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Abstract

Genetic models partitioning additive and non-additive genetic effects for populations tested in
replicated multi-environment trials (METs) in a plant breeding program have recently been
presented in the literature. For these data, the variance model involves the direct product of a large
numerator relationship matrix A, and a complex structure for the genotype by environment
interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high
correlation in genotype rankings between environments, leading to non-positive definite covariance
matrices. Estimation methods for reduced rank models have been derived for the FA formulation
with independent genotypes, and we employ these estimation methods for the more complex case
involving the numerator relationship matrix. We examine the performance of differing genetic
models for MET data with an embedded pedigree structure, and consider the magnitude of the
non-additive variance. The capacity of existing software packages to fit these complex models is
largely due to the use of the sparse matrix methodology and the average information algorithm.
Here, we present an extension to the standard formulation necessary for estimation with a factor
analytic structure across multiple environments.

Background

Selection of plants and animals in a breeding program
deals with experimental data for which the underlying
genetic model is best formulated as a mixed linear model.
The genetic model is improved by including pedigree
information through an additive relationship matrix, A.
This matrix can be quite large and complex for large pop-
ulations involving many generations, and its inverse is
required when solving the mixed model equations. Effi-
cient methods have been developed to permit routine

application of this methodology. However, its application
to multiple traits or environments in crop populations,
where both additive and non-additive genetic variation
can be measured, raises some issues to be resolved.

While pedigree information has been used extensively in
animal breeding, adoption on a routine basis in the plant
breeding sphere has been much slower. In cereal breeding
programs, genotype performance is typically measured in
a series of replicated field trials grown across multiple
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locations and years, and is collectively referred to as a
multi-environment trial (MET), where current MET analy-
ses assume independence between genotypes [1]. Benefits
from the use of pedigree information can be two-fold.
Firstly, the estimates of individual genotype performance
are more accurate through the use of correlated informa-
tion from relatives. In addition, breeding values can be
estimated for each genotype, quantifying the potential of
the individual as a parent in the breeding program.

One important aspect in the use of pedigree information
in plant populations is the underlying genetic model, as
additive and non-additive effects can be estimated sepa-
rately [2]. This partitioning is possible since field crop
data are generally from plots of genetically identical mate-
rial, replicated both within and across environments. The
additive component provides a simple covariance struc-
ture between related lines and the non-additive compo-
nent is the lack of fit to the additive one. Crossa et al. [3]
have fitted a genetic model including only an additive
component, ignoring the non-additive variation. In our
work, we investigate the performance of these different
models and comment on the magnitude of the non-addi-
tive variation. The lack of fit can also be attributed to var-
ious forms of non-additivity including dominance [4] and
additive by additive interaction [5] but we have not con-
sidered these more complex models.

The most general form for the genetic variance matrix
from MET data is a fully unstructured matrix with p (p +
1)/2 parameters where p is the number of environments,
and this matrix is, by definition, nonnegative definite. For
particular data, genotype effects are often highly corre-
lated across some environments, leading to an estimated
genetic covariance matrix that violates this condition;
imposing constraints to force nonnegative definiteness
leads to singular matrices, but standard REML methods
require non-singular variance matrices. The magnitude of
the estimation problem increases with the number of
environments included, and the usual response is to
replace the fully unstructured matrix with a more parsi-
monious approximation, the simplest of which has a
common correlation across all environments. The factor
analytic (FA) form introduced by Smith et al. [6] is inter-
mediate in parsimony and is widely used in the analysis
of MET data from most Australian plant breeding pro-
grams. Kelly et al. [7] have shown through simulation that
this FA model is a robust model with high predictive accu-
racy. This model can accommodate increased correlation
structure through incorporation of more factors, and can
accommodate the singularity issue in the sparse matrix
formulation presented by Thompson et al. [8].

When fitting a pedigree model across multiple environ-
ments, both Crossa et al. [3] and Oakey et al. [4] have
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adopted an FA model for the genotype by environment
effects. Applications of the FA methodology have also
recently arisen in the animal breeding literature, for exam-
ple Meyer and Kirkpatrick [9] have fitted a constrained
form of the factor model to animal pedigree data across
multiple traits. However, problems arise in estimation
methods for pedigree models combined with a complex
variance structure across multiple environments or traits.
Henderson [10] has presented a simple recursive method
for computing the inverse of a relationship matrix, A'l,
without the need to form the relationship matrix A itself.
More recent improvements to the methodology have
come from the work of Quaas [11] and Meuwissen and
Luo [12], and this efficient algorithm is currently imple-
mented in the software package ASReml [13]. For more
complex variance models involving both the factor ana-
lytic and pedigree structure, the average information (Al)
residual maximum likelihood (REML) methodology
requires the formation of both elements of A and A-1 for
the score equations and working variables. In this paper,
we present the estimation approach used in ASReml for
these more complex models and show how computa-
tional efficiency is maintained by only forming some ele-
ments of A.

In summary, this paper adopts the genetic model of
Oakey et al. [2] with an extension to multi-environment
trial data as the prototype [4]. We have investigated effi-
cient model formulation and REML estimation of vari-
ance parameters for multiple environment/trait data
using the standard approach in ASReml, with an exten-
sion for the factor analytic structure. An example of a
multi-environment trial with pedigree structure is pre-
sented, and the goodness of fit of differing genetic models
is considered.

Methods
A mixed model for MET data with pedigrees

Consider a series of p trials in which a total of m genotypes
has been grown. Although m genotypes need not be tested
in each trial, it is necessary to have adequate linkage
between trials to estimate covariances. It is assumed that

the jth trial comprises n; field plots and we let n = 2?:1 n;

be the total number of plots. A general mixed model for
the n x 1 vector y of individual plot yields combined
across trials can be written as

y=Xt+Z,u,+Z,u, +e

where 71 is the t x 1 vector of fixed effects (typically envi-
ronment means), u,is an mp x 1 vector of (random) gen-
otype by environment effects, with associated design

matrix, Z,, u,is a b x 1 vector of random effects (model-
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ling design effects in the experiment), with corresponding
design matrix, Z,, and e is the n x 1 vector of plot error
effects combined across trials.

The random effects for genotypes can be partitioned
according to the genetic model of Oakey et al. [2]. Addi-
tive effects can be estimated if pedigree information is
available for the genotypes, and, if genotypes are repli-
cated as they commonly are in METs, non-additive effects
can also be estimated. The vector of genotype effects can
be written as

u, =u, +u;
where u, is the mp x 1 vector of (random) additive geno-
type effects and u; is the mp x 1 vector of (random) non-
additive genotype effects, both ordered as genotypes
within trials.

The random effects from equations (1) and (2) are
assumed to follow a Gaussian distribution with zero
mean and variance matrix

u,) [G, 0 0 0O
u; 0 G 0 0
var =
u, 0 0 G, 0
e 0 0 0 R

and

var(y) =2,G,Z, +Z,GZ, +Z,u,Zp +R.

The variance matrix for the plot error effects is assumed to
be block diagonal with R = diag (R;), where R; is the error
variance matrix for the jt trial. The variance matrix for
extraneous random effects, G, is usually a diagonal
matrix of scaled identity matrices.

The partitioned genetic effects may each be represented as
a two-way table of genotype by environment effects, and
we assume that the variance matrix for the additive geno-
type effects has the separable form

G,=G, ®G,

where G, and G, arep x pandm x m symmetric posi-

tive definite matrices, respectively. G, is the matrix of

additive genetic variances and covariances between envi-

ronments, and G, is the variance/covariance matrix
a

between genotypes. Following the approach of Oakey et
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al.[2], weset G, =A, where A is a known numerator rela-
tionship matrix formed from pedigree information.
In a similar way, the non-additive effects may be repre-

sented as a two-way structure of genotype by environment
effects, with an associated variance of

G, =G, ®G,

where G, and G, arealsop x p and m x m symmetric
positive definite matrices, respectively. We assume inde-
pendence between the non-additive genotype compo-
nents and hence set G, = L,. The inclusion of this non-
additive effect follows the model of Oakey et al. [2] and
contrasts with the approach adopted by Crossa et al. [3]

and Burgueno et al. [5], who choose to either omit the
non-additive term, or model it as the interaction of addi-

tive effects, G, =A#A, where # is the element-wise mul-

tiplication operator [5].

There are numerous possible choices for the form of G,
and G, . The form of the variance matrix adopted here is

an FA model based on k factors, denoted FAk, and is given
by

G, =A A, +%,

where A, = {/lal_r} is a p x k matrix of environment load-

ings and ¥, is a p x p diagonal matrix with elements com-
monly referred to as specific variances. In our model with
partitioned genetic effects we will also be estimating
parameters for the non-additive components, A; and ¥;.

The particular form of the variance model for genetic
effects to be estimated is,

var(ug) = (A,A, +¥,) ® A+ (AA; + ¥ ®1,,

and the plot variance from (4) and (5) is
var(y) =H=Z[(A A, + ¥,)® A+ (AN, +¥) ®L,1Z, + Z,u,Z, +R

Reduced rank models are a special case of the FAk model
in which more than k of the specific variances are zero.
The extreme of the reduced rank case is when all specific
variances are constrained to be zero, as fitted in the fully
reduced rank models proposed by Meyer and Kirkpatrick
[9]- These models are denoted as FARRk models, for a k-

Page 3 of 9

(page number not for citation purposes)



Genetics Selection Evolution 2009, 41:33

dimensional FA model with all specific variances con-
strained to be zero.

Estimation of parameters in model (1) is achieved using
two linked processes. Firstly, the variance parameters are
estimated using REML [14]. This involves an iterative
process, and in this paper the Al algorithm is used [15].
The second process involves estimation of Best Linear
Unbiassed Predictors (BLUPs) of the random effects, and
Best Linear Unbiassed Estimators (BLUEs) of the fixed
effects in the model. As these effects are formed with esti-
mated, rather than known, variance parameters they are
referred to as empirical BLUEs and empirical BLUPs.

Thompson et al. [8] have described a method for estima-
tion in reduced rank models with uncorrelated genotypes
and we adapt this method for a relationship matrix,
replacing I, with A and A-! as appropriate. A key issue for
estimation with the more complex factor analytic models
is that working variates require formation of A, in addi-
tion to Al as,

qir(/lajr) = Zg[(AaAla}», + Aaj,Ala) ® A]'l

qj(l//al):Zg(lPa ®A)n WhereﬂzngY
This requirement potentially reduces the efficiency of the
methodology over simple pedigree models, which only
require formation of A-l. To simplify the working variates,
the standard approach in ASReml operates on the vector v
=An, obtained by directly solving the system of equations
Alv = 1, using absorption and back substitution. This
approach estimates only those elements of A that are
required, and avoids having to completely form A as such,
so that we can then substitute for v = An, and proceed with
routine application of the Al algorithm. We have consid-
ered an alternative formulation based on a Cholesky

http://www.gsejournal.org/content/41/1/33

decomposition of A, but this introduced more dense
matrices into the score and working variables. As such the
formulation used in ASReml was the most efficient
approach due to the sparsity of the A matrix, and the
numerical methods used which capitalise on this prop-

erty.

Example Data set

The example data is a combined set of Stage 2 trials taken
from the Queensland barley breeding program, grown in
2003 and 2004. Trial locations and dimensions together
with mean yields for each trial are summarised in Table 1.

The series follows two years of trials in the breeding pro-
gram, where genotypes progress through stages of selec-
tion. A total of 1255 unique genotypes were tested in this
series of trials, with 698 and 720 genotypes tested in 2003
and 2004, respectively. A common set of 163 genotypes
was tested in both years, and the level of concurrence
between all trials is shown in Table 2. The pedigrees of
these genotypes were traced back four generations, in
order to calculate elements of the numerator relationship
matrix, A.

Partially replicated designs [16], were used for all 14 trials
in this series. Each dataset was analysed using the meth-
ods described in Section 2. A simple diagonal model for

G, and G, failed to detect the presence of non-additive

genetic variance at five of the 14 sites, so these were fixed
to zero. In addition, four of the specific variances in the FA
model for the nine sites were constrained to be zero,
implying that the single latent factor explains all of the
non-additive variance for these sites.

Table I: Example barley data set: number of genotypes, trial dimensions and range in trial mean yield (t/ha)

Site Year Location Number of genotypes Trial dimensions Mean yield (t/ha)
Column Row
| 2003 Biloela 240 8 43 2.44
2 2003 Breeza 683 18 49 4.30
3 2003 Brookstead 460 8 74 1.25
4 2003 Clifton 460 8 74 1.42
5 2003 Kurumbul 685 8 11 1.74
6 2003 Narrabri 459 16 36 4.06
7 2003 Tamworth 456 8 72 3.89
8 2004 Billa Billa 719 8 110 1.91
9 2004 Biloela 172 8 28 4.58
10 2004 Breeza 720 20 44 4.00
Il 2004 Brookstead 440 8 70 2.59
12 2004 Gilgandra 446 8 70 3.63
13 2004 Narrabri 455 8 70 3.97
14 2004 Walgett 454 8 70 2.64
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Table 2: Concurrence of genotypes across |14 barley trials

http://www.gsejournal.org/content/41/1/33

Site

| 240

2 237 683

3 236 459 460

4 236 460 238 460

5 229 672 449 449 685

6 235 457 382 310 450 459

7 236 456 311 383 445 235 456

8 15 163 93 85 158 91 86 719

9 15 163 93 85 158 9l 86 172 172

10 15 163 93 85 158 91 86 719 172 720

I 15 163 93 85 158 91 86 440 172 440 440

12 15 162 92 85 157 90 86 446 171 446 270 446

13 15 163 93 85 158 9l 86 454 172 455 343 274 455

14 15 163 93 85 158 91 86 454 172 454 343 183 354 454
Site | 2 3 4 5 6 7 8 9 10 I 12 13 14

Total number of genotypes in each trial is on the diagonal of the table

Four general classes of genetic model are examined. The
first involves fitting the genotype effects as independent,

fitting G,, butnot G, as a standard FA model [6]. The

second class of model fits G, , butnot G, , following the

approach of Crossa et al. 3], who chose to omit non-addi-
tive genetic effects. The third class of model fits both com-
ponents [4], in a model akin to Equation (5). Finally, fully
reduced rank factor analytic models are considered, where
the particular form of the variance structure for additive

effects is constrained to follow the model of Meyer and
Kirkpatrick [9].

The common element in all models for genetic variance is
an FA structure for the genetic variance matrix. Each
model begins with an FA structure of order 1, and
progresses through higher dimensions as dictated by
REML ratio tests (REMLRT). In the standard FA model,
specific variances are constrained to be zero when they
tend to estimates on the boundary of parameter space. In
the fully reduced rank (FARR) model all specific variances

Table 3: Summary of REML logl-likelihoods and minimum Akaike Information Criterion (AIC) for the range of genetic variance

models fitted to the example data set

Model Structure of var(ug) Number of Log-likelihood AlCT
Gea T Ge, t parameters Zero l/’a] 5

| - FAI 28 - 2366.4 1493
2 - FA2 41 - 24773 1297
3 - FA3 53 - 2504.7 1266
4 FAI - 28 0 3051.1 124
5 FA2 - 41 0 3120.8 10
6 FAI FA1 (9) 42 0 3115.1 24
7 FA2 FAI (9) 55 | 31382 3
8 FA3 FAI (9) 66 | 3150.9 0
9 FARRI FAI (9) 28 14 25253 1175
10 FARR2 FAI (9) 41 14 2750.9 750
I FARR3 FAI (9) 53 14 2974.9 326
12 FARR4 FAI (9) 64 14 3046.5 205
13 FARRS5 FA1 (9) 74 14 3107.9 102
14 FARR6 FAI (9) 83 14 31494 37

T genetic variance matrix for additive effects

I genetic variance matrix for non-additive effects

§ specific variances in the FA model for additive effects

q[ difference between each model and the best model
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are constrained to be zero, as this FARR structure deals
solely with the factor component of the model.

To account for model parsimony, an Akaike Information
criteria (AIC) is calculated for each model, and models are
compared by forming the difference in AIC between each
model and the best model.

Results

The model with maximum REML log-likelihood and sig-
nificant improvement in REMLRT over subsequent nested
models is Model 8 in Table 3, which includes an FA struc-
ture of order 3 for additive effects, and an FA structure or
order 1 for non-additive effects. It comes from a class of
models proposed by Oakey et al. [4], in which Models 6
and 7 are lower order FA models, and involves fitting 71
genetic variance parameters through two FA structures.
Model 8 is considered the best model based on the crite-
rion of minimum AIC. The performance of other models
is now considered in greater detail.

The simplest models for genetic variance, and those cur-
rently used in plant breeding programs in Australia, are
Models 1-3, assuming independence between genotypes,
(Table 3). Of these three models, the model of best fit is
Model 3 with an FA structure of three dimensions. How-
ever it is inferior to all models incorporating pedigree
information (Models 4-14).

The second class of model fitted, Models 4 and 5, involves
only additive genetic variance, and does not capitalise on
replication of genotypes and partitioning of non-additive
effects. While these models are superior to those assuming
independent genotypes, they are still inferior to the

http://www.gsejournal.org/content/41/1/33

genetic model that partitions additive and non-additive
effects, (Models 6-8).

The remaining models (Models 6-14) differ purely in the
model for additive effects. The first subset (Models 6-8)

involves an FA structure for G, of increasing dimension,
a

and the model with maximum likelihood is taken from
this subset. The reduced rank (FARR) models impose a
constraint on the more general FA model, and it can be
noted that this constraint results in models of poorer fit
for the same number of FA dimensions. In fact, six dimen-
sions must be fitted in the reduced rank form (FARR6) to
produce equivalent likelihoods to the best FA model with
three dimensions. The AIC comparison also indicates that
the general FA model produces a more parsimonious
form than the FARR models.

In terms of the actual estimated parameters, we observed
heterogeneity of both additive and non-additive genetic
variance and heterogeneity of error variances across envi-
ronments. Summaries of estimates of these variance

parameters from the best model for G, and G, are

given in Table 4. Genetic covariance in this data set was
also heterogeneous and in our experience this is also typ-
ical of most multi-environment trial data. Genetic correla-
tions were predominantly positive but there were
instances where some pairs of trials had low/zero genetic
correlation.

Of greatest importance to a breeding program is the
impact of new analysis models on selection decisions. By

Table 4: Summary of parameter estimates from the best model for G, and G, for the example data set: genetic variance (diagonal
a 1

elements of G, and G, ) and error variance for each trial
a 1

Site Year Location Additive variance Non-additive variance Error variance
| 2003 Biloela 0.1515 0.0154 0.1561
2 2003 Breeza 0.1281 - 0.1365
3 2003 Brookstead 0.0705 0.0256 0.0969
4 2003 Clifton 0.0138 0.0087 0.0411
5 2003 Kurumbul 0.0178 0.0097 0.3062
6 2003 Narrabri 0.1771 0.0932 0.1828
7 2003 Tamworth 0.1893 0.0561 0.1320
8 2004 Billa Billa 0.0875 0.0006 0.0323
9 2004 Biloela 0.1036 - 0.0847
10 2004 Breeza 0.9973 0.0283 0.1695
I 2004 Brookstead 0.1154 - 0.2608
12 2004 Gilgandra 0.2728 0.0172 0.0409
13 2004 Narrabri 0.1595 - 0.1159
14 2004 Walgett 0.1553 - 0.1350
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examining changes in the empirical BLUPs between com-
peting models, we can assess any changes in the ranking
of the genotypes and subsequent changes in the selected
subset of genotypes. Figure 1 displays the empirical BLUPs
from the 'best' pedigree model, consisting of an FA3
model for additive effects combined with an FA1 model
for non-additive effects, against the empirical BLUPs from
the standard FA3 model assuming independence between
genotypes. These plots are demonstrated using a subset of
four sites. There is close agreement in rankings of empiri-
cal BLUP:s for sites (c) and (d), where only six and two dif-
ferent genotypes are included in the top 46 genotypes
(which forms the top 10%), respectively. These sites rep-
resent those with moderate and low levels of error vari-
ance, relative to additive genetic variance, (see Table 4).
For sites (a) and (b) the empirical BLUPs deviate more
from the one-to-one relationship, with 17 genotypes dif-
fering in the ranks of the top 46 genotypes.

1.0

BLUPs from independent model
0.0

e
T T T T
-0.5 0.0 0.5
BLUPs from pedigree model
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BLUPs from pedigree model

Figure |

http://www.gsejournal.org/content/41/1/33

The four sites in Figure 1 were chosen to demonstrate the
different types of patterns evident in genotype predictions
between the competing models. The relativity of additive
genetic variance to error variance varies markedly between
all sites, and while there is some consistency in genotype
prediction for the sites with low error variance, there are
many and varied patterns for sites with low to moderate
levels of additive variance relative to error. Also, no con-
sistent pattern in genotype predictions based on the rela-
tive magnitude of additive and non-additive variance is
observed. For example, the site in Figure 1(a) has a very
low proportion of non-additive variance estimated in the
model, while plots (b) and (c) have the same proportion
of non-additive variance (relative to total variance), with
vastly different patterns between predictions.

It is also obvious from the banding patterns in Figure 1(a)
and 1(b) that genotypes are regressing to a different
underlying response in the pedigree model. The additive

0.1 02 03

0.1

BLUPs from independent model

-0.3

1.0

0.5

BLUPs from independent model
-1.5 -1.0 -05 0.0

T T T T T T
-15 -1.0 -05 00 05 1.0

BLUPs from pedigree model

Plot of predicted yield from two competing MET analysis models for four sites from the example data. (a) 2003
Biloela, (b) 2003 Clifton, (c) 2003 Tamworth, (d) 2004 Gilgandra.
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component provides a simple covariance structure
between related lines and the non-additive component is
the lack of fit to the additive one. Incorporation of the
additive covariance in the model means each line is
regressed toward the level predicted by its relatives, rather
than to a common level for all genotypes, and reflects the
theory of breeding by selection of parents for the next gen-
eration. The banding patterns in plots (a) and (b) result
from the same cross, where the performance of individu-
als within this cross is elevated in plot (a) and depressed
in plot (b). These differential predictions demonstrate the
interaction between additive genetic variance and envi-
ronment.

Discussion

The inclusion of pedigree information in the analysis of
MET data adds to the complexity of the mixed model and
associated variance structure. Most plant breeding trials
consist of replicated plot data across multiple environ-
ments, with an underlying variance structure for spatial
effects and heterogeneity of variance at the residual level.
Current analysis methods for MET data adopt a factor ana-
lytic variance structure for genetic correlation between
environments. When the pedigree structure is added to
model the relationship between genotypes, the resulting
mixed model is quite complex, requiring the estimation of
numerous variance parameters, and subsequent predic-
tion of random genotype effects. The capacity of existing
software to fit these complex models to 'real' data sets,
(see ASReml) is largely due to the use of sparse matrix
methodology and the Al algorithm [13].

In the analysis of the example data set, we investigate dif-
ferent genetic models for multi-environment data with a
factor analytic variance structure. The genetic model of
Oakey et al. [2], with an extension for MET data [4], ade-
quately captures both the additive and non-additive
genetic variation across environments, and is the model of
best fit to the example data used in this study. Although
only a small proportion of the total variation in the exam-
ple data set is due to non-additive effects, a low order fac-
tor analytic model assuming independent genotypes still
improved the goodness of fit. The genetic model with only
additive effects [3], may be adequate when the level of
non-additive genetic variance is low. Reduced rank mod-
els were less parsimonious than those with a standard FA
form, requiring estimation of many more parameters
from a greater number of dimensions to achieve an equiv-
alent goodness of fit.

In theory, non-additive effects are comprised of the higher
order interaction terms between additive and dominance
effects [17]. In practice, the partitioning of the interaction
variance is seldom more than trivial when compared with
the errors of estimation [17]. While it is shown to be

http://www.gsejournal.org/content/41/1/33

potentially beneficial to fit a simple model for non-addi-
tive variance, we surmise that partitioning into a complex
model for non-additive effects [5] is unnecessary, as these
often represent a relatively small proportion of the total
genetic variance.

The improvement in model fit over the current model for
MET data [6] is achieved through the inclusion of the
numerator relationship matrix, A. In this paper, the rela-
tionship matrix is derived from pedigree information in
the breeding program, but with the proliferation of
molecular marker and quantitative trait loci data, ele-
ments of the genetic relationship matrix may now be
derived in different ways [18]. For differing applications,
the inter-individual relationships may be estimated,
rather than assumed to be known, and methodology is
available for estimating the elements of this correlation
matrix, A. In these instances, it will not have the properties
that allow A-1to be an easily formed sparse matrix and this
will limit the population size to which this empirical A
matrix can be applied.

Of greatest importance to genetic gain in a breeding pro-
gram is the impact of new analysis models on selection
decisions. In this paper, we consider goodness of fit of
each genetic model, and the impact of changes in rankings
of empirical BLUPs of genotype effects between the pedi-
gree and standard models. A large proportion of changes
occur in the rankings of the genotypes at some environ-
ments, and we assume that the pedigree model would be
predicting the most accurate effects. An additional benefit
to selection of individuals and parents in the program is
that the pedigree model estimates and adjusts for the
interaction between additive genetic effects and environ-
ment.

An alternative way of assessing the impact on selection is
through an improvement in prediction error variance
(pev) of the empirical BLUPs from competing models.
While for the pedigree model in our study the pev was
reduced on average, we commonly overlook the fact that
in this type of experiments, known biases are present in
the pev and the empirical BLUPs themselves. The assump-
tion of known G is violated as variance parameters must
be estimated, and resulting empirical BLUPs and pev's are

formed from G, not G. Studies have shown that, while
the properties of BLUPs do not hold under estimation of

G, the factor analytic models still perform well for empir-
ical BLUPs [7]. A simulation study is required to examine
the performance of empirical BLUPs for these more com-
plex genetic models.
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