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Abstract
Background: In the analysis of complex traits, genetic effects can be confounded with non-genetic effects, especially 
when using full-sib families. Dominance and epistatic effects are typically confounded with additive genetic and non-
genetic effects. This confounding may cause the estimated genetic variance components to be inaccurate and biased.

Methods: In this study, we constructed genetic covariance structures from whole-genome marker data, and thus used 
realized relationship matrices to estimate variance components in a heterogenous population of ~ 2200 mice for 
which four complex traits were investigated. These mice were genotyped for more than 10,000 single nucleotide 
polymorphisms (SNP) and the variances due to family, cage and genetic effects were estimated by models based on 
pedigree information only, aggregate SNP information, and model selection for specific SNP effects.

Results and conclusions: We show that the use of genome-wide SNP information can disentangle confounding 
factors to estimate genetic variances by separating genetic and non-genetic effects. The estimated variance 
components using realized relationship were more accurate and less biased, compared to those based on pedigree 
information only. Models that allow the selection of individual SNP in addition to fitting a relationship matrix are more 
efficient for traits with a significant dominance variance.

Background
Complex traits are important in evolution, human medi-
cine, forensics and artificial selection programs [1-4].
Most complex traits show a mode of inheritance that may
be caused by many functional genes with additive and
dominance effects, and possibly epistatic interactions,
and environmental effects [5,6].

Traditionally, pedigree information has been used to
estimate heritabilities and genetic effects for complex
traits [7-10]. In many family studies, non-genetic factors
such as familial or shared environmental effects can be
confounded with genetic factors [11]. In particular for
full-sibs there is confounding between shared environ-
mental effects, additive genetic effects and non-additive
genetic effects.

Recently, it has become feasible to generate individual
genotype information on large numbers of single nucle-

otide polymorphisms (SNP) across the whole genome,
and genome-wide association studies have been per-
formed in a number of species [12,13]. It is expected that
SNP and causal genes will be in linkage disequilibrium
(LD), making it possible to genetically dissect variation in
complex traits in a more effective way [14]. Indeed, it has
been shown that whole-genome dense SNP analyses can
provide extra benefits compared to classical approaches
based on pedigree information only [15].

In this study, we propose novel strategies that utilize
dense SNP data for the genetic dissection of complex
traits. First, we estimate a realized relationship matrix
based on aggregate SNP information [16-18]. The real-
ized relationship matrix in a classical mixed linear model
makes it possible to obtain more accurate and reliable
estimates for the narrow sense heritability, compared to
traditional pedigree-based analysis [19,20]. Second, we
explicitly search for additional additive and dominance
effects that may not have been already captured, by using
a Bayesian model selection approach. In the process, a
stochastic model selection of random SNP effects is car-
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ried out nested in a mixed linear model with additive
polygenic effects. Additional genetic effects found in this
process make it possible to estimate additive genetic and
dominance variances with greater precision for some
traits which have significant dominance effects. We
examine the estimates by using a validation step where
unobserved phenotypes in an independent validation set
are predicted. We use phenotypic data for four complex
traits and genotypic data for ~2200 mice with ~11,000
SNP across the whole genome.

Methods
Data
Publicly available data including pedigree, genotypic and
phenotypic information on heterogeneous stock mice
were used [21]; http://gscan.well.ox.ac.uk/. The total
number of animals was 2,296 from 85 unrelated families.
The available pedigree spanned four generations. In this
complex pedigree, there were 172 full-sib families with an
average size of ~11 (SD ~8). The mice were reared in a
total of 536 cages, and the number of animals per cage
ranged from two to seven. This number was considered
as a cage density factor for analyses. Figure 1 describes
the family structure for one of the 85 unrelated families,
which contains 44 members and five nuclear (full-sib)
families. Cage information is displayed below each ani-
mal when known and indicates a fair degree of confound-

ing between cages and families. Genotypes were available
for 12,112 SNP on most animals in the pedigree, and we
used the 11,730 SNP located on the autosomal chromo-
somes. The reason for excluding the sex chromosomes
was that modeling them would complicate the analyses
without greatly changing the estimates. The phenotypes
were already adjusted for environmental fixed effects, e.g.
sex, age, year and season [21,22]. However, the effects due
to cage, cage density and family were further modeled
with and without using information on SNP and additive
polygenic effects. Four complex traits were investigated
i.e. coat color (CC) (a score from light to dark), weight at
10 weeks (WT), recovery from ear punctuation (REP),
and freezing time during cue (FDC). The reasons for
choosing these are: CC has a number of major genes with
relatively large effects and the environmental variance is
small, WT is a typical quantitative trait with the variance
probably affected by numerous genes, REP is a quantita-
tive trait with a moderate heritability, and FDC is a quan-
titative trait with a low heritability.

Preliminary analysis for each trait
The intra-class correlation of phenotypes for groups hav-
ing relationship k based on pedigree information was
estimated (k = 1/16, 1/8, 1/4 and 1/2). For example, the
intra-class correlation for the group with relationship k =
1/2 was that for full-sibs. However, for relationship k = 1/
16, 1/8, and 1/4, it was difficult to group and classify them

Figure 1 Family structure for one family among 85 unrelated families. The members are indexed from 1 to 44; the cage information is under the 
indexed number if available

http://gscan.well.ox.ac.uk/
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because of the complicated pedigree structure. In order
to estimate intra-class correlations for the group with
relationship k, pairs of relationship k were used, but in a
way that there were no relationships between individuals
of different pairs, i.e. relationship = k within each pair and
relationship = 0 for individuals of different pairs. Because
of this restriction, not all pairs of relationship k could be
used simultaneously. Therefore, we sampled 10,000 inde-
pendent pairs for each relationship k for each trait. The
number of pairs for relationship k, and the average num-
ber of pairs in 10,000 samples are given in Table 1. The
variance between these sampled pairs scaled by total vari-
ance would be the intra-class correlation [23] for individ-
uals having a relationship k. Estimated intra-class
correlations were averaged over the 10,000 sampling sets.
These correlations are, approximately, the summary sta-
tistics that are modeled in the variance component analy-
ses.

Mixed linear model implementing a numerator 
relationship matrix based on pedigree information
A mixed linear model analysis was used to estimate ran-
dom polygenic, cage and family effects, and the fixed
effect of cage density. The model can be expressed as,

where y is a vector of Nr phenotypic observations, β is a

vector of fixed effects including the overall mean and the

cage density as covariates, f is a vector of Nf random envi-

ronmental family effects, c is a vector of Nc random envi-

ronmental cage effects, u is a vector of N random additive

polygenic effects for all animals derived from pedigree

information (N = 2296), and e is a vector of Nr residuals. It

is assumed that f, c and u are normally distributed with a

mean of 0 and a variance of ,  and , respec-

tively. X, W, U and Z are incidence matrices for the

effects. The variance covariance matrix (V) of phenotypic

observations for the model can be written as,

where A is the numerator relationship matrix based on
pedigree information only, and I is an identity matrix. In
order to see if estimates for genetic and environmental
family effects are dependent, a simple comparison is car-
ried out for model 1, by omitting subsequently the term u
(model 1-u) or f (model 1-f). Variance components and
effects are estimated by a residual maximum likelihood
(REML) method [24,25]. The ratio of each variance com-
ponent over the total phenotypic variance was calculated.

y X Wf Uc Zu e= + + + + ( )b model 1

s f
2 s c

2 s u
2

V W I W U I U Z A Z I= ( ) + ( ) + ( ) +s s s sf c
2 2 2 2’ ’ ’

u e

Table 1: Total number of pairs and average of sampled pairs for relationship k

k FDCa REPb WTc CCd

totale samplef total sample total sample total sample

0 905640 1508985 1686268 1777995

(95.2%) (95.3%) (95.5%) (96%)

1/16 11881 4.3 18429 4.2 19174 4.2 20155 4.2

(1.3%) (1.3) (1.2%) (1.3) (1.1%) (1.3) (1.1%) (1.3)

1/8 13598 6.9 21324 6.8 23204 6.7 24215 6.6

(1.4%) (2.3) (1.5%) (2.2) (1.3%) (2.2) (1.3%) (2.2)

1/4 6530 6.8 11823 7.6 13303 7.8 13977 7.7

(0.7%) (2.3) (0.8%) (2.8) (0.8%) (2.8) (0.8%) (2.9)

1/2 9063 42.5 13288 43.8 14556 44.1 15273 44.4

(0.9%) (2.4) (0.8%) (2.3) (0.9%) (2.2) (0.8%) (2.2)

951510 1583310 1766260 1861485

(100%) (100%) (100%) (100%)

In estimating intra-class correlations for relationships k, the total number of pairs (%), and the average number of sampled pairs (standard 
deviation) in 10,000 samples for each k for each trait
aFreezing during cue; bRecovery from ear punctuation; cWeight at 10 weeks; dCoat color eTotal number of pairs for each relationship for each trait; 
fAverage number of pairs in 10,000 samples
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Mixed linear model implementing a realized relationship 
matrix based on genome wide SNP information
When SNP information is available, the realized relation-
ship matrix (G) can be estimated and implemented in the
model [16-18]. To estimate G, we used the method intro-
duced by Oliehoek et al. (2006) since it is robust and best-
performed among tested methods in their study. The
details to estimate G are in Appendix A. The model can
be written as,

where g is a vector of N random genome-wide effects

for all animals. It was assumed that g is normally distrib-

uted with mean 0 and variance . The variance covari-

ance matrix of phenotypic observations for this model is,

Variance components and effects were again estimated
by REML [24,25].

Bayesian approach to model specific SNP effects
Effects of specific quantitative trait loci (QTL) may not be
fully captured by model 2, and a Bayesian approach can
be used to explicitly search for sets of SNPs that explain
additional genetic variance. In the first instance, we
model only additive effects of QTL. The model can be
written as,

where nq is the number of SNP associated with the

QTL, i is the random additive effects of the ith SNP

which is normally distributed with mean 0 and variance

, Λ i is a column vector having coefficients 0, 1 or 2

representing indicator variables of the genotype for each

animal at the ith SNP. The variance covariance matrix of

phenotypic observations is,

In addition to additive SNP effects, dominant SNP
effects are modeled for SNP having three genotypes and
its heterozygosity > 10%. The model can be written as,

where σi is the random dominance effects of the ith SNP

assuming a normal distribution with mean 0 and variance

, and Δi is a column vector having coefficients equal

to 1 for a heterozygous genotype and 0 for a homozygous

genotype at the ith SNP. The variance covariance matrix of

phenotypic observations is,

The polygenic heritability based on G, and the ratio of
variance due to family, cage and additive and dominance
SNP effects over the total phenotypic variance were esti-
mated using a reversible jump Markov chain Monte Carlo
(RJMCMC) and REML.

In the estimation of variance components, solving

mixed model equation (MME) was a heavy computing

task because of very dense G. Therefore, solving dense

MME and obtaining REML estimates in every MCMC

round was almost impossible in models 3 and 4. Because

of this obstacle, we used a computationally tractable

strategy to estimate variance components. Initially, vari-

ance components were estimated using REML from

model 2 ( , , and ). In an RJMCMC process

(Appendix B), the number of SNP associated with QTL,

their positions and effects were sampled, conditional on

the estimated variance components of , , and .

The SNP effects were treated as fixed effects such that it

was not required to update the variance covariance

matrix (V) nor invert V for each set of sampled QTL

effects, which made it possible to carry out a large num-

ber of RJMCMC rounds. Variance components for family,

cage, polygenic and additive and dominance SNP effects

y X Wf Uc Zg e= + + + +bb ( )model 2
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2
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were estimated every 1000 rounds using REML, and the

estimated variance components were stored to obtain the

posterior mean of the estimates. We used a total of

100,000 rounds of MCMC after 10,000 burn-in periods.

Although the variance components were updated and

stored only 100 times, the estimates reached convergence

quickly probably because of a large number of iterations

for the main process.
In order to efficiently search for sets of significant SNP,

we preliminarily pruned SNP, and excluded closely linked
SNP having r2 > 0.95 in sliding 50 SNP windows using
PLINK [26]. After pruning, 4194 SNP remained and were
used for the Bayesian analysis.

Validation of estimates (predicting unobserved 
phenotypes)
We predicted phenotypes of individuals (ŷ ) with models
1 to 4. In the Bayesian approach (models 3 and 4), aver-
ages of ŷ  over all RJMCMC rounds were used as pre-
dicted phenotypes. In order to quantify how well each
model can disentangle genetic effects from environmen-
tal effects, we used two strategies to produce estimation
and validation sets. First, we randomly selected approxi-
mately half of the individuals within each full-sib family,
which divided the whole data into two subsets. One set
was used as an estimation set, and the other set was used
as a validation set. Since some individuals in the estima-
tion and validation sets belonged to the same full-sib
family, prediction was carried out within full-sib families.
Second, approximately half of the full-sib families were
randomly selected within each of the 85 unrelated fami-
lies. This also divided the whole data into two subsets. In
this case, no individual in the estimation and validation
sets shared the same full-sib family although they would
be related. Therefore, prediction was performed across
full-sib families.

In ten replicates, the phenotypes for a validation set
(~50% of the population) were predicted from the estima-
tion based on the phenotypes and genotypes for the rest
of the population in the estimation set. For each compari-
son, we correlated the predicted value of an animal in the
validation set with its phenotype (which was not used in
the estimation phase). We term the correlation between
predicted phenotypes and actual phenotypes as the accu-
racy of prediction.

Results
Intra-class correlation
Figure 2 shows phenotypic correlations as a function of
additive relationship for each trait. For all traits, the cor-
relation among full-sibs (k = 1/2) was relatively much

higher than for other types of relationship. For CC, the
correlation increased exponentially. For REP, the correla-
tions for k = 1/16, 1/8 and 1/4 were relatively low and
there was little increase until a highly increased correla-
tion for k = 1/2. For FDC, the correlations for k = 1/16, 1/
8 and 1/4 were close to zero with again a much higher
value for k = 1/2. For WT, the pattern was similar; the
correlations for 1/16, 1/8 and 1/4 were low, and not much
different from each other, but increased dramatically with
k = 1/2. The relative high correlations for k = 1/2 were
probably due to the fact that members within this group
(i.e. full-sib) had common dominance and environmental
family effects in addition to common additive genetic
effects.

Estimating variance components
Estimated variance components proportional to the total
phenotypic variance and model log-likelihood are com-
pared in Tables 2, 3, 4 and 5. The results for the trait FDC
are shown in Table 2. The model without family effects
gave a log-likelihood value of 1619.24 which was signifi-
cantly lower than that from the full model 1. A model
without polygenic effects gave the same log-likelihood as
the full model (1621.3), indicating that no genetic effects
are captured by the pedigree information. Indeed, genetic
variance was estimated as zero in the full model 1. This
was not the case in model 2 which implemented the real-
ized relationship matrix based on aggregate SNP infor-
mation. In model 2, the variance due to additive genetic
effects was increased to 25%, and the variance due to
family effects was decreased to 7% of the total phenotypic
variance. The model log-likelihood increases to 1633.91
which was much higher than that from model 1. This
showed that the realized relationship matrix based on
SNP information could disentangle the genetic effects
which were confounded with environmental family
effects in the pedigree-based analysis. When using model
3 to search for specific additive SNP effects, the additive
genetic variance increased slightly to 30% of total pheno-
typic variance, e.g. 18% due to polygenic and 12% due to
specific SNPs. The variances for family and cage effects
did not change much compared to model 2. The averaged
log-likelihood was 1650.56, and the averaged number of
QTL fitted in the models was 3.55 in the RJMCMC pro-
cess. When using model 4 to search for specific additive
and dominant SNP effects, a relatively large variance due
to dominance effects was estimated (27% of total pheno-
typic variance). Model 4 showed the highest value for the
average log-likelihood, and the average number of addi-
tive and dominance QTL fitted was 10.2. The averaged
Akaike information criterion (AIC) for model 4 was dra-
matically lower than that for model 3, implying that
model 4 was not better than model 3.
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The results for the trait REP are shown in Table 3. A
model without either polygenic effects or environmental
family effects gave a lower log-likelihood than the full
model 1. This indicated that both polygenic and family
effects should be fitted in the model. In the full model 1,
the variance of family, cage and polygenic effects as per-
centage of total phenotypic variance was 10%, 11% and
25%, respectively. When using model 2, the additive
genetic variance increased to 50% of total phenotypic
variance, while family and cage variance was reduced to
6% and 8% of total phenotypic variance, respectively. The
log-likelihood with model 2 was substantially higher than
that with model 1 (1670.71). This indicated that the
model implementing the realized relationship matrix
based on aggregate SNP information explained variation
in phenotypes better than the model implementing the
numerator relationship matrix based on pedigree infor-
mation (this is also empirically proven in the next sec-
tion). When using model 3, the estimated variance due to
additive genetic effects increased slightly to 54% of total
phenotypic variance. Variances for family and cage effects

did not change much compared to those of model 2. The
average log-likelihood was 1717.3, and the average num-
ber of QTL was 5.3 in the RJMCMC process. When using
model 4, the estimated dominance variance was 15% of
total phenotypic variance. The average log-likelihood was
1730.33 and the average number of additive and domi-
nance QTL was 14.72. The average AIC for model 4 was
not much improved, compared to that for model 2 (Table
3).

Table 4 shows the results for the trait WT. On the one
hand, the model without polygenic effects gave a log-like-
lihood of 3382.73 which was significantly lower than that
from the full model 1 (3389). On the other hand, the fam-
ily effects were shown to be negligible in phenotypic vari-
ation, i.e. a reduced model excluding family effects gave
the same likelihood as the full model. In the full model 1,
the family, cage and polygenic variances were estimated
as 0%, 17% and 64% of total phenotypic variance, respec-
tively. However, model 2 gave very different estimates, i.e.
14%, 16% and 38% for family, cage and polygenic vari-
ances, respectively. The log-likelihood for model 2 was

Figure 2 Intra-class phenotypic correlation. Intra-class phenotypic correlation plotted against relationship based on pedigree information. FDC - 
Freezing during cue; REP - Recovery from ear punctuation; WT - Weight at 10 weeks; CC - Coat color
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much higher than that for model 1. When using model 3,
the family and cage variances decreased slightly to 12%
and 14% while the additive genetic variance increased to
48%, e.g. 27% due to polygenic and 21% due to specific
SNPs. The values for the average log-likelihood and AIC
were improved although they were not substantially
higher than those for model 2. In model 4, the family and
cage variances decreased to 5% and 6%. The additive
genetic variance was 44% which was not very different to
that of model 3, and the dominance variance was esti-
mated as 35%. The average log-likelihood and AIC were
moderately improved.

The results for the trait CC are shown in Table 5. A
model without polygenic effects based on pedigree infor-
mation gave a significantly lower log-likelihood com-
pared to the full model 1 but omitting family effects gave
only a small change. When using model 2, there were
only slight changes in the variance components, e.g. the
family variance increased to 7% and the polygenic vari-
ance decreased slightly to 71% of total phenotypic vari-
ance. However, the model log-likelihood was

considerably higher than that from the model 1. When
using model 3, the estimated variances were similar to
those of model 2 although most of the additive genetic
variance was captured by specific SNP. In model 4, nearly
all the variance was captured by additive and dominant
QTL effects and the averaged log-likelihood as well as
AIC were far better than in any of the other models.

Correlation between estimated variance components
Table 6 shows sampling correlations between estimated
variance components as derived from the average infor-
mation matrix, i.e. the variance covariance matrix of esti-
mated variance components. Correlations between f and
u were very high and negative for REP, WT and CC, rang-
ing from -0.85 to -0.94. Correlations between c and u
were moderate and negative for FDC (-0.41). This
showed that the additive genetic effects derived from
pedigree information were highly confounded with the
environmental family or cage effects. However, correla-
tions between f and g were low for all the traits (-0.1 ~ -
0.23), and those between c and g were negligible, indicat-

Table 2: Estimated parameters for FDC

Model 1 Model 1-ua Model 1-fb Model 2 Model 3 Model 4

f2 0.14 0.14 N/A 0.07 0.06 0.03

(0.03) (0.03) (0.03) (0.02) (0.02)

c2 0.02 0.02 0.03 0.02 0.02 0.01

(0.03) (0.03) (0.03) (0.02) (0.02) (0.01)

u2 0.00 N/A 0.29 N/A N/A N/A

(0) (0.06)

g2 N/A N/A N/A 0.25 0.18 0.10

(0.06) (0.06) (0.05)

α2 N/A N/A N/A N/A 0.12 0.21

(0.13) (0.22)

δ2 N/A N/A N/A N/A N/A 0.27

(0.23)

Log L 1621.30 1621.30 1619.24 1633.91 1650.56c 1695.96d

(3.55) (10.17)

Para
mete

rs

f, c, u f, c c, u f, c, g f, c, g, α f, c, g, α, δ

AICe -3236.60 -3238.60 -3234.48 -3261.82 -3288.02 -3365.58

Proportion of total phenotypic variance due to family (f), cage (c), and polygenic effects based on pedigree (u), realized relationships (g), and 
specific additive and dominance SNP effects (α and δ) when using model 1, 2, 3 and 4 for FDC
aModel 1 without the term u, bModel 1 without the term f, cThe averaged log-likelihood during MCMC process (the averaged number of 
parameters due to additive SNP in the model), dThe averaged likelihood during MCMC process (the averaged number of parameters due to 
additive and dominance SNP in the model), eAIC = 2 * number of parameters - 2 * log likelihood

f c u gf P c P u P g P P P
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2= = = = = =s s s s s s s s a s s d s sa d; ; ; ; ; 22
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ing that realized relationships based on aggregate SNP
information could disentangle genetic effects from envi-
ronmental effects. For all the traits, the sampling correla-
tions between estimated variances due to genetic and
non-genetic effects were close to zero when using models
3 and 4.

Validating estimates and prediction of unobserved 
phenotypes
Accuracies of the prediction of unobserved phenotypes
for the various models are shown in Table 7. Prediction
was carried out for individuals within full-sib families or
across full-sib families. In general, the accuracy was much
lower for model 1 than for model 2. For all the traits, the
accuracies for model 3 were slightly higher than those for
model 2 although the differences in accuracy between
models 2 and 3 were not significant. For FDC and CC the
accuracies for model 4 were far better than those for
model 3 where there was a considerable difference in AIC
between models 3 and 4. However, for REP and WT there
was no significant difference between the accuracies for
models 3 and 4 and AIC values for the models were also
not substantially different to each other. Accuracies were
highest for CC, which has the largest heritability, and
smallest for FDC which has also the lowest heritability.

The accuracies for predicting individuals within full-sib
families were higher than those for predicting across full-

sib families, which was expected since family information
could not be used across the full-sib families. Interest-
ingly, the difference between the accuracies for models 1
and 2 was larger when predicting phenotypes across full-
sib families, compared to that when predicting pheno-
types within full-sib families. The reduction in accuracy
due to lack of family information was larger when using
model 1 than when using model 2. This showed that the
performance of model 2 was apparently less dependent
on environmental family effects.

Deviation from unity of the regression coefficient of
true phenotypes on predicted phenotypes is an indication
of bias in the estimation compared to the true value. The
averaged values of regression coefficients were close to 1
when predicting phenotypes within full-sib families.
However, when predicting phenotypes across full-sib
families, the values were clearly biased probably because
of lack of family information across the full-sib families.
In general, models 3 and 4 would give more biased esti-
mates, compared to models 1 or 2 although the difference
was small.

Discussion
We have shown that a mixed linear model implementing
a realized relationship matrix based on aggregate SNP
information can efficiently disentangle genetic effects

Table 3: Estimated parameters for REP

Model 1 Model 1-ua Model 1-fb Model 2 Model 3 Model 4

f2 0.1 0.22 N/A 0.06 0.05 0.04

(0.07) (0.03) (0.02) (0.02) (0.02)

c2 0.11 0.11 0.12 0.08 0.08 0.06

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

u2 0.25 N/A 0.46 N/A N/A N/A

(0.15) (0.07)

g2 N/A N/A N/A 0.50 0.36 0.29

(0.04) (0.08) (0.08)

α2 N/A N/A N/A N/A 0.18 0.20

(0.16) (0.17)

δ2 N/A N/A N/A N/A N/A 0.15

(0.14)

Log L 1604.08 1602.37 1602.88 1670.71 1717.3c 1730.33d

(5.26) (14.72)

Parameters f, c, u f, c c, u f, c, g f, c, g, α f, c, g, α, δ 

AICe -3202.16 -3200.74 -3201.76 -3334.20 -3418.08 -3425.22

Proportion of total phenotypic variance due to family (f), cage (c), and polygenic effects based on pedigree (u), realized relationships (g), and 
specific additive and dominance SNP effects (α and δ) when using model 1, 2, 3 and 4 for REP
cThe averaged log-likelihood during MCMC process (the averaged number of parameters due to additive SNP in the model)
dThe averaged log-likelihood during MCMC process (the averaged number of parameters due to additive and dominance SNP in the model)
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from environmental family and cage effects when the
number of causal genes is large and their effects are addi-
tive, e.g. REP and WT in this study. When dealing with a
trait having a limited number of causal genes with possi-
bly dominance effects, e.g. FDC and CC in this study, a
model with a finite number of individual loci can be used
to help to disentangle efficiently genetic effects from non-
genetic effects. Moreover, the latter model can separate
additive and non-additive genetic effects and capture
more of the total genetic variance. Therefore, the esti-
mated variance components and resulting solutions from
the models based on SNP information are more reliable
and accurate, compared to those based on pedigree infor-
mation only, and they allow a better dissection of the var-
ious genetic and non-genetic components of variation.

For REP and WT there was no improvement in accura-
cies for models 3 or 4, compared to those for model 2,
which may be due to the fact that the true model for the
traits is probably an infinitesimal model like model 2, i.e.
a large number of causal genes, each with a small effect.
Another possible reason might be that we used a slightly
unrealistic prior for the number of QTL in the RJMCMC
process. We used a Poisson distribution with a mean of 1
as the prior distribution for the number of QTL (Appen-
dix B). It has been reported previously that the method is
robust to different priors for the number of QTL

[15,27,28]. Higher values gave more QTL sampled into
the model, but the effect on prediction accuracy was
small [15].

Since we analysed a single data set we cannot be sure
about all the causal factors and how they are (partially)
confounded. However, we have shown that the model
likelihood increased (Tables 2 to 5), the sampling correla-
tion between estimated effects for the factors decreased
(Table 6), and the accuracy of predicting genetic effects in
validation sets increased (Table 7) when using the models
based on whole-genome SNP data. These observations
strongly suggest that confounding effects between
genetic and non-genetic effects are better disentangled
when using whole-genome SNP data, compared to tradi-
tional approaches based on pedigree information only.

In our study, we have estimated a variance covariance
matrix of the variance components using average infor-
mation from Fisher's scoring and the Hessian matrix [25].
A full Bayesian approach [29-31] may be able to assess the
confounding between family, cage and polygenic effects
by estimating the posterior correlations between variance
components, e.g. BUGS [32]. Our approach differs from a
full Bayesian method as we used a (residual) maximum
likelihood within the MCMC process to take advantage
of a quick convergence and to decrease reducibility prob-
lems. Moreover, the realized relationship matrix was

Table 4: Estimated parameters for WT

Model 1 Model 1-ua Model 1-fb Model 2 Model 3 Model 4

f2 0.00 0.32 N/A 0.14 0.12 0.05

(0.00) (0.04) (0.03) (0.03) (0.03)

c2 0.17 0.17 0.17 0.16 0.14 0.06

(0.02) (0.02) (0.02) (0.02) (0.03) (0.03)

u2 0.64 N/A 0.65 N/A N/A N/A

(0.08) (0.08)

g2 N/A N/A N/A 0.38 0.27 0.10

(0.04) (0.06) (0.06)

α2 N/A N/A N/A N/A 0.21 0.34

(0.16) (0.27)

δ2 N/A N/A N/A N/A N/A 0.35

(0.31)

Log L 3389.00 3382.73 3389.00 3438.03 3464.47c 3499.46d

(5.59) (19.46)

Parameters f, c, u f, c c, u f, c, g f, c, g, α f, c, g, α, δ 

AICe -6772.00 -6761.46 -6774.00 -6870.06 -6911.76 -6954.00

Proportion of total phenotypic variance due to family (f), cage (c), and polygenic effects based on pedigree (u), realized relationships (g), and 
specific additive and dominance SNP effects (α and δ) when using model 1, 2, 3 and 4 for WT
cThe averaged log-likelihood during MCMC process (the averaged number of parameters due to additive SNP in the model)
dThe average log-likelihood during MCMC process (the averaged number of parameters due to additive and dominance SNP in the model)
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Table 5: Estimated parameters for CC

Model 1 Model 1-ua Model 1-fb Model 2 Model 3 Model 4

f2 0.00 0.36 N/A 0.07 0.08 0.01

(0.00) (0.03) (0.02) (0.04) (0.01)

c2 0.01 0.02 0.01 0.00 0.00 0.00

(0.01) (0.02) (0.01) (0.01) (0.01) (0.00)

u2 0.73 N/A 0.73 N/A N/A N/A

(0.07) (0.07)

g2 N/A N/A N/A 0.71 0.05 0.01

(0.03) (0.03) (0.01)

a2 N/A N/A N/A N/A 0.66 0.47

(0.17) (0.37)

δ2 N/A N/A N/A N/A N/A 0.49

(0.37)

Log L -2373.14 -2381.68 -2373.14 -2190.39 -1954.99c -974.46d

(7.88) (29.48)

Parameters f, c, u f, c c, u f, c, g f, c, g, α f, c, g, α, δ

AICe 4752.28 4767.36 4750.26 4387.84 3931.74 2013.88

Proportion of total phenotypic variance due to family (f), cage (c), and polygenic effects based on pedigree (u), realized relationships (g), and 
specific additive and dominance SNP effects (α  and δ ) when using model 1, 2, 3 and 4 for CC
cThe averaged log-likelihood during MCMC process (the averaged number of parameters due to additive SNP in the model)
dThe average log-likelihood during MCMC process (the averaged number of parameters due to additive and dominance SNP in the model)

Table 6: Sampling correlation between estimated variance components

Model (f, c) (f, u) (c, u) (f, g) (c, g) (f, snp) (c, snp) (g, snp)

FDC 1 -0.28 -0.02 -0.41 N/A N/A N/A N/A N/A

2 -0.28 N/A N/A -0.22 -0.01 N/A N/A N/A

3 -0.28 N/A N/A -0.23 -0.01 -0.01 0 0

4 -0.29 N/A N/A -0.23 -0.02 0 0 0

REP 1 -0.09 -0.85 -0.01 N/A N/A N/A N/A N/A

2 -0.24 N/A N/A -0.17 0.01 N/A N/A N/A

3 -0.25 N/A N/A -0.18 0.01 0 0 0

4 -0.26 N/A N/A -0.18 0.01 -0.01 0.01 0.01

WT 1 0.11 -0.94 -0.2 N/A N/A N/A N/A N/A

2 -0.22 N/A N/A -0.1 0.01 N/A N/A N/A

3 -0.23 N/A N/A -0.11 0.02 0 0 0

4 -0.23 N/A N/A -0.11 0.02 -0.01 0.01 0

CC 1 -0.09 -0.91 -0.09 N/A N/A N/A N/A N/A

2 -0.11 N/A N/A -0.11 -0.02 N/A N/A N/A

3 -0.11 N/A N/A -0.16 -0.05 0 0 0

4 -0.11 N/A N/A -0.19 -0.09 0 0 0

Correlation between estimated variance components for family (f), cage (c), polygenic effects based on pedigree (u) and realized 
relationships (g), and specific SNP effects (snp) when using model 1, 2, 3 and 4.
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simultaneously fitted with specific SNP effects so that
larger SNP effects, with or without dominance effects,
could be captured and estimated adjusted for polygenic
effects. In real practical situations where genetic and
environmental effects are often confounded, the pro-
posed approach may be worthwhile to implement and
help dissect genetic variation of complex traits.

The better performance of the realized relationship
matrix based on SNP information, compared to the
numerator relationship matrix based on pedigree, is
probably due to the fact that SNP-based analysis can bet-
ter predict some of the variation within a family [16]. In
Figure 3, a validation set for REP was used as an example
to show variation in estimated genetic values within fam-
ilies. As shown in Figure 3, individual genetic values esti-
mated from model 1 based on pedigree information are
the same for all the members of the same family whereas
those from model 2 based on SNP vary within families
(Figure 3B). Part of the variation within families could be
captured by SNP information, resulting in consistent
improvement on the estimation of phenotypes (Table 7).
Similar results were observed for other traits.

Because most elements of the realized relationship
matrix based on SNP data are non-zero, sparse matrix
techniques [25,33] could not be used neither to invert the

G matrix nor to solve the mixed model equation. This
resulted in much longer computing time to estimate vari-
ance components based on the realized relationship
matrix. Therefore, we had to use the computationally
tractable approach that was modified from the original
approach. However, the estimated variance components
for family, cage and polygenic effects were mostly consis-
tent across the MCMC process. Therefore, we did not
expect very different results when using the modified ver-
sion.

In model 3, covariance between SNP was negligible
probably because the model had a better fit when less
dependent SNP were selected. However, this was not the
case with model 4 because additive and dominance
effects for a SNP were always fitted together whether they
were correlated or not. This would cause a negative cova-
riance between SNP effects, and overestimation of total
phenotypic variance. When covariance between SNP is
explicitly modelled, better estimates can be obtained
although there is a risk of overparameterization in model
4.

Conclusions
In conclusion, the proposed method implementing a real-
ized relationship matrix based on aggregate SNP infor-

Table 7: Accuracy (acc) and regression (reg) in the prediction of phenotypes

Trait Model 1 Model 2 Model 3 Model 4

acc reg acc reg acc reg acc reg

prediction within full-sib families

FDC 0.21 1.03 0.26 0.94 0.28 0.87 0.35 0.87

(0.04) (0.4) (0.04) (0.16) (0.05) (0.19) (0.03) (0.08)

REP 0.44 1.01 0.51 0.99 0.52 0.95 0.52 0.93

(0.02) (0.10) (0.02) (0.07) (0.02) (0.06) (0.02) (0.07)

WT 0.54 1 0.57 0.97 0.57 0.95 0.56 0.93

(0.03) (0.13) (0.03) (0.06) (0.03) (0.09) (0.04) (0.1)

CC 0.54 0.97 0.65 0.97 0.69 0.93 0.87 0.99

(0.02) (0.06) (0.01) (0.05) (0.01) (0.05) (0.03) (0.02)

prediction across full-sib families

FDC -0.02 -0.53 0.16 0.89 0.19 0.84 0.29 0.85

(0.04) (1.94) (0.04) (0.23) (0.07) (0.27) (0.05) (0.08)

REP 0.12 0.83 0.31 0.81 0.36 0.8 0.35 0.75

(0.05) (0.4) (0.04) (0.15) (0.05) (0.14) (0.04) (0.13)

WT 0.18 0.97 0.3 0.97 0.3 0.87 0.28 0.76

(0.04) (0.28) (0.03) (0.13) (0.04) (0.2) (0.06) (0.23)

CC 0.17 0.85 0.46 0.9 0.53 0.8 0.78 0.95

(0.04) (0.2) (0.07) (0.17) (0.09) (0.17) (0.09) (0.13)

The average of correlations of actual and predicted phenotypes (standard deviations), and regression of the true phenotypes on predicted 
phenotypes (standard deviations) over 10 replicates when using model 1, 2, 3 and 4 for the traits
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Figure 3 Variation of estimated genetic values within families. Estimated genetic values plotted against family mean for model 1 (A) and model 
2 (B)
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mation is useful to genetically dissect complex traits
especially when there are confounding factors between
genetic and non-genetic effects. Resulting variance com-
ponents are less biased and more accurate. A further
analysis could be carried out using the proposed Bayesian
approach to disentangle additive genetic and dominance
effects. This novel strategy may help to understand the
architecture of various complex traits.
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