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Abstract

Genomic selection refers to the use of genomewide dense markers for breeding value estimation
and subsequently for selection. The main challenge of genomic breeding value estimation is the
estimation of many effects from a limited number of observations. Bayesian methods have been
proposed to successfully cope with these challenges. As an alternative class of models, non- and
semiparametric models were recently introduced. The present study investigated the ability of
nonparametric additive regression models to predict genomic breeding values. The genotypes were
modelled for each marker or pair of flanking markers (ie. the predictors) separately. The
nonparametric functions for the predictors were estimated simultaneously using additive model
theory, applying a binomial kernel. The optimal degree of smoothing was determined by
bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last
generation (genotyped) was predicted using data from the next last generation (genotyped and
phenotyped). The results show moderate to high accuracies of the predicted breeding values. A
determination of predictor specific degree of smoothing increased the accuracy.

Introduction

Genomic selection refers to the use of genomewide dense
marker genotypes for breeding value estimation and sub-
sequently for selection. Genomic breeding value estima-
tion relies on linkage disequilibrium (LD) between
genetic markers and QTL and needs genomewide and
dense marker data. The main challenge is the estimation
of many effects from a limited number of observations. To
cope with this problem, Meuwissen et al. [1] proposed
Bayesian methods that used informative priors. Meuwis-
sen et al. [1] and Solberg et al. [2] showed by means of
simulations that these methods are able to estimate
genomic breeding values with a remarkably high accuracy,
even for individuals without own phenotypic observa-

tions. This offers the opportunity to speed up genetic gain
by reducing the need for progeny testing [3].

Gianola et al. [4] argued that the assumptions made in the
Bayesian models of Meuwissen et al. [1] are rather strong
(e.g. the priors are very informative) and introduced non-
parametric and semiparametric models, which make
fewer assumptions. Two ways of modelling the genotypic
data are presented by these authors. The first models all
genotypes of an individual across the genome simultane-
ously; see eq. (1) of Gianola et al. [4]. Subsequently, the
non- or semiparametric estimate includes additive genetic
effects as well as dominance and epistasis. From this total
genomic value, an additive breeding value can be
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extracted by performing linear approximations as shown
in eq. (8) of Gianola et al. [4]. In the second way of mod-
elling, the genotypes are modelled for each locus sepa-
rately, see eq. (7) of Gianola et al. [4]. The authors [4]
suggest estimating the nonparametric functions of the
genotypes of a certain locus by applying additive model
theory [5]. This way of modelling ignores epistatic effects.

The total genomic value of an individual is of interest in
many cases, favouring the first way of modelling the gen-
otypic data in Gianola et al. [4]. For example, one might
think of classifying individuals with respect to their liabil-
ity to a certain disease. In most livestock selection
schemes, however, the breeding values, defined as the
sum of the additive effects [6], are in general the most
important. Following this, the second way of modelling
the genotypic data in Gianola et al. [4], as described
above, seems to be an interesting option, because it yields
directly the additive effects, if the genotypes are modelled
appropriately, and no extra computational step for the
linear approximation is needed.

The aim of the present study was to investigate the ability
of kernel regression using additive models to estimate
genomic breeding values. In particular, the modelling of
the genotypic data is shown and a method for the optimal
selection of model parameters is presented. Using simula-
tions, the accuracy of predicted breeding values from non-
phenotyped animals were evaluated. The results were
compared to those obtained from the BLUP method for
genomic breeding value estimation.

Methods

Nonparametric kernel regression using additive models
Assume that n individuals (i = 1, ..., n) are genotyped at N
single nucleotide polymorphisms (SNPs) (j = 1, ..., N).
Biallelic SNP are considered. In this case, g = 2 different
alleles are possible at a SNP (I = 1, q). An allele is coded as
0 or 1 and is denoted by x. The individuals are diploid,
thus they have two chromosomes (k = 1, 2). Further, the
individuals are phenotyped for a heritable quantitative
trait. The phenotypes are denoted by y and are free of sys-
tematic errors. In the additive allelic model, the pheno-
type of an individual is represented as

N 2

= g] 1]k)+e1' (1)
j=1 1
j=1 k=

where x;, is the kth allele of individual i at marker locus j
and g;(x;;,) is the function value of the kth allele at this
locus. ¢; is a normally distributed random residual. The
conditional expectation function is

8(xi) = E(vi |xijk)' (2a)
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The conditional expectation function for any locus j with
its alleles x; can be written in terms of densities [7]

[yp(x j1.y)dy

pxj)
where p(x;) is the density of x; and can be estimated using
EEODI

a kernel smoother as
ik =%l
{ J J 3)
i=1 k=1

where K denotes for the kernel and A for a smoothing
parameter. In (3), x; is the point at which the density is
estimated, this is termed the focal point [7]. The joint den-
sity of x;; and y at point (x;,y) is estimated as

SEE ()

i=1 k=1

gilxj) = (2b)

ﬁ(le) =

ﬁ(xﬂr y)=

(4)
Now, it can be shown [e.g. [4,8]] that substituting (3) and
(4) in (2b) results in the Nadaraya-Watson kernel regres-
sion estimator [9,10] for the conditional expectation func-

tion g]( )

. K((xike—=xj1)/ A)yi

i

gj(le) =

M= ﬂM:‘
MNlMN

K((xj— xﬂ)/ﬂ,)
i=1k=1

The additive haplotype model is similar to the allelic
model except that haplotypes, formed by pairs of flanked
markers, are considered instead of single allelic marker
effects. Consequently, the outlines shown above hold, if it
is assumed that x;;, is the kth haplotype at chromosome
segment j of individual i and the first summation in (1) is
over N segments. The coding of the haplotypes is done so
that x can take ¢ = 4 different values, i.e. 1-1, 1-0, 0-1, or
0-0. Similarly, the functions of the segments are estimated
using the Nadaraya-Watson regression estimator. In the
following no distinction is made between the allelic and
the haplotype model, unless stated. The loci and segments
are both denoted as predictors and the alleles and haplo-
types both as levels of the predictors, or short, as levels.

The x;;, are discrete with only q = 2 (g = 4) different values
in the allelic (haplotype) model, see above. Therefore we
choose the binomial kernel of Aitchison and Aitken [11].

Using this kernel, for each focal x; and each observed x;
the number of disagreements d is estlmated In the allelic
model d takes values of 0 (e.g. x;;is 0 and x;;is 0) or 1 (e.g.
x;1s 0 and x;;is 1), and in the haplotype model values of 0
(e.8 x;is 1-1 and x;;is 1-1), 1 (e.g. x;is 1-1 and x;;is 1-0 or
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0-1) or 2 (e.g. x;is 1-1 and x;; is 0-0). Using this definition

of d, the binomial kernel K is

K(le,x ;L) = qud(xﬂ,x,/)(l _l)d(xﬂ,x,,)’

ijr
where A is the smoothing parameter with % <A<L1[11].

The Nadaraya-Watson regression applying the binomial
kernel for the estimation of the functions is

3 %,1q—d(lerxijk)(l_,l)d(lefxijk)yi
5 _i=lk=1

A (x]lrxljk)(l_/l) (xj1.%ijk)

i=1k=1

(5)

Extending (2a) to account for multiple predictors, the
conditional expectation function can be written as

N 2
gi(xi) =E| (v _zzgj’(xij'k) | xiie) |- (6)
/i
%
Assuming additivity of the predictors, this leads to the fol-
lowing iterative backfitting algorithm [12,5] for comput-
ing the functions.

1.j=1,.., N; Initialise g; (x;).

2.j=1, ..., N; &; (x;) = NWR(y; | (x;3)- Centre g; (x;).
3. Repeat step 2 until convergence is reached.

In step one the nonparametric function values are initial-
ised with some small numbers. Step two comprises the
application of the Nadaraya-Watson regression (denoted

by NWR) in the form described in (5), but using (y; | Xijk)

instead of y;. The term (y; | x;) is called the partial resid-

ual and denotes for the phenotypes corrected for every
predictor except for the level k of individual i at predictor
j. The collinearities result in a non-uniqueness of the esti-

mates [5]. Therefore, g; (x;) are centred in the second step

by subtracting the mean of fitted function values to the 2n
chromosomes at the predictor j. This centring ensures that
the overall mean of the fitted function values is zero at
every cycle of the backfitting and the algorithm converges
to one possible solution [5]. It might be noted that the
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backfitting algorithm is very similar to the Gauss-Seidel
algorithm, further details can be found in [5].

Choosing the smoothing parameter )

In applying kernel regression, one key question is which
value for the smoothing parameter A should be used. As
stated above, when a binomial kernel is applied, the lower
and upper bound of 1is 0.5 and 1, respectively. When A =

1 the whole weight of K(xj, x;, 4) is concentrated at x;; = x;

ijs
and f)(x]-,) in (3) is just the proportion of cases x; was
observed in the sample. On the contrary, when 4 = 0.5, the

degree of smoothing is at maximum and K(x;, x;, 4) gives

ij’
the same weight to each of the x;; [11,7]. One way of select-
ing an appropriate A is to apply bootstrapping as follows
[13]. Assume a number of B bootstrap samples (b =1, ...,
B). In each b, the data points are split into two sets. The
first set, denoted as the estimation set, is formed by the
entire bootstrap sample and the second, denoted as the
test set, is formed by the individuals not found in the cor-
responding bootstrap sample. Since a bootstrap sample is
generated by drawing n observations out of the original
pool of n observations with replacement [13], the proba-
bility of any given progeny being chosen after n drawings
is [1-[1-1/n]"] = 0.632 and the probability not being cho-
sen, and consequently forming the test set, is [1-1/n]"~ e
1~ 0.368. For each individual an indicator variable k; is
introduced, this is 1 if the individual is present in the test
set of the corresponding bootstrap sample b, and 0 other-
wise (k;, = 1 and k;, = 0, respectively). For a grid of 1 and
each bootstrap sample b, the functions of each predictor j
are estimated as described above using the corresponding

estimation set of each b. This results in B different gi’“

The average residual sums of squares of each individual is
calculated as

aveRSS } =

1 B N
b
B Zkib Vi _Zzgl,j(xijk)
Y ki b=1 j=1 k=1
b=1
(7a)
This means that only those bootstrap samples are consid-
ered where the corresponding individual i was not in the

estimation set, but in the test set. Averaging over all indi-
viduals yields

1n
aveRSS; = 1 2 aveRSS};. (7b)
n

i=1
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Note that the subscript i denotes for the individual. The 4,
which produced the smallest aveRSS, can be chosen to
analyse the original sample. This method is termed the
equal lambda method (ELM) in the following, because
the A takes the same value for each predictor.

Different 1 might be optimal for different predictors and
a predictor specific determination of A is desirable. In
principle, the bootstrap strategy can be expanded accord-
ingly. However, this would need B times N times the
number of 4 in the grid calculations, which is computa-
tionally not feasible. Additionally, the constellation,
which results in the smallest aveRSS might be difficult to
find. In previous analysis we investigated the optimal
degree of smoothing for predictors taking the knowledge
of the simulated QTL into account. The degree of smooth-
ing was less for predictors in LD with a QTL compared to
predictors not in LD with a QTL. Additionally, predictors
that showed a similar variance of their function values,
also showed a similar optimal A. This lead to the follow-
ing algorithm for the group-wise predictor specific A deter-
mination, subsequently named unequal lambda method
(ULM).

1. Determine one A valid for all predictors using ELM.

2. Estimate the variance of the ¢ function values for each
predictor (¢ = 2 in the allelic and g = 4 in the haplotype
model, see above).

3. Select those m (e.g. m = 5) predictors which show the
highest variance and determine an optimal A for them
using bootstrapping, but letting the lower bound of 4 be
as determined in ELM. The A for the remaining predictors
are fixed at the determined value from ELM.

4. Repeat step 3 for the next set of m predictors, which
show the next highest variance. Here, keep A for the
remaining predictors fixed at their determined value, i.e.
from ELM for predictors with a lower variance, and from
step (3) otherwise.

5. Repeat step 4 until all predictors are passed.

Finally, the original sample is analysed with the group-
wise predictor specific 4.

BLUP method for genomic breeding value estimation

The BLUP model of Meuwissen et al. [1] can be applied in
an allelic model or in a haplotype model. For simplicity
only the allelic BLUP model will be considered in the fol-
lowing. In Meuwissen et al. [1] it is assumed that the vari-

ance of a marker effect is ¢?/(2N), with ¢? being the

additive genetic variance. Note that each marker affects
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the phenotype two times, via the paternal and the mater-
nal allele, hence the 2N in the denominator. If the une-
qual gene frequencies at the markers are taken into

account, the variance of a marker effect becomes o2/

(4N H ), with H being the average heterozygosity across
markers. The derivation is given in the Appendix 1, and
can also be found in Habier et al. [14] using a different

approach. If H equals 0.5 (i.e. the allele frequency at

every marker is 0.5), the expression reduces to ¢ /(2N).

Simulations

In order to test the ability of the additive nonparametric
regression models to predict reliable breeding values, and
to compare the results from those obtained from BLUP, a
simulation study was conducted. The simulations were
performed as described by Solberg et al. [2]. Briefly, a pop-
ulation was simulated over 1000 generations with muta-
tions and random selection and mating with an effective
population size of 100. Ten chromosomes each of 100 cM
length and each with 100 potential QTL evenly distrib-
uted over the chromosome were generated. The number
of segregating QTL depended on the mutation rate at the
QTL, which was assumed to be 2.5 x 10-> [2]. For each
mutation at the QTL an additive effect was sampled from
the gamma distribution with a shape and a scale parame-
ter of 1.66 and 0.4, respectively [15]. This implied that
many QTL had small and only few had large effects. QTL
effects were sampled such that they had equal probability
of positive or negative effects. QTL effects were simulated
to be additive. The marker density was 1 cM, 0.5 cM or
0.25 cM. The mutation rate at the markers was assumed to
be 2.5 x 10-3 [2]. Markers showed in general multiple alle-
les. In order to reflect SNP markers, they were converted to
biallelic markers by assuming that only one of the muta-
tions was visible as described by Solberg et al. [2]. The pro-
portion of segregating SNPs (segregating QTL) was
around 98% (5-6%) of the number of simulated markers
(QTL) at generation 1000. In generation 1001, the
number of animals was increased to 1000 by factorial
mating. The LD of pairs of segregating markers was esti-
mated as r2value in generation 1001. The average 2 of two
adjacent segregating markers was 0.158, 0.222, and 0.295
for the marker density 1 ¢cM, 0.5 cM and 0.25 cM, respec-
tively [2]. The animals in generation 1001 produced 1000
offspring for generation 1002 by random mating. Animals
in generation 1001 and 1002 were genotyped at the SNP
markers and animals in generation 1001 were also pheno-
typed. The phenotypes were the sum of their simulated
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breeding value and a random deviation e (e ~ N(0, )).

o} was chosen such that the heritability of the trait was

h2=0.25 or h2 = 0.5. For the haplotype model, the simu-
lated haplotypes were used (no extra haplotype determi-
nation was performed). The number of replicates was 10
for each marker density and each h2.

In the additive nonparametric regression, the functions
were estimated using the data from the generation 1001.
These were used to predict the breeding values (EBV) of
the generation 1002 as

N 2
EBV; = Zzgj(xijk)

j=1 k=1

The smoothing parameter A was varied as A4 = 0.5, 0.525,
.... A total of B = 50 bootstrap samples were generated. For
ULM, the groups size for the group-wise predictor specific
A determination was m = 5, 10 and 20 for a marker density
of 1 cM, 0.5 <M and 0.25 cM, respectively. The conver-
gence criterion to exit the backfitting algorithm was an
average change of the function values of two consecutive
iterations below 2.5 * 10-5. A relaxation factor [e.g. [16]]
of 0.7 was included. Additionally, generation 1001 was
analysed using the BLUP model described above, assum-

ing the variance of the effects of each marker is o2/

(4N H) and using the simulated variance components.
The BLUP system of equations was solved iteratively by
applying the Gauss-Seidel algorithm [e.g. [16]]. The same
convergence criterion as for the nonparametric additive

http://www.gsejournal.org/content/41/1/20

model was used. Also these estimates were used to predict
the breeding values of generation 1002.

The correlation between the true breeding value and the
EBV of the individuals in generation 1002 as well as the
regression coefficient of the TBV on the EBV was esti-
mated, which served as empirical measures of the ability
of the methods to predict accurate and unbiased breeding
values of individuals without own phenotypic observa-
tions [1]. Unbiased means here E(TBV|EBV) = EBV, and a
regression coefficient below one (above one) indicates
that the EBV vary too much (too little). Unbiased EBV are
important if selection has to be carried out from multiple
generations using estimated marker effects in one genera-
tion. Assume selection will be done across two-year
classes, where the marker effects are estimated in the older
year class only. Further assume that the younger year class
is in general superior (i.e. has a higher population mean)
due to selection response. If the EBV vary too much (too
little) then too many animals will be selected from the
older (younger) year class.

Results

The results are shown in Tables 1 and 2. Summarized over
all genetic configurations analyzed, the accuracies of EBVs
obtained from ULM were highest. However, these were
also most biased, as indicated by the in general lower
regression coefficients. The accuracies from ELM and
BLUP were very similar.

The impact of the heritability can be seen when compar-
ing the results reported in Table 1 with those in Table 2.
As expected, the accuracies of the EBVs were higher for a
heritability of 0.5. Additionally, the EBVs were in general
less biased for the higher heritability. This was most obvi-
ous for ULM. Increasing marker density led to higher accu-
racies of EBVs for all methods. With increasing marker

Table I: Results from the prediction of the breeding values of the last generation using data from the next last generation as a function

of the marker density

Method Model Marker density
I <M 0.5cM 0.25cM
ELM allelic Irey gav? 0.531 (0.058) 0.552 (0.043) 0.629 (0.039)
bray eav® 1.017 (0.139) 0.848 (0.106) 0.722 (0.075)
haplotype ITBy.EBV 0.534 (0.055) 0.561 (0.044) 0.626 (0.033)
b1y esy 0.829 (0.066) 0.778 (0.049) 0.679 (0.029)
ULM allelic IRV EBY 0.560 (0.078) 0.617 (0.035) 0.641 (0.036)
brgy eav 0.754 (0.106) 0.720 (0.092) 0.626 (0.070)
haplotype ITBy.EBV 0.575 (0.076) 0.614 (0.040) 0.637 (0.035)
b1y ey 0.711(0.071) 0.610 (0.041) 0.567 (0.029)
BLUP allelic IRV, EBY 0.532 (0.061) 0.549 (0.042) 0.622 (0.042)
brgy eav 1.143 (0.098) 1.178 (0.110) 1.376 (0.086)

The heritability was 0.25. Average from 10 replicates. ELM and ULM denotes for equal lambda and unequal lambda method, respectively.
a2 Correlation between true and estimated breeding value; standard deviations are in parenthesis
b Regression of true on estimated breeding value; standard deviations are in parenthesis

Page 5 of 12

(page number not for citation purposes)



Genetics Selection Evolution 2009, 41:20

http://www.gsejournal.org/content/41/1/20

Table 2: Results from the prediction of the breeding values of the last generation using data from the next last generation as a function

of the marker density

Method Model Marker density
I cM 0.5cM 0.25Cm
ELM allelic rrev.EBv? 0.642 (0.074) 0.670 (0.029) 0.783 (0.025)
bray eav® 1.101 (0.125) 1.002 (0.073) 0.968 (0.023)
haplotype ITBy.EBV 0.645 (0.064) 0.671 (0.028) 0.785 (0.023)
b1y esy 1.024 (0.117) 0.982 (0.094) 0.921 (0.018)
ULM allelic I'TBV.EBV 0.679 (0.091) 0.733 (0.029) 0.805 (0.018)
brv.eav 0.937 (0.102) 0.886 (0.074) 0.865 (0.024)
haplotype ITBY.EBV 0.692 (0.076) 0.747 (0.028) 0.810 (0.014)
brav sy 0.898 (0.085) 0.851 (0.058) 0.883 (0.026)
BLUP allelic I'TBY.EBY 0.641 (0.067) 0.667 (0.029) 0.773 (0.029)
b1y ey 1.070 (0.110) 1.147 (0.085) 1.219 (0.033)

The heritability was 0.5. Average from 10 replicates. ELM and ULM denotes for equal lambda and unequal lambda method, respectively.
a Correlation between true and estimated breeding value; standard deviations are in parenthesis
b Regression of true on estimated breeding value; standard deviations are in parenthesis

density the regression coefficient of the true on the esti-
mated breeding value decreased for ELM and ULM, result-
ing in general in an increased bias with increasing marker
density. One exception is for ELM and a marker density of
1 <M, where the EBVs vary too little. Here, the bias
decreased when moving to a marker density of 0.5 cM (see
second row of Tables 1 and 2). In contrast, with increasing
marker density the regression increased for BLUP.

The differences between the allelic and the haplotype
model were small, regardless of the method used (Tables
1 and 2). The haplotype model produced slightly better
results in low marker density situations, but with dense
markers the accuracies from the allelic and the haplotype
model were very similar. The same was reported for the
BayesB method [17,2].

The computational demand was in an increasing order:
BLUP, ELM and ULM. For example, one replicate with a
marker density of 1 cM analysed with the allelic model
took below one minute when using BLUP, around one
hour for ELM and several hours for ULM. The reason is,
that ELM and ULM included bootstrapping to determine
the optimal A. Naturally, the computation time would
even be higher if the number of bootstrap samples (B)
would be larger. It seems that B = 50 is at the lower bound
when comparing with literature reports [13]. However,
increasing B did not produce significantly different results
(not shown), indicating that B = 50 was sufficient here.
The time to reach convergence depended on A and the
marker density. With increasing A and increasing marker
density more iteration were needed until convergence was
reached. For example, in general the number of iterations
for A =0.6 was ~15 and for 4 = 0.9 was ~50 for a marker
density of 1 ctM. The same figures for a marker density of
0.25 cM were ~20 and ~90, respectively.

Figure 1 and 2 showed that during the grid search for the
optimal A, the accuracy increased with increasing A
monotonically and decreased monotonically after the
optimum A was passed. Therefore, in order to speed up
computations, the grid was started at the lower bound of
A and was ended when the aveRSS from (7a) and (7b)
stopped decreasing, assuming that the optimal A4 was
reached or is not far away. The start at the lower bound
was because convergence is reached fast if A is small (see
above). Additionally, if aveRSS failed to decrease due to
some random sampling before the optimal 1 was reached,
this would result in an over-smoothing, and hence, the
results would be conservative.

For ULM the numbers of predictors with a A within a
defined bin are shown in Tables 3 and 4. A higher marker
density results in more predictors that are less smoothed,
i.e. showing a A closer to one. This is due to the higher
number of predictors in LD with the QTL. Also, with an
increased heritability more predictors are less smoothed
(top and bottom of Tables 3 and 4). The grid search for
finding the optimal 4 is more powerful in high heritability
situations, leading to this lesser degree of smoothing.
Additionally, as for ELM, more smoothing is done in the
haplotype model than in the allelic model. This can be
seen in the higher number of predictors showinga 4> 0.9
in the allelic model (Table 3 and 4).

Discussion

As stated in the introduction, in genomic breeding value
estimation we are faced with the problem of estimating
many effects from a limited number of observations, and,
additionally, many effects show collinearities due to the
LD between the SNPs. The BLUP model overcomes these
problems by treating the predictors as random variables
and estimating them simultaneously. In the nonparamet-
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Figure |

Results from the allelic additive nonparametric regression. Correlation (r) between the true and the estimated breed-
ing values (top) and regression (b) of the true on the estimated breeding values (bottom) as a function of smoothing parameter
(lambda) and the marker density. The same lambda was applied to all markers. The heritability was 0.5 and marker density was
I c¢M (black square), 0.5 cM (black diamond), and 0.25 cM (black triangle), respectively. Average from 10 replicates.

Page 7 of 12

(page number not for citation purposes)



Genetics Selection Evolution 2009, 41:20 http://www.gsejournal.org/content/41/1/20

0.8

0.75 ~

0.7

= 0.65

0.6

0.55

0.5 I I I I I I I |
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Lambda

2.5

0.5

0 T T T T T T ]
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Lambda

Figure 2

Results from the haplotype additive nonparametric regression. Correlation (r) between the true and the estimated
breeding values (top) and regression (b) of the true on the estimated breeding values (bottom) as a function of smoothing
parameter (lambda) and the marker density. The same lambda was applied to all chromosomal segments. The heritability was
0.5 and marker density was | cM (black square), 0.5 cM (black diamond), and 0.25 cM (black triangle), respectively. Average
from 10 replicates.
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Table 3: Results from the unequal lambda method (ULM)

http://www.gsejournal.org/content/41/1/20

Heritability Model 06<1<07 07<1<08 08<1<09 09<A<I

025 allelic 976.5 (9.0) 2.0 (4.8) 45 (5.5) 17.0 (6.8)
haplotype 973.0 (5.9) 3.5 (4.1) 5.0 (3.3) 8.5 (5.8)

05 allelic 0.0 972.2 (9.8) 3.9 (49) 238 (9.3)
haplotype 968.0 (7.2) 0.5 (1.6) 9.0 (6.6) 12.5 (5.4)

Number of marker locus (allelic model) or chromosomal segments (haplotype model) showing a smoothing factor (1) in the corresponding bin for
a marker density of | cM. Average from 10 replicates. Standard deviations are in parenthesis.

ric kernel regressions (ELM and ULM), the numerous
effects are estimable by smoothing the phenotypes against
one predictor at a time, assuming that the effects of the
remaining are removed from the phenotypes. Of course,
the true effects of the remaining predictors are unknown
and have to be estimated themselves, resulting in the iter-
ative backfitting algorithm [5]. Nuisance factors can be
included in the algorithm and can be estimated paramet-
rically using least squares. The model is then semipara-
metric and the backfitting algorithm iterates between the
parametric (i.e. estimating the effects of the nuisance fac-
tors by least squares) and the nonparametric part (i.e. esti-
mating the SNP function values by the Nadaraya-Watson
regression), without changing the general structure of the
algorithm [5].

Using kernel regression, the choice of the appropriate
degree of smoothing is important, which depends on the
sample size. Naturally, if the sample size grows to infinity,
smoothing is almost not required [7] and hence A should
be close to 1. However, sample size is never infinite, and,
therefore, A has to be chosen carefully, taking the sample
size into account. Indeed, in ELM the optimal A for a
marker density of 1 cM, a heritability of 0.5 and applying
the allelic model is 0.74 (Figure 1a). If the size of the data
set would only be 500, the optimal 4 would be 0.65 (not
shown elsewhere). The applied bootstrap strategy takes
the sample size into account, because the estimation set is
of equal size as the full data set. In ELM the 1 determined
by bootstrapping was very close to the optimal A. This can
be seen by comparing the results reported in Table 2 for
the ELM with the maximum achievable accuracies shown
in Figures 1 and 2. Alternatively, leave-one-out cross vali-
dation is suggested [13,7]. Using this method, for a given

Table 4: Results from the unequal lambda method (ULM)

/, the functions are fitted using all but one observation
and then the prediction error of this observation is calcu-
lated given the fitted functions. This is repeated for all
observations. The A, which produces the lowest average
prediction error, is chosen to be the optimal 4. However,
this strategy would require running n times the analysis,
which would computationally be too demanding in the
present data sets. The bootstrap as applied in this study is
related to this cross-validation strategy, see [13] for a
detailed discussion.

When nuisance factors are included in the model and the
number of data points in some classes is very low, it might
happen that in some bootstrap samples these effects are
not estimable or estimated poorly. One obvious solution
is to use only those bootstrap samples where the number
of data points in each class is above a defined threshold.
Since it is assumed that the nuisance effects and the SNP
effects are independent, this would not affect the results
regarding the choice of the appropriate A.

From Figures 1 and 2 it can be seen that the regression
coefficient was on average highest when the degree of
smoothing was at maximum and decreased monotoni-
cally with a decrease of the degree of smoothing (higher
A), as expected. The crossing point of the regression plots
with one (i.e. the unbiased estimation point) shown in
the bottom of these figures coincided with the maximum
accuracy (top of the figures). The plot of the accuracy
against 4 did not show a pronounced maximum. Hence,
ELM was not very sensitive with regard to the choice of 4.
The optimal 4 depended on the marker density. With
increasing density, more smoothing (i.e. a lower 1) was
required. This is because the QTL effects are represented

Heritability Model 06<1<07 07<1<08 08<1<09 09<A<l

025 allelic 1961.0 (17.9) 1.0 (3.2) 6.0 (8.4) 32,0 (16.2)
haplotype 1951.0 (13.7) 5.0 (5.3) 18.0 (13.9) 16.0 (8.4)

05 allelic 578.0 (933.9) 358.0 (937.2) 7.0 (9.5) 57.0 (17.7)
haplotype 1940.0 (18.9) 10.0 (8.2) 23.0 (14.9) 17.0 (4.8)

Number of marker loci (allelic model) or chromosomal segments (haplotype model) showing a smoothing factor (1) in the corresponding bin for a
marker density of 0.5 cM. Average from 10 replicates. Standard deviations are in parenthesis.
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by all SNPs that are in LD with it. With an increasing
number of SNP being in LD with the QTL, each SNP cap-
tures a smaller part of the QTL effect, and hence, requires
more smoothing. Naturally, the number of SNP in LD
with the QTL is higher in high marker density situations.
Additionally, with increasing number of SNP, more SNP
show by chance spurious effects, and hence, more
smoothing is required to minimise the impact of these
spurious effects. In this study the markers were equally
distributed across the chromosomes. In practise it might
happen that this is not the case and some QTL are in LD
with many markers (requires more smoothing) whereas
others only with few markers (requires less smoothing). It
can be assumed that ULM might cope with unequal
marker densities better than ELM and BLUP, because of
the group-wise specific 4 estimation.

The results from the allelic BLUP and the allelic ELM are
very similar (Tables 1 and 2). This might be intuitively
surprising, because of the different assumptions underly-
ing these models. However, we compared both models
formally and found close similarities between them, lead-
ing to the similar results. For details see Appendix 2. BLUP
needs estimates of variance components whereas ELM
needs a A. For additive genetic variances reliable estimates
of variance components are usual available, e.g. from
REML analysis. However, this is in general not the case for
nonadditive genetic variance components like dominance
or epistasis. As reviewed by Thaller et al. [18], dominance
QTL effects are not negligible. The nonparametric regres-
sion models allow the inclusion of dominance effects
without having knowledge of the dominance variance
component. A simulation study could show the benefit of
taking dominance into account. However, for a realistic
simulation knowledge of the distribution of QTL domi-
nance effects is needed. This is largely unknown up to
now. More research is needed in this field.

Meuwissen et al. [1] stated that the main disadvantage of
BLUP is the assumption that every predictor is associated
with the same genetic variance leading to a too strong
regression of large QTL, which limits the accuracies of the
EBVs. The same holds true for ELM, where the degree of
smoothing is too strong for predictors linked to large QTL.
ULM overcomes the problem of too strong smoothing of
predictors with large QTL by building groups of m predic-
tors showing similar variance of their function values and
determining different 4 for each group. Hence it is
assumed that predictors that show a large variance are
linked to large QTL. Indeed, in ULM the amount of
smoothing is substantially reduced for many predictors
(Tables 3 and 4), resulting in the higher accuracies of the
EBVs estimated by ULM (Tables 1 and 2). The standard
deviations in Tables 3 and 4 are high for 4 > 0.7. This
might be due to the difficulty in finding the optimal 4 and

http://www.gsejournal.org/content/41/1/20

additionally due to the unequal distribution of the simu-
lated QTL effects. As described above, these followed
gamma distribution with a high density for small and a
low density for large effects [15]. Hence, some replicates
might show several big QTL resulting in more predictors
with a large 4 whereas other replicates might show only
small or medium sized QTL and the number of predictors
with a 4 close to one is small in these replicates as well.

In ULM a critical question is how large the group size (m)
should be. If m is too small (e.g. m = 1 or 2) then only
those predictors which are linked to very large QTL would
receive a A above that determined by ELM, because only
these might be able to decrease the aveRSS during the grid
search of 4. In contrast, if m is too large (e.g. m = 100 or
200), then many predictors containing only small QTL
would receive a too large A, because they are in a group
with predictors with large QTL. Both situations would
result in less accurate estimates. It seems that the group
size chosen in this study (m in between 5 and 20, depend-
ing on the marker density) is an appropriate choice. The
algorithm defining the group-wise 4 was stopped when all
predictors have passed it one time (see end of section 2.2).
Alternatively the algorithm could have been repeated sev-
eral times with updated A and stopped when the A did not
change anymore, which would be, however, computa-
tionally very demanding.

It may be possible to estimate A by the use of a prior dis-
tribution in ULM. One possibility for such a procedure
would be to sample A from a mixture of two distributions,
one for predictors in LD with a QTL and the second com-
ponent of the mixture for predictors not associated with a
QTL. The latter distribution would put significantly more,
if not all, probability mass at 4 equal to 0.5 (smoothing is
at maximum), whereas the first one would support less
smoothing. However, as the models were implemented in
this study, they do not use any prior information, in con-
trast to BayesB of Meuwissen et al. [1]. A comparison of
the results presented in Table 2 with those of Solberg et al.
[2], who simulated the same genetic configuration but
applied BayesB, suggests that the accuracy of ULM is lower
compared to the accuracies of BayesB in the allelic case.

Conclusion

Nonparametric additive regression models for genomic
breeding value estimation were shown to estimate breed-
ing values of individuals without phenotypic information
with moderate to high accuracy. The optimal degree of
smoothing was determined either for all predictors jointly
(ELM) or for groups of predictors separately (ULM). The
latter increased the accuracies of the EBVs. The accuracies
of the superior model, the ULM model, are in general
slightly lower compared to BayesB. The behaviour of these
models for the estimation of genomic breeding values
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considering also dominance QTL effects remains to be
investigated.
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Appendix |
This appendix shows why the variance of the effects of

each marker was assumed to be to be o2 /(4N H ) in the

BLUP model. ¢ is the additive genetic variance, which is

assumed to be known. N is the number of markers,

_ N

H = %22171-(1 —p;) is the average marker heterozygos-
i=1

ity, and p; the allele frequency at marker i. Each marker M
has two distinct alleles, M1 and M2, with effects a,,, and
Ay, = (-ay, ), Tespectively. The genotype frequencies are p2,
2p(1-p) and (1-p)2, respectively. The genetic mean is [5]
(dropping the subscripts for ease of notation)

e =p*2a—(1-p)*2a
=2a(2p -1).

The sum of squares is

SS =p?4a’ +(1-p)*4a’
=—-8a’(p(1-p)) + 4a*,

and the variance explained by locus M is [5]

Var(M) = SS — ud
= 4a”2p(1-p)
=4a’H,

where H is the heterozygosity at locus M. Assuming that

2

2 is equally distributed over all markers, var (M) is o2/

o2

N. Thus the expression above becomes

2
40’f=°2.
N
The expectation of a2 is the variance of a marker effect, i.e.
E(a?) = var(a,,,). In BLUP it is assumed that this is equal
for all markers. Using this, the above expression becomes

http://www.gsejournal.org/content/41/1/20

2
-
4 *var(ay,)*H =Wa'

Hence, the variance of the marker effects is

2
var(a,,) = 22—, as used in this study, which is also in
MU 4NH

agreement with Habier et al. [14]. Note that if H = 0.5
(i.e. the allele frequency at each marker is 0.5) var(a,,;)

reduces to o2 /(2N), which was used by Meuwissen et al.

[1]. Note that each marker affects the phenotype two
times, via the paternal and the maternal allele, hence the
2N in the denominator (which is not mentioned in [1]).

Appendix 2

This appendix shows the close similarity of the allelic
BLUP model and the allelic nonparametric regression
model using a single smoothing factor (1) in eq (5) of the
main text. A haploid model is assumed for simplicity of
notation, but the extension to two alleles per marker is
straightforward. Denote the number of times allele M1
(M2) at a marker M is observed in the sample as n, ., (1,,,).
The frequencies of M1 and M2 are p and 1-p. The mean of
the phenotypes associated with M1 (M2) is y,4(¥aa) -

The sample mean is p=py,; +(1—p)yu, - Following

mixed model theory, the BLUP prediction of a record with
allele M1 (i, ) is

nmi1

(A1)
npyt+k

Uy = 1+ (71\41_#)'

where k is the ratio of variances ¢?/(c2/4NH) (see

appendix A). o is the error variance, o the additive

genetic variance, and N the total number of markers. The

term nnMAlA-li—k is denoted as f. Eq (A1) can be rearranged as
Upy = B —H)+u
Upy = By +(@1-Bu

= Brm+Q=B)PYi + (1 =PIV m2)
= (p+BA-PVm +A=p=BA-P)Vm2
= WYan + WY o
(A2)

with w, + w, = 1 and both weights are nonnegative. Hence,
the BLUP estimate of the M1 effect is the weighted sum of
the two means. The weights w, and w, depend on the var-
iance component, N, gene frequencies, and n,,; and n,,,.
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The BLUP estimate of the M2 effect can be derived in the
same way.

According to eq (5) of the main text, the nonparametric
function value of M1 can be written as

gM1) = z": 22: VieVir

(A3)
i=1 k=1
with
;bCl—d(Mink)(1_g)d(M1rxik)
Ulk = .
§ 5 a-d(MLxik) (g _yd(MLxi)
i=1k=1
(A4)

As shown in the main text, in the allelic model g equals 2
and d can take the values 0 or 1, depending on the number
of disagreements between the focal (M1) and the
observed allele x;;, and therefore v;, can take only two val-
ues, v, (v,) for phenotypes associated with M1 (M2). Fol-
lowing this, (A3) results in

Mg Npip
g(M1) = leYMl,i +Vy ) VYmoir
i=1 i=1

where y,,, ;and y,,, ; denote for the phenotypes associated
with M1 and M2, respectively. This can be written as

R 1 N N
g(M1) =nyuv, " Ymui TPs2V2 ——— D Vmoi
i=1 i=1
= Man Vv + V2V m2
= WY T WV mas
(A5)

with w; + w, = 1 and both weights are nonnegative. Here
w, and w, depend on the degree of smoothing (1) and on
1y, and n,,,. The nonparametric function value of M2 can
be expressed in the same way. Eq (A5) has the same form
as (A2), hence by choosing 4 appropriately, such that the
weights w, and w, are similar or the same in BLUP and in
the nonparametric regression, both models became simi-
lar or the same. If one 4 is used across all loci, it becomes
impossible to choose a 4 such that the weights w, and w,
are equal for both models for all loci. It may however be
possible to choose A such that these weights are very sim-
ilar.
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