approach this is to parame-
terise the threshold model and the epidemiological mod-
els so that (for example) they give the same predicted
response to one round of selection, and then study the
longer-term predicted selection responses from these
models.

In the threshold model, the response to selection on the
observed scale is equal to the change in prevalence p*1-
p*0, with p*1 being the prevalence predicted in the thresh-
old model after one round of selection. For the epidemio-
logical model to predict the same response to selection we
use the standard selection response equation ih2x = p1 *-
p0 *, so that

x = (p1 *-p0 *)/ih2, (16)

with x being the implied phenotypic standard deviation
of the trait under selection. This standard deviation can
now be used for parameters in the SELIRS and SELDCRS
models, in order to calibrate selection responses. Some
properties of responses to selection for these models and
their dependence on various parameters are derived in
Appendix 1.

If selection is on 1/R', or one of its animal-components
other than , i.e.  or , and assuming that 1/R' is normally
distributed, the phenotypic standard deviation x that
leads to the same response to one round of selection in
the SELIRS model as the threshold model (p*1-p*0) can be
calculated (see Appendix 1) as

Application to footrot
To apply the SELIRS and SELDCRS models to footrot and
predict likely effects of selection, parameters were chosen
based on literature estimates of the length of time (in

   
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p p
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days) that each phase lasts, as shown in Table 3. Note that,
by definition, the required rates are the inverse of the
length of time.

To investigate the consequences of a range of values for 
and R', the p*,  and  were set at 0.08, 0.0333 day-1 and
0.1667 day-1 respectively, and  varied from 0.025, 0.1, 0.2
to 0.3 day-1so that corresponding values for R' were 1.18,
1.58, 2.91 and 18.08. Extreme values were investigated
with R' = 20,  = 0.025 day-1 and p0 = 0.5.

To investigate the predicted response to selection in the
various models and parameter combinations, the equilib-
rium prevalence of footrot was calculated over 20 rounds
of selection on 1/ and 1/R' in the SELDCRS and SELIRS
models, using discrete generations and a heritability of
0.3, assuming a normal distribution for 1/, 1/ and 1/R'
with constant underlying variances and ignoring the Bul-
mer effect (whereby genetic variation is reduced as a con-
sequence of selection). With the initial prevalence of
footrot set at 0.08, the response to one round of selection
using a threshold model was calculated to estimate x
according to (16) and (17). Then (14) and (8) were used
to estimate R' given the other parameters. Changes in the
parameter under selection (1/, 1/ or 1/R') that would
result from selection of a random sample of healthy ani-
mals were calculated for each generation and the new

value inserted in (14) or (8) as appropriate to obtain the
equilibrium prevalence in the next generation.

Results
Predicted progress in the threshold, SELDCRS and SELIRS 
models
Predicted responses to selection according to the SELD-
CRS model with selection on 1/ (the time an animal is
diseased and infectious) and the SELIRS model with selec-
tion on 1/R' are identical for values of  = 0.2 and R' =
2.91 (Fig. 1). Both responses are larger than the threshold
model prediction after the first round (when they were
fixed at the same value). This is the result of differences in
the relationship between the trait under selection and
prevalence which is close to linear for SELIRS and SELD-
CRS but not for the threshold model. As expected, the
SELIRS model predicts a significant additional response
from selection on 1/ compared to the SELDCRS model,
in which the total infection period is held constant in this
parameterisation. All graphs have a similar shape, show-
ing diminishing returns at lower prevalences.

Sensitivity of the predicted response to selection to  and 
R'
A value of R' of just greater than 1 leads to predicted prev-
alence of footrot quickly going to 0 (Fig. 2). The reason is
that R' drops below 1, so that the infection is not expected

Table 3: Published estimates of length of time (in days) of phases of the SELIRS model for footrot infection

Phase (parameter)
Trait definition

Length (days) Source

Latency ()

Positive for D. nodosus 4 [16]
Positive for D. nodosus 5, 6 [17]
Signs of early footrot 8, 9 [16]
Typical signs of early footrot 7 [17]
Footrot observed in 13 out of 16 sheep < 10 [18]
Footrot 10–14 [19]
Bacterial survival ( =  + N)

Bacterial survival  14 [20]
Bacterial survival to the extent they are still infectious  7 days [20]
Bacterial survival < a few days [21]
Bacterial survival  4 [22]
Required resting period of pasture to avoid infection 7 [19]
Duration of infection ()

Mean (may include re-infection) 190–208 [23]
Mean (may include re-infection) 21–77 [24]
With prompt treatment 1
Duration of immunity after recovery ()

Since start of treatment (and cured after 0–21 days) 26–31 [16]
Re-infection < 63 [11]
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to be maintained in the population. In contrast, very high
values of R' (such as 18) do not lead to a noticeable addi-
tional predicted response. With typical values for R' for
footrot of about 1.5 an additional response in prevalence
of over 2% of animals can be expected after a few genera-
tions, but this difference decreases again in later genera-
tions.

For more extreme cases, with R' and p* large and  small,
a different picture emerges with the SELIRS model actually
predicting a lower response to selection for larger  in
early generations than SELDCRS or selection on R' (Fig.
3). This is because the variation in 1/ is relatively small
and changes have little effect on R'.

Sensitivity to  and 
Additional calculations (results not shown) have con-
firmed that the predicted response to selection on  or R'
does not depend on values of the rate at which latently-
affected animals become infectious () or the rate at
which recovered animals lose immunity (), given , R'
and p*.

Discussion
A model was developed to predict the response to selec-
tion for resistance to an endemic bacterial disease, and
this model was then applied to footrot in sheep. While the
exact description of the epidemiological process requires
a great number of parameters, many of which are poorly
known, the prediction of relative responses to selection
depends on only a few parameters. By using the threshold
model to predict the response to one round of selection,
and setting this as the standard, the only epidemiological
parameters required are the rate at which animals recover
() and the reproductive rate (R'), alongside the heritabil-
ity of resistance to the disease (or the parameter under
selection).

It was shown that if the notional reproductive rate R' is
under selection, changes in the prevalence are propor-
tional to changes in 1/R'. If selection is for larger  (i.e.
quicker recovery) the SELIRS model predicts a response
that consists of the direct effect of animals recovering
more quickly, plus an additional component arising from
the resulting lower pathogen burden.

Predicted response to selection for resistance to footrot depending on the model and the trait under selectionFigure 1
Predicted response to selection for resistance to footrot depending on the model and the trait under selection. 
The notional reproductive rate R', or the recovery rate  or  is the trait under selection; initial values are R' = 2.91,  =  = 
0.2,  = 0.0333,  = 0.1667, p* = 0.08 and h2 = 0.3; the response is standardised to the same genetic response after one gener-
ation of selection, the SELIRS model with selection on  shows an additional epidemiological effect.
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It seems counterintuitive that there is no such additional
'epidemiological' component from selection on R', espe-
cially since selection on R' may in fact be on the suscepti-
bility to infection as denoted by , and which is a
component of R'. The expectation might be that if fewer
animals get infected, there should also be a reduction in
pathogens. Formula (7) shows that the equilibrium prev-
alence only depends on , i.e. susceptibility, through R'.
An explanation is that a decrease in susceptibility only
means that it takes longer for animals to get infected when
facing the same challenge (1/ days), but eventually they
still become infected and shed the same number of bacte-
ria. The advantage of a lower susceptibility, i.e. longer
time until infection, is that it takes animals longer to com-
plete the full SELIRS cycle, thereby reducing the number
of animals that are diseased at any point in time prior to
the equilibrium being reached.

Raadsma et al. [11] and Nieuwhof et al. [10] have esti-
mated the heritability for resistance to footrot based on
the genetic variation within a population, rather than the
response to selection. Therefore, these estimates are inde-
pendent of possible effects of reduced pathogen burden in
selected populations.

Little information is available on the value of the recovery
rate , and one reason is that prompt treatment of affected
animals means it is not fully expressed (i.e. 1/ is cen-
sored). The prevalence without treatment could then be
considerably higher and R' larger. This scenario was inves-
tigated with an initial prevalence of 50%, and it was found
that in early generations the expected additional effects
are in fact negative, but the effect becomes positive later
on. The reason for this negative effect, best understood by
comparing (8) and (14) is that with increasing recovery
rate in the SELDCRS model animals spend increasing
times in the C phase, i.e. they are no longer considered
diseased but continue to spread bacteria. This slows down
the whole cycle, with there being fewer susceptible ani-
mals compared to the SELIRS model, where recovered ani-
mals move directly to the phase of immunity. For our
application to footrot this effect may be considered an
artefact of the model, occurring only under extreme
assumptions, rather than of biological importance, but it
may be relevant for other diseases. Previously, MacKenzie
and Bishop [14] have shown that in the SIR model
applied to viral diseases, if R0 is high then it may take
many generations of selection before the expected
number of animals infected during an epidemic is
expected to decrease. This, also, is a scenario in which the

Predicted response to selection for resistance to footrot depending on the model used, the notional reproductive rate R' and the initial recovery rate Figure 2
Predicted response to selection for resistance to footrot depending on the model used, the notional reproduc-
tive rate R' and the initial recovery rate . Selection is on , with  = 0.0333,  = 0.1667, p* = 0.08 and h2 = 0.3.
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epidemic model predicts a slower response to selection
than the quantitative genetic model.

Knowledge of the traits that show genetic variation is
clearly important. While the current results suggest that
this can be done by comparing the variation within a pop-
ulation with the response to selection, in practice this will
be very difficult because it would require an unselected
control or population with the same environmental con-
ditions, but not affected by decreased shedding of bacteria
by the selected animals. An alternative would be to esti-
mate parameters directly from the length of time various
epidemiological stages last, in selected and unselected
populations following (deliberate) infection, comparable
to the figures in Table 3.

In the absence of any estimates for the genetic variance of
resistance to footrot, this study used the threshold model
to standardise response to selection. Following the con-
cept of an underlying normally distributed trait in the
threshold model, normal distribution were assumed for
1/R' and 1/. The inverse of the recovery rate 1/ is a length

of time, and it seems plausible that it has a positive skew-
ness, with no negative values, and some animals taking
extremely long to recover. A positive skewness looks likely
for R' as well, especially for scenarios where mean R' is in
the critical range just above 1, with some animals poten-
tially being extremely infectious. Positively skewed distri-
butions for the inverse 1/ and 1/R' would for instance
occur if  and R' were normally distributed. Under these
scenarios, relative responses to selection can be recalcu-
lated with appropriately altered selection intensities.
However, it should be remembered that a normally dis-
tributed liability in the threshold model is also an
assumption that can be challenged.

It was shown that, under the prevailing assumptions, the
reduction in prevalence at a given R' does not depend on
the rate of loss of immunity  and the rate of conversion
of latently infected animals to the infectious state . This
does not mean that these parameters are not important
for the potential genetic progress; it implies that once the
response to one round of selection is known it is possible

Predicted response to selection for resistance to footrot depending on the model and with selection on the recovery rate , initial values for the notional reproductive rate R' = 20 and  = 0.025 and  = 0.05,  = 0.0625, p* = 0.5 and h2 = 0.3Figure 3
Predicted response to selection for resistance to footrot depending on the model and with selection on the 
recovery rate , initial values for the notional reproductive rate R' = 20 and  = 0.025 and  = 0.05,  = 0.0625, p* 
= 0.5 and h2 = 0.3.
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to predict further response without knowing the values of
 and .

In the current study, a constant environment and a homo-
geneous population have been assumed. In practice, envi-
ronmental conditions will vary and this may affect
survival of bacteria in the environment or the animals'
phenotypes, while there may also be different classes of
animals, e.g. adults and offspring with different pheno-
types with regard to the disease. All these variations can be
investigated based on the SELIRS equations, but may
require running of a dynamic algorithm that calculates
daily prevalence, rather than relying on equilibria. In rap-
idly changing environments the time to reach equilibrium
will become an important factor, with potentially no
equilibrium being attained by the time prevalence is
measured or selection decisions are made. In a stable envi-
ronment, changes in parameters as a result of selection
will lead to only small changes in the expected equilibria
so that a new equilibrium can quickly be established.

Selection in this study was based on own performance
and one observation per animal with disease resistance as
the only breeding goal. In practice, information from rel-
atives and repeated measurements will increase the
response to selection. On the one hand, assuming that
resistance to footrot is not genetically correlated to any
other traits under selection, selection on an index of traits
will decrease the expected response to selection for resist-
ance. On the other hand, disease information on relatives
will greatly improve the potential selection response rates
for improved resistance. While all these considerations
affect the magnitude of the response to selection, essen-
tially by changing the 'h2' term in the response equations,
they do not alter the nature of the epidemiological effects
of selection. Therefore, simple extrapolation is appropri-
ate.

The models developed in this study are used to consider
an endemic bacterial disease with bacteria being transmit-
ted through the environment, where they can only survive
for a limited period of time. The models can be applied to
a variety of diseases and host species, where these condi-
tions apply. The general trend of results is in fact similar
to that seen for a different disease, ruminant gastro-intes-
tinal parasitism, as shown by Bishop and Stear [15]. One
difference is that these authors had better estimates of
some traits, especially the rate at which animals spread
infection, as this is captured in the faecal egg count trait.

Based on the current study it can be expected that selec-
tion for resistance to footrot in sheep will be more consid-
erably effective, especially in the medium term, than
purely genetic models predict. There are, however, many
other important issues to consider in a practical breeding

programme, such as obtaining consistent disease scores
across a population of sufficient size and the simultane-
ous selection for other traits, which may be correlated, on
a phenotypic or genetic level, with resistance to footrot.

In summary, this paper presents a novel epidemic model,
applied to footrot in an attempt to explore likely
responses to selection. A key parameter for the model, and
also from a biological perspective, is the recovery rate.
Given the long time that it takes animals to recover from
the disease without human intervention, low values for
the rate of recovery () seem likely. If this is indeed the
trait under selection when selecting for increased resist-
ance, then the response to selection in terms of observed
prevalence, including effects of reduced pathogen burden,
could in the medium term be double that predicted by
purely genetic models.

Appendix 1
Derivation of R' for the SELIRS model
Assuming that N is large, so that S is approximately equal
to N, in the SEIR model an infected animal sheds  infec-
tious doses over 1/ days, these doses survive for 1/ days
infecting N/ daily so that R' = N/. A more formal der-
ivation is given in [8].

The extra L step in the SELIRS model does not affect this,
as all latently infected animals will (sooner or later
depending on ) become diseased. For most parameter
values, the loss of immunity (R animals reverting to S)
does not affect the number of secondary infections, but
extreme parameter values (long-lived environmental con-
tamination combined with a short period of immunity)
may lead to more secondary infections.

Derivation of numbers of animals in various categories at 
the equilibrium in the SELIRS model
At the equilibrium (denoted by *) all derivatives, dI/dt etc
are equal to 0, so that from (4) it follows that:

I* = L* = (N-S*-I*-R*). (A1)

From (5) R* = I*/, and combining (3) and (4) gives S*
= I*/E*, while from (2) E* = I*/, so that S* = /.
Substituting into (A1) then gives:

I* = (N-/-I*-I*/),

Rearranging and solving for I* yields:

I
N

*
( )

.=
−

+ +

 


  
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Summary parameters in the SELDCRS model
Following Appendix A, R' for the SELDCRS model can be
calculated from the product of number of infectious doses
produced at rate  by an infectious animal over the dura-
tion of the infection (1/+1/), the time these infections
survive in the environment (1/) and the number of ani-
mals that will be infected at a rate of  N, so that:

As with the SELIRS model in Appendix B, the equilibrium
prevalence p* can be calculated by setting all derivatives to
0. Combining (3) and (10) then gives S* = D*/E*, and
from (9) and (11) it follows that

so that:

From (10), (11) and (12), L* = D*/, C* = D*/ and R*
= D*/. Substituting these values in L+D+C+R = N-S and
rearranging yields:

Therefore, from (14) the equilibrium prevalence is

Derivation of the predicted response to selection on  or  
and demonstration that the rate of response in p* depends 
on  and , given R' and p* in the SELDCRS and SELIRS 
models
SELDCRS model

From (15) , with  (K set to be

constant).

Therefore .

Now consider the derivative d(1/p*)/d. Solving this
equation we obtain:

Therefore:

Thus, in the SLEDCRS model the predicted response in p*
to changes in  is a linear function of (1/ + 1/), and it
also depends on R' and p* but under the model assump-
tions it is independent of .

SELIRS model

Define a new parameter Q' so that  and Q' is

independent of . Since Q' = R' we have:

Equation (D1) can be rearranged as

Solving the derivative d(1/p*)/d we obtain:

Rearranging terms yields:

There are two important differences from the derivative
for p* in the SELDCRS model. Firstly, there is the extra ele-

ment , which is more important at low values of Q'

(i.e. low values of R'). Also, the second part of the equa-

tion includes , so that higher values of  lead to higher
rates of change.
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Calculation of a term for the implied phenotypic standard 
deviation for 1/R' in the SELIRS model
The predicted genetic response to one round of selection
is:

ih2x = 1/R'1-1/R'0.

From (8) the resulting difference in prevalence, i.e. p*1-
p*0, is:

Rearranging gives:
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