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Abstract
Background: Recent developments in SNP discovery and high throughput genotyping technology
have made the use of high-density SNP markers to predict breeding values feasible. This involves
estimation of the SNP effects in a training data set, and use of these estimates to evaluate the
breeding values of other 'evaluation' individuals. Simulation studies have shown that these
predictions of breeding values can be accurate, when training and evaluation individuals are (closely)
related. However, many general applications of genomic selection require the prediction of
breeding values of 'unrelated' individuals, i.e. individuals from the same population, but not
particularly closely related to the training individuals.

Methods: Accuracy of selection was investigated by computer simulation of small populations.
Using scaling arguments, the results were extended to different populations, training data sets and
genome sizes, and different trait heritabilities.

Results: Prediction of breeding values of unrelated individuals required a substantially higher
marker density and number of training records than when prediction individuals were offspring of
training individuals. However, when the number of records was 2*Ne*L and the number of markers
was 10*Ne*L, the breeding values of unrelated individuals could be predicted with accuracies of
0.88 – 0.93, where Ne is the effective population size and L the genome size in Morgan. Reducing
this requirement to 1*Ne*L individuals, reduced prediction accuracies to 0.73–0.83.

Conclusion: For livestock populations, 1NeL requires about ~30,000 training records, but this
may be reduced if training and evaluation animals are related. A prediction equation is presented,
that predicts accuracy when training and evaluation individuals are related. For humans, 1NeL
requires ~350,000 individuals, which means that human disease risk prediction is possible only for
diseases that are determined by a limited number of genes. Otherwise, genotyping and phenotypic
recording need to become very common in the future.

Background
The Human Genome Project and related projects for other
species have generated the complete DNA sequence of
many animal, plant, and microbial genomes http://
www.ncbi.nlm.nih.gov/sites/entrez?db=genome. An

important result from these sequencing efforts is the
detection of 100,000's to millions of SNP markers for
each of the sequenced species. The availability of all these
SNP and recent innovations in high-throughput SNP-chip
genotyping technology have made the routine genotyping
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of huge SNP panels feasible. For example, in human
genetics, assays with > 500,000 SNP are routinely used,
and in cattle, pigs and sheep ~50,000 SNP chips are com-
mercially available.

These dense marker genotypes can be used to predict
genome-wide breeding values using genomic selection
(e.g. [1,2]). Genomic selection consists of the following
steps: (i) estimation of the effects of all markers in a 'train-
ing data set', where the individuals are phenotyped and
genotyped; (ii) prediction of the breeding values of other
'evaluation' individuals by combining their marker geno-
types with the estimates obtained in step (i). These steps
implicitly assume that there is substantial linkage disequi-
librium (LD) between the markers and the QTL, and, ide-
ally, for every QTL there is a marker in perfect LD, i.e. R2 =
1, where R2 is the square of the correlation between the
allele frequencies at two loci. Habier et al. [3] have dem-
onstrated that breeding values can also be predicted in the
absence of linkage between markers and QTL, since the
markers can predict family relationships between the indi-
viduals. However, substantial LD requires strong linkage,
especially for the prediction of unrelated individuals, and
thus dense marker genotyping.

The ideal of having a marker in perfect LD with each QTL
is complicated by the fact that recently, it has been shown
in human genetics studies, that nearly all the genetic vari-
ation of quantitative traits is due to genes with a small
effect [4]. This implies that (i) there are very many QTL,
and thus that the effect of a single marker may be due to a
number of QTL in the region; (ii) the estimation of single
gene effects will be complicated by their small size and LD
with other genes; (iii) assuming a constant genetic vari-
ance across the genome when estimating marker effects
may be quite realistic, as was shown by Visscher et al. [5]
for height in humans. The latter favours the BLUP model
for the estimation of marker effects relative to non-linear
models, which give more weight to positions that appear
to have large effects (e.g. the BayesB model [1]).

In the step estimating marker effects, the estimation of
effects of very many markers is hampered by the LD, i.e.
collinearity, between the marker effects. Fortunately, sim-
ilar combinations of marker alleles will be found in the
evaluation data set (step (ii)), especially if the individuals
of steps (i) and (ii) are related (e.g. parents and offspring
as in [2]). The latter implies that it is not necessary to esti-
mate the effect of single markers accurately, as long as the
effects of distinct haplotypes are estimated accurately by
summing the effects of their marker alleles. The prediction
of breeding values of 'unrelated' individuals is a particu-
larly poor case, since the haplotypes in the evaluation data
set can be very different from those in the training data set.
Here, 'unrelated' individuals means that they are from the

same population, but not structurally related to the train-
ing data individuals. However, the prediction of breeding
values of unrelated individuals is exactly what is required
in many and perhaps the most promising applications of
genomic selection, for example when using field data to
predict breeding values of elite breeding stocks, the selec-
tion of individuals for markers whose effects were esti-
mated in an experiment on a unrelated subset of
individuals, and in the case of genetic risk prediction for
human diseases [6].

The aim of this study is to assess whether the breeding val-
ues of unrelated individuals could be predicted with high
accuracy, and what resources are required in terms of
marker density and number of records in the training data
set. The results are based on computer simulations of rel-
atively small populations, but will be generalised using
the scaling by effective size (Ne) argument from coales-
cence theory [7,8].

Methods
The scaling by Ne argument
From the coalescence theory it is well known that, for a
population in recombination-drift equilibrium, the LD
between marker and QTL and amongst markers is a func-
tion of Ne*c, where c is the recombination rate between
the loci and Ne is the effective population size. For
instance, the LD structure will be the same for a popula-
tion with Ne = 100 and 1000 SNPs per Morgan (M), com-
pared to a population with Ne = 1000 and 10,000 SNPs
per M, i.e. for both populations, the marker density is 10
* Ne /M [9].

However, the second population requires the estimation
of 10 times as many markers, which may be achieved with
a similar accuracy if we have 10 times as many training
data. The latter is also seen from recent predictions of the
accuracy of selection [10-12]:

where r is accuracy of selection; N is the number of phe-
notypic training records; h2 is the trait heritability; L is

genome size in Morgan; 4 NeLν is the effective number of

QTL loci in the genome, which each equals the effective
number of segments in the genome when the infinitesi-
mal model is assumed (i.e. BLUP is used for the estima-

tion of SNP effects). In the latter case, ν may be interpreted
as the ratio of the effective number of segments and the
actual number of segments, which is expected to be 4 NeL.

Goddard [11] derived that the effective number of seg-
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ments is , where summation is over the

chromosomes and Li is the size of chromosome i.

From this scaling argument and Equation (1) it is also
seen that as genome size doubles, we need twice as many
training records (N) to achieve a similar accuracy of pre-
dicting breeding value, assuming a constant marker den-
sity. Whether the latter expectation holds will be tested in
the Results and Discussion section. Also, the LD structure
between the QTL is equivalent if the number of QTL per
M is 100 and 1000 in populations with Ne = 100 and
1000, respectively.

In order to reduce computer time, the effective size used
in the simulations described here will be quite low (Ne =
100), but the scaling argument makes it possible to extend
the results to bigger population sizes. The use of a rela-
tively low Ne does not only reduce the population size to
be simulated, but also the number of generations needed
to reach equilibrium between mutation, drift and recom-
bination. This is because lineages coalesce faster in small
populations.

The genomic history of the populations
In general, the model for the population history mimics
that of coalescence simulations [7], however a forward
simulation approach is used because this increases the
size of the chromosomes that can be handled. Following
the coalescence theory, the Fisher-Wright idealised popu-
lation model [13] and the infinite-sites mutation model
were assumed [14], with a mutation frequency of 2*10-8

per nucleotide per generation. The latter ensured a large
number of SNP. The historical effective size of the popu-
lation was Ne = 100, and the forward simulations were
conducted for 400 generations. The latter is expected to
result in a mutation-drift balance, since any sample of
alleles at a locus is expected to coalesce into its most recent
common ancestor (MRCA) within 200 (= 2Ne) genera-
tions. Any mutations before this MRCA lived do not cause
a polymorphism (since all present alleles would be of the
mutant type). Preliminary simulations showed that an
approximate mutation-drift balance was reached before
400 generations (result not shown). Recombinations
were sampled according to the Haldane mapping func-
tion. The genome consisted of 10 chromosomes of 50 cM
each, i.e. the total genome size was 5 M.

After these 400 generations, SNP with a Minor Allele Fre-
quency (MAF) < 0.02 were discarded. From the remaining
SNP, 12 were randomly selected per chromosome to
become a QTL, which resulted in a total of 120 QTL. From
the remaining, non-QTL SNP, the 1000 SNP per chromo-
some with the highest MAF were selected to become a
marker. This resulted in a total of 10,000 markers, and a

density of 20 Ne/M. For humans, this density corresponds
to a total of ~2.3 million markers (= 20*38*3,000; assum-
ing a genome of 38 M [15], and Ne ~3,000 [16]), and for
cattle 600,000 markers (assuming a 30 M genome and
Ne~1,000). Smaller marker densities of 20/x Ne/M were
obtained by taking every x-th marker from the original set
of 10,000 markers, where x = 2, 4, 10 or 20.

Recent history of the populations
After these 400 generations, the population was increased
to 1000 by sampling parents from the previous genera-
tions for 1000 individuals, which formed generation G0.
Generation G0 was split into 500 G0t and 500 G0e indi-
viduals (e and t indicate that they become the 'evaluation'
and 'training' line, respectively). The 500 G0e-individuals
were used for the sampling of parents for 500 G1e individ-
uals, and similarly the G0t-individuals were used for the
sampling of parents for 500 G1t individuals. Setting up
different lines for the sampling of the G1e and the G1t
individuals ensured that these two groups of individuals
shared no close relationships. Subsequently, parents of
100 G2e individuals were sampled at random (with
replacement) from the 500 G1e individuals. Similarly,
parents of N G2t individuals were sampled from the 500
G1t individuals, where N was 500, 1000 or 2000. The G2t
individuals were used for the estimation of marker effects,
i.e. they were genotyped and phenotyped. The 100 G2e
individuals are only genotyped, and their genetic value is
to be predicted. The G0e, G0t, G1e, G1t, G2e and G2t
individuals were pedigree recorded, i.e. for the pedigree
recording the parents of G0 were treated as founders. The
'training' individuals (G2t) had neither parents nor grand-
parents in common with the evaluation individuals (G2e)
due to the separation of the two lines. The results were
based on 16 replicated simulations, which was computa-
tionally advantageous, since the 16 replicates could be run
in parallel. Figure 1 summarises the population structure.

Genetic and phenotypic values
An additive genetic model was assumed, and the allelic
effect of the mutant QTL allele at locus j, uj, was sampled
from the exponential distribution, and uj was given a neg-
ative sign with probability 0.5. The total genetic value of
individual i was calculated as:

where qij is the number of mutant alleles (0, 1, or 2) that
individual i carries at locus j. At the end of the 400 gener-
ations of simulation, the allelic effects were standardised
so that the total genetic variance was 1. Phenotypes for the
G2t individuals were obtained by adding an environmen-
tal effect sampled from N(0,0.25) to their genetic value.
This resulted in a high heritability of 0.8. The effect of a

2
4
NeLi

log NeLii ( )∑

g q ui ij j
j

=
=∑ 1

120
Page 3 of 9
(page number not for citation purposes)



Genetics Selection Evolution 2009, 41:35 http://www.gsejournal.org/content/41/1/35
lower heritability is investigated in the Results and Discus-
sion section.

Estimation of marker effects and prediction of breeding 
value
Estimation of marker effects was performed using three
models: (i) BLUP of marker effects, which assumes that
every marker effect has a constant variance (G-BLUP); (ii)
BayesB, which estimates the variance of every marker
using a prior distribution and Bayesian methodology [2];
and (iii) MIXTURE, which assumes that the marker effects
come from a mixture of two normal distributions, which
differ in variance, i.e. the large marker effects are accom-
modated by the distribution with large variance and vice
versa. The MIXTURE model was used because it, in a rela-
tively simple way, approximates the prior distribution of
the marker effects, assuming that any prior distribution
can be reasonably well approximated by a mixture of nor-
mal distributions [17]. Some preliminary testing of the
MIXTURE model showed that a mixture of two normal
distributions is sufficient. The prior distribution of BayesB
of [2] assumed that some markers had a big effect, the var-
iance of which was estimated (a fraction NQTL/Nm of
markers), whilst the remaining markers did not have an
effect at all, where NQTL is the number of QTL and Nm is
the number of markers fitted. However, in the BayesB
model implemented here, the prior distribution assumed
that the majority of the markers (i.e. the fraction 1- NQTL/
Nm) did have a small effect, the variance of which was
assumed equal and was estimated in the model, instead of
assuming that these markers had no effect at all (as in [2]).
The latter has two advantages: (i) a Gibbs-sampling algo-
rithm can be implemented, which reduces computer time;
and (ii) since there were many QTL, they will probably
not be all clearly detected by a single marker, such that a
proportion of the genetic variance will be picked up by
allowing for many, small marker effects.

The statistical model used to estimate the marker effects
by G-BLUP, BayesB, and MIXTURE was:

where y is a Nx1 vector of phenotypes; aj is the effect of
marker j; Xj is a Nx1 vector denoting the genotype of the
individuals for marker j, where 0 denotes homozygous for
the first allele; 1/√Hj denotes heterozygous; 2/√Hj denotes
homozygous for the second allele, and Hj is the marker
heterozygosity. The √Hj term in Xj standardises the vari-
ance of the marker genotype data to 1. The variance of aj
is assumed to be 1/Nm for G-BLUP, is estimated by
BayesB, and, in MIXTURE it equals σ1

2 or σ2
2, depending

on whether the marker effect is small or large. The proba-
bility of a small or large marker effect is estimated together
with the variances of the small and large distribution of
marker effects, σ1

2 and σ2
2.

Given the estimates of the marker effects and the marker
genotypes, genetic values for the individuals in set G2e are
predicted as:

where Xij is the marker genotype of individual i for marker

j coded the same as above; and  is the estimate of

marker effect j. The accuracy of this prediction is calcu-

lated as the correlation between gi and  for the G2e

individuals.

Traditional BLUP (T-BLUP [18]) breeding values are esti-
mated based on the phenotypes of the individuals in G2t
and the pedigree of the G0, G1t, G1e, G2t, and G2e indi-
viduals using the ASREML package [19].

Testing the effect of an increase in genome size
From Equation (1) it may be expected that a doubling of
the genome size requires twice as many records. To test
this expectation, we compared the situation of a genome
with 5 chromosomes with N = 500 G2t individuals, to 10
chromosomes with N = 1000, and to 20 chromosomes
with N = 2000. Marker density was kept constant at 20 Ne/
M.

Accounting for relationships
Following Habier et al. [3], the accuracy of G-BLUP may
be split into a component due to genomic selection and a
component that could also be predicted by T-BLUP, i.e.:

y X ej
j 1

Nm= + +
=∑μ a j

ˆ ˆg X ai ij j
j

Nm=
=∑ 1

â j

ĝ i

r r rG-BLUP T-BLUP T-BLUP G-BLUP= + −( )1 ρ (2)

A schematic representation of the population structureFigure 1
A schematic representation of the population struc-
ture. (population sizes are indicated between brackets).

Generation___________________________________________________________  

-400    Fisher-Wright population (100) 

-1    Fisher-Wright population (100) 

0        G0t(500)           G0e(500) 

1        G1t(500)           G1e(500) 

2        G2t(N)           G2e(100)_____________ 
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where rG-BLUP (rT-BLUP) is the accuracy using G-BLUP (T-
BLUP), (1-rT-BLUP) denotes the inaccuracy of rG-BLUP, and
ρG-BLUP is the proportion of the inaccuracy that could be
explained by G-BLUP. Since, rG-BLUP and rT-BLUP are known,
ρG-BLUPcan be calculated from the simulation results and
Equation (2). Using these ρG-BLUP values, a method to pre-
dict the accuracies from traditional BLUP (e.g. [20]), and
Equation (2), we can predict rG-BLUP in situations where
there may be very different relationships between the
training and evaluation individuals, than assumed in the
presented simulations. Similarly, the accuracy of BayesB
can be predicted for different relationships between train-
ing and evaluation individuals.

To test these predictions, a simulation was conducted
where the training data set was composed of G1t individ-
uals, the number of which was increased to N, and the
evaluation individuals originated from G1e. Hence, the
training and evaluation individuals were two generations
less separated (one generation in each of the lines).

Estimation of the effective number of segments

By combining the simulation results and Equation (1),
the effective number of segments can be derived as fol-
lows. Let PEV = 1-rG-BLUP

2, then it can be seen from Equa-

tion (1) that the E(PEV-1) = 1+β*N, where .

Hence, the regression of PEV-1 on N is linear, and the
regression coefficient is a function of h2, which is known,

and the effective number of segments, 4NeLν.

Results and discussion
Effect of number of markers and training records
Figure 2 shows the accuracy of the predicted breeding val-
ues of the G2e individuals, as a function of the marker
density expressed in terms of the linkage disequilibrium
between adjacent markers (following Calus et al. [21]).
The linkage disequilibrium between adjacent markers was
calculated as R2 = 1/(4Ned+1) [22], where d is the distance
between the adjacent markers. As can be seen from Figure
2, accuracy increases approximately linearly with |R| over
a 20-fold increase in marker density. However, increasing
the density from 10 to 20 Ne/M hardly increased the accu-
racy of selection (and also the |R| between adjacent mark-
ers). For G-BLUP, the slope of the increase with increasing
density was clearly smaller, which indicates that the supe-
riority of BayesB increases with increasing density. This
may be expected since with increasing density it becomes
more important to filter the SNP that are in strong LD
with the QTL from all the others, instead of spreading the
effects over all SNP as G-BLUP does, which results in very
small effects for the single SNP.

The differences between BayesB and MIXTURE are very
small (Table 1), but slightly in favour of BayesB, which is
probably due to the informative prior distribution that
was used in BayesB. G-BLUP yielded clearly lower accu-
racy at high density, which was especially the case for low
N. This may be explained by the fact that as N goes to
infinity all methods will reach perfect predictions of SNP
effects, as can be seen from Equation (1). At low density
(1 Ne/M) G-BLUP yielded only a 0.02–0.06 fold lower
accuracy than BayesB.

For T-BLUP, the accuracies varied between 0.19 and 0.23
as N increased from 500 to 2000 (result not shown else-
where). Thus T-BLUP was much less accurate than BayesB
(varied from 0.83 – 0.93) because (i) it does not make use
of the marker data; and (ii) it uses pedigree-based rela-
tionships to predict the EBV of the evaluation individuals
from the phenotyped of the training individuals which
were generally low, on average 0.01.

The accuracy of G-BLUP increases more than that of
BayesB when the number of records increases (Figure 3).
Thus, G-BLUP requires more records, N, to achieve high
accuracy than BayesB. In other words, BayesB seems espe-
cially superior to G-BLUP in situations with small num-
bers of records and high marker density. In these
situations, the prior knowledge about QTL effects used by
BayesB partly overcomes the low information content of
the data, and the high marker density results in marker
effects reflecting better the effects of QTL. The effect of
increasing the number of records, N, is smaller at low
marker densities, especially for G-BLUP at density 1 Ne/
M. For high densities, the accuracy keeps increasing as the
number of records increases. Hence, to take advantage of
high-density SNP genotyping, large data sets are needed to
estimate the marker effects.

Larger genome sizes
Table 2 shows the effect of doubling the genome size and
simultaneously doubling the number of G2t individuals
(N). From Equation (1), it was expected that accuracy
would not be affected by this doubling. This is approxi-
mately the case, but not quite: for G-BLUP the accuracy
decreases on average by 0.014 per doubling of genome
sizes and for BayesB this figure is on average 0.0075. The
mechanics of doubling genome size and numbers of
training records may become clearer, if we consider two
replicated simulations containing one chromosome each,
and obtain an average accuracy of r. Now, if we combine
the two chromosomes of the two replicates into one rep-
licate with two chromosomes, it becomes clear that we
also have to combine the phenotypic recordings of both
replicates to predict marker effects and thus breeding val-
ues with the same accuracy. However, 2N records on two
chromosomes are only as informative as N records on 1

β ν= h
NeL

2

4
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chromosome, if the markers on chromosome 1 are inde-
pendent to those of chromosome 2 (i.e. a balanced
design). The markers on the two chromosomes are inde-
pendent, but the number of markers is so large that some
confounding between the markers of the two chromo-
somes will still occur by chance. The latter probably
resulted in the somewhat reduced accuracy when dou-
bling the genome size and the number of phenotypes.

Accounting for relationships
Table 3 shows the errors of the predictions from Equation
(2), when G1t was used as a training and G1e as an esti-
mation data set, using BayesB and G-BLUP and the
extremes of the marker densities. The accuracy of T-BLUP
increased to 0.342, 0.410, and 0.412, for N = 500, 1000
and 2000, respectively, for these data sets, which was used
in the prediction Equation (2). The errors of the predicted
accuracies were all smaller than 0.027, and may in part be
due to sampling errors from the Monte Carlo simulations.
In general, it seems that Equation (2) provides quite pre-

cise predictions of the accuracies for different degrees of
relationship between the evaluation and training individ-
uals.

The effect of even more distant relationships between
training and evaluation individuals was investigated by
continuing the breeding of the lines in Figure 1 for two
more generations. This resulted in G4t and G4e individu-
als, which were separated by four more generations than
the G2t and G2e individuals. Using density 20 Ne/M and
2000 G4t individuals, the accuracy reduced to 0.920 and
0.868 for BayesB and G-BLUP respectively (result not
shown elsewhere). These accuracies compare to those in
Table 1, i.e. 0.928 and 0.881, respectively. Thus, the four
additional generations of genetic drift, and thus change of
LD, did not reduce the accuracies much, especially not for
BayesB, which seemed to yield more persistent estimates
of SNP effects over generations.

Accuracy of the prediction of genetic values of G2e individuals for BayesB (except for the dashed line which indicates GBLUP) as a function of the marker density, which is expressed as the square root of R2 between adjacent markersFigure 2
Accuracy of the prediction of genetic values of G2e individuals for BayesB (except for the dashed line which 
indicates GBLUP) as a function of the marker density, which is expressed as the square root of R2 between 
adjacent markers. The markers shown from left to right are at densities of 1, 2, 5, and 10 Ne/M.
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Table 1: A comparison of the accuracy of genetic value prediction of G2e individuals between BayesB and MIXTURE for extreme sizes 
of the training data set (N) and the marker density

N Marker density (Ne/M) BayesB MIXTURE G-BLUP

2000 20 0.928 0.925 0.881
1 0.773 0.772 0.758

1000 20 0.882 0.880 0.817
1 0.732 0.735 0.717

500 20 0.829 0.825 0.727
1 0.697 0.700 0.657
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Estimation of the effective number of loci
Using the results of Table 1 for a density of 20 Ne/M, the
regression of PEV-1 on N was calculated as suggested in
section 'Estimation of the effective number of segments'.
For G-BLUP, the estimates of the intercept (α) and slope
(β) were 1.388 and 1.551*10-3, respectively. For BayesB,
these figures were 1.859 and 2.649*10-3, respectively. This
results in estimates of the effective number of QTL of 516
and 302 for G-BLUP and BayesB, respectively. This value
is expected to be lower for BayesB, since it concentrates on
the loci with substantial effects whereas G-BLUP gives
equal weight to all loci. The actual number of QTL was
120, which indicates that BayesB had to use several SNP
to estimate the effect of each QTL. The derivation of God-
dard [11] (see Section 'The scaling by Ne argument') pre-
dicts that there are effectively 189 segments, which is
considerably lower than the estimate of 516 by G-BLUP.
Possibly the estimate of G-BLUP is biased by the deliber-
ate exclusion of close relationships between the training
and evaluation individuals. The estimates of the regres-
sion coefficients α and β can also be used to predict PEV,
and thus rG-BLUP and rBayesB for different sizes of the train-
ing data set, N, than those used here.

Using the prediction of 189 effective segments from [11],
Equation (1) predicts accuracies of 0.946, 0.899, and
0.824, for N = 2000, 1000 and 500, respectively. This is
reasonably close to the BayesB accuracies, but should in
fact be compared to the G-BLUP (which was assumed to
derive the 189 effective segments) accuracies, which are
substantially lower (Table 1; 20 Ne/M results). This could
be due to the training and estimation individuals being
less related than when they were randomly sampled from
the population.

Lower heritability
The effect of a reduced heritability was tested using a her-
itability of 0.5 instead of 0.8. For N = 2000, this yielded
accuracies of 0.789 and 0.859 for G-BLUP and BayesB,
respectively (result not shown elsewhere). Equation (1)
predicts that accuracy does not change if N*h2 remains the
same, which is approximately the case for N = 1000 and
h2 = 0.8, and yielded accuracies of 0.817 and 0.882 (Table
1). Thus, this prediction of Equation (1) seems to hold
approximately, although the accuracy seems to decrease
somewhat faster than predicted as h2 reduces. The latter
may be because Equation (1) predicts basically the accu-
racy of a single (effective) locus, whereas, if accuracy is
high, all other loci are also predicted accurately. If herita-
bility, and thus accuracy is reduced, the accuracy of the
other loci reduces as well and the overall accuracy reduces
more than expected from single locus predictions.

The number of QTL and distribution of their effects
The number of simulated QTL was quite large: 24 per
Morgan, i.e. 720 for a 30 Morgan genome. In addition, the
effective size was quite small, such that the expected LD
between the QTL is substantial, i.e. from [22]:

 where d is the dis-

tance between the QTL. This implies that the effect of the
previous QTL in part carries over to the next, and thus that
there are measurable QTL effects everywhere across the
genome. Thus, the genetic model resembles that of the
infinitesimal model, which assumes that infinitely many
small QTL are smeared across the genome. Results from
large-scale genome-wide association studies in humans
support this genetic model with relatively small and many
QTL [4].

This genetic model with many, small QTL will especially
be a disadvantage for BayesB, which attempts to estimate
the variance of individual QTL, whereas G-BLUP a priori
assumes that every marker has equal variance. Therefore,
the results in Table 1, show a smaller advantage for BayesB
relative to G-BLUP than Meuwissen et al. [2] found, who
simulated only ~5 QTL per Morgan. However, in general,
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Accuracy of the prediction of genetic values of G2e individu-als for BayesB (3a) and G-BLUP (3b) as a function of the number of records in the training data set (N)Figure 3
Accuracy of the prediction of genetic values of G2e 
individuals for BayesB (3a) and G-BLUP (3b) as a 
function of the number of records in the training data 
set (N).
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BayesB has the advantage of using an informative priori
distribution, which agrees well with the simulated distri-
bution of QTL effects. Therefore, an alternative distribu-
tion for the QTL effects was also investigated, namely the
normal distribution, which makes it harder for BayesB to
detect and give extra weight to large QTL (since there are
fewer). With N = 2000 and density 20 Ne/M, the accuracy
of selection reduced to 0.914, 0.916 and 0.879 for BayesB,
MIXTURE and G-BLUP, respectively (result not shown
elsewhere). Thus, the effect of normal vs. exponentially
distributed QTL effects was small, but larger for BayesB
than for G-BLUP as might be expected. Although the dif-
ference is small and may well be due to sampling, the
MIXTURE model seems to yield the highest accuracy
when QTL effects are normally distributed, which may be
expected since it attempts to estimate the prior distribu-
tion from the data, and the normally distributed QTL
effects may be more in accordance with the assumptions
underlying the MIXTURE model.

Requirements for high accuracy
The results presented here imply that the accurate predic-
tion of breeding values of unrelated individuals requires a
set of ~10*Ne*L SNP markers and ~2*Ne*M genotyped
and phenotypes training individuals for the estimation of
SNP effects. The former requirement is likely to be
achieved in species where the genome sequence is availa-
ble, but the latter will be challenging. If we accept accura-
cies of 0.7 – 0.8, ~1*Ne*L training individuals is
sufficient. For humans, this still implies ~350,000 train-

ing records, which makes the risk prediction for truly
polygenic diseases and for unrelated individuals probably
impossible unless genotyping and phenotyping for such
diseases becomes very common in the future.

For cattle, 1NeL implies N = 30,000. Using Holstein dairy
bulls, VanRaden et al. [23] found accuracies of 0.7–0.8
using N = 3,576, but in this situation the training and
evaluation bulls were often highly related, and genomic
EBVs were combined with T-BLUP EBVs, which were
based on a much larger data set. Thus, the aforementioned
requirements can be substantially reduced if the training
and evaluation individuals are related, and Equation (2)
can be used to predict by how much they can be reduced.

Conclusion
1. Accuracies of ~0.9 for unrelated individuals require
10*Ne*L SNPs and 2*Ne*L training records. For
related individuals these requirements can be substan-
tially lowered.

2. Accuracy increases approximately linearly with
marker density, when expressed as |R| between adja-
cent markers.

3. The superiority of BayesB over G-BLUP increases
with marker density.

4. BayesB yielded more persistent estimates of SNP
effects over generations.

5. As the size of the training data set increases, the dif-
ference between G-BLUP and BayesB decreases.

6. To take advantage of high marker densities, large
training data sets are needed.

7. The regression of the inverse of the prediction error
variance (PEV-1) on the number of training records
(N) is linear, and the regression coefficients can be
used to predict the accuracy for different N.

8. The scaling arguments predicted from Equation (1)
hold approximately, but they over-predicted the accu-
racies found here, perhaps because the training and
evaluation individuals were less related than expected.
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Table 2: Effect of doubling simultaneously the genome size and 
the size of the training data set (N) on the accuracy of 
predictions of genetic values using a marker density of 20 Ne/M

Genome size (M) N BayesB G-BLUP

2.5 500 0.890 0.831
5 1000 0.882 0.817
10 2000 0.875 0.803

Table 3: Errors of predicting accuracies by Equation (1) 
(rEqn(1)) relative to simulation results (rsim), when G1t was 
used as training data set and the genetic values of G1e 
individuals were predicted

rsim-rEqn (1)

N Marker density (Ne/M) BayesB G-BLUP

2000 20 -0.024 0.005
1 -0.027 -0.025

1000 20 0.005 -0.006
1 0.014 0.005

500 20 -0.012 -0.014
1 -0.023 0.019
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