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Background: The incorporation of genomic coefficients into the numerator relationship matrix allows estimation
of breeding values using all phenotypic, pedigree and genomic information simultaneously. In such a single-step
procedure, genomic and pedigree-based relationships have to be compatible. As there are many options to create
genomic relationships, there is a question of which is optimal and what the effects of deviations from optimality

Methods: Data of litter size (total number born per litter) for 338,346 sows were analyzed. lllumina PorcineSNP60
BeadChip genotypes were available for 1,989. Analyses were carried out with the complete data set and with a
subset of genotyped animals and three generations pedigree (5,090 animals). A single-trait animal model was used
to estimate variance components and breeding values. Genomic relationship matrices were constructed using
allele frequencies equal to 0.5 (G05), equal to the average minor allele frequency (GMF), or equal to observed
frequencies (GOF). A genomic matrix considering random ascertainment of allele frequencies was also used
(GOF*). A normalized matrix (GN) was obtained to have average diagonal coefficients equal to 1. The genomic
matrices were combined with the numerator relationship matrix creating H matrices.

Results: In GO5 and GMF, both diagonal and off-diagonal elements were on average greater than the pedigree-
based coefficients. In GOF and GOF¥*, the average diagonal elements were smaller than pedigree-based
coefficients. The mean of off-diagonal coefficients was zero in GOF and GOF*. Choices of G with average diagonal
coefficients different from 1 led to greater estimates of additive variance in the smaller data set. The correlation
between EBV and genomic EBV (n = 1,989) were: 0.79 using G05, 0.79 using GMF, 0.78 using GOF, 0.79 using
GOF*, and 0.78 using GN. Accuracies calculated by inversion increased with all genomic matrices. The accuracies
of genomic-assisted EBV were inflated in all cases except when GN was used.

Conclusions: Parameter estimates may be biased if the genomic relationship coefficients are in a different scale
than pedigree-based coefficients. A reasonable scaling may be obtained by using observed allele frequencies and
re-scaling the genomic relationship matrix to obtain average diagonal elements of 1.

Background

Traditional genetic evaluation of livestock combines only
phenotypic data and probabilities that genes are identical
by descent using the pedigree information. Genetic
markers for many loci across the genome can be used to
measure genetic similarity and may be more precise
than pedigree information [1]. Genomic relationships can
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better estimate the proportion of chromosomes segments
shared by individuals because high-density genotyping
identifies genes identical in state that may be shared
through common ancestors not recorded in the pedigree.
A genomic relationship matrix (G) can be calculated by
different methods [1,2].

As an entire population is unlikely to be genotyped in
livestock species, Legarra et al. [3] and Misztal et al. [4]
have proposed the integration of the numerator relation-
ship matrix (A) and G into a single matrix (H). A BLUP
evaluation using H called single-step genomic evaluation

© 2011 Forni et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:selma.forni@pic.com
http://creativecommons.org/licenses/by/2.0

Forni et al. Genetics Selection Evolution 2011, 43:1
http://www.gsejournal.org/content/43/1/1

has been successfully applied in dairy cattle [5]. Besides
the computation of H, no further modifications in the
standard mixed model equations used in animal breed-
ing have been needed [4].

The formula for H includes the expression G - A,
which is the difference between genomic and pedigree-
based relationships. If G is inflated, deflated or in
some other way incompatible with A, the weighting of
the pedigree and genomic information will be incor-
rect. Various G used in a genetic evaluation by Aguilar
et al. [5] have resulted in different scaling and accura-
cies of EBV. Estimates of the additive variance using G
may be much larger than those using A [6]. Different
G can lead to different accuracies of EBV [5]. These
differences could be due to an incorrect scaling of G
relative to A.

The first objective of this study was to apply different
genomic matrices to analyses of litter size in a swine
population and evaluate the impact of those G on EBV
and estimates of variance components. The second
objective was to develop a strategy to create an optimal
G that is easy to create and yields reasonably accurate
EBV and estimates of the additive variance.

Methods

Data

Data of litter size (total number born per litter) for
338,346 sows, of which 1,919 were genotyped using the
[lumina PorcineSNP60 BeadChip, were analyzed. Geno-
types of their 70 sires were also available. Genotyped
females were crosses of two pure lines derived from the
same breeds, and they were born in a two-year span.
After quality control procedures, 44,298 markers
remained and were used to estimate genomic relation-
ship coefficients. In the quality control analysis, SNP
were excluded if: the minor allele frequency was smaller
than 0.05, the marker mapped to the sex chromosomes,
the chi-square statistics for Hardy-Weinberg equilibrium
from males and females differed by more than 0.1, or
more than 20% of animals had missing genotypes. Phe-
notypes were collected in genetic nucleus (pure lines)
and commercial herds (line crosses) and the parental
lines were included as fixed effects in the model to
account for differences in the genetic backgrounds. All
analyses were carried out with the complete data set
and with a subset containing only genotyped females
and three generations of pedigree (5,090 animals).
Records were analyzed using an animal model. Fixed
effects included parity order, age at farrowing (linear
covariable), number of services, mating type (artificial
insemination or natural service), contemporary group,
sow line and sire line (parents of animals with pheno-
type). Contemporary groups were defined by season,
year and farrowing farm. The numerator relationship
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matrix was obtained with pedigree information on
382,988 animals. Prediction error variances (PEV) were
obtained by inversion of the coefficients matrix of the
mixed model equations.

Combined pedigree-genomic relationship matrix

In the animal model, the inverse of the numerator rela-
tionship matrix (A™") was replaced by H™ that combines
the pedigree and genomic information [5]:

Lo 0
H'l=A"+ ) L (1)
0 G'-Aj)

where G™! is the inverse of the genomic relationship
matrix and A3} is the inverse of the pedigree-based

relationship matrix for genotyped animals. Comparisons
involved several genomic relationship matrices. First, G
was obtained following VanRaden [1]:
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where M is an allele-sharing matrix with m columns
(m = total number of markers) and n rows (n = total
number of genotyped individuals), and P is a matrix
containing the frequency of the second allele (p;),
expressed as 2p;. M;; was 0 if the genotype of individual
i for SNP j was homozygous 11, was 1 if heterozygous,
or 2 if the genotype was homozygous 22. Frequencies
should be those from the unselected base population,
but this information was not available. Instead the fre-
quencies used were: 0.5 for all markers (G05), the aver-
age minor allele frequency (GMF), and the observed
allele frequency of each SNP (GOF). The last option
assured that the average off-diagonal element was close
to 0. For GMF only, the second allele was the one with
smaller frequency.

A different matrix with observed frequencies (GOF¥)
was obtained by modification of the denominator as in
Gianola et al. [7]:

G=

’

(M-P)(M-P)
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GOF* =
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where po and qo are expectations of allele frequencies
following a Beta distribution with hyperparameters o
and B. The values for the hyperparameters were
the same as observed in the genotyped animals.
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A normalized matrix was obtained to have average diag-
onal coefficients equal to 1:

_ (
_{trace[(M—P)(M—P),]} . @)

The denominator should assure compatibility with A
when either the average inbreeding is low or the num-
ber of generations low. Higher levels of inbreeding in
the genotyped population can be accommodated by sub-
stituting “n” in the denominator of GN by the sum of
(1 + F) across genotyped animals, where F are individual
inbreeding coefficients derived from pedigree. Different
from the numerator relationship matrix, values on the
diagonal of GN can be smaller than 1. An average diag-
onal of 1 can also be obtained by multiplying (4) by a
constant. A similar relationship matrix with sample var-
iance of 1 was used by Kang et al. [8].

The genomic matrix is positive semidefinite but it can
be singular if the number of loci is limited or two indivi-
duals have identical genotypes across all markers. It will
be singular if the number of markers is smaller than the
number of individuals genotyped. To avoid potential
problems with inversion, G was calculated as G = wGr
+ (1 - w)A,,, where w = 0.95 and Gr is a genomic
matrix before weighting. Tests showed that the value of
w was not critical. Aguilar et al. [5] reported negligible
differences in EBV using w between 0.95 and 0.98.
Christensen and Lund [9] suggested that w could be
interpreted as the relative weight of the polygenic
effect needed to explain the total additive variance,

2

g is the vari-

such as: w=o07 /(oé—i—af), where o

ance explained by the markers.
The joint distribution of breeding values of genotyped
(a;) and non-genotyped animals (a,) is:

) ) ) (5)
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and the variances of the conditional posterior distribu-
tions are:

var(a1|a2,03,af,y):
(6a)

-1 -1 -1,
[All+A12A22(G_A22)A22A21] g,

Var(a2 |a1,af,c7§,y)=G’10'§. (6b)
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The additive variance is on average the same for the
entire population, and coefficients of A and G need to
be compatible in scale. Variance components were esti-
mated by restricted maximum likelihood (REML) using
the EM algorithm [10].

Results

Pedigree-based and genomic relationship coefficients
Statistics of pedigree-based and genomic relationship
coefficients for genotyped animals (A,, or G) are in
Table 1. In GO5 and GMEF, the same allele frequency
was used for all markers, and the average of both diago-
nal and off-diagonal elements was greater than the coef-
ficients in A,,. The average minor allele frequency was
0.26. The distribution of frequencies of the second allele
was nearly flat (Figure 1). For GOF and GOF*, the aver-
age diagonal coefficients were smaller than the pedigree-
based coefficients. The average off-diagonal coefficients
were zero in both matrices, similar to A,,. This allowed
obtaining a matrix with average diagonal elements equal
to 1 (GN) and average off-diagonal elements equal to
zero. For all genomic matrices, diagonal coefficients had
greater variance than the pedigree-based coefficients.
Off-diagonal genomic coefficients had a greater variance
only for GOF and GN. Greater variance was expected
between the elements of G than A because genomic
relationships reflect the actual fraction of genes shared
whereas pedigree-based coefficients are predictions.
Predictions have smaller variance than the variable pre-
dicted when the prediction error is not zero.

Table 1 Statistics of relationship coefficients estimated
using pedigree and genomic information

Diagonal elements

Mean Minimum Maximum Variance
A 1.000 1.000 1.075 0.00003
GO5 1.253 1.178 1462 0.00083
GMF 1.697 1632 1.894 0.00073
GOF 0.936 0.837 1.228 0.00176
GOF* 0.505 0436 0.663 0.00051
GN 1.002 0.895 1314 0.00201

Off-diagonal elements

Mean Minimum Maximum Variance
A 0.032 0.000 0.600 0.00172
GO05 0.595 0.387 1.231 0.00160
GMF 1.022 0.822 1.654 0.00155
GOF 0.000 -0.198 1.000 0.00241
GOF* 0.000 -0.105 0.540 0.00070
GN 0.000 -0.212 1.070 0.00275

Relationships between genotyped animals (1,989 diagonal and 3,954,132
off-diagonal elements).
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Figure 1 Distribution of allele frequencies. Observed frequencies of the second allele.
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Variance components

Estimates of variance components obtained with the full
data set are in Table 2, and estimates from the subset
are in Table 3. The differences observed in the complete
data set were negligible, most likely because genomic
relationships were a small fraction of all relationships.
Compared to estimates obtained with A, most of the
additive variance estimates using the genomic relation-
ships in the smaller dataset were inflated. The inflation
was approximately inversely proportional to the differ-
ence between the average diagonal and the off-diagonal
elements of G. The highest inflation was with GOF*, for
which this difference was only 0.51. The additive var-
iance estimates were the same for GO5 and GMF
despite different averages but with similar differences
between average diagonal and off-diagonal elements,
0.66 and 0.68, respectively. Estimates in the smaller data
were similar using A and GN, which had very similar
diagonal and off-diagonal element averages. Legarra

Table 2 Variance components estimates for litter size
using pedigree and genomic relationship coefficients

et al. [3] have demonstrated that a normalized genomic
matrix, as GN = G/trace(G), allows the same expecta-
tion of variance for breeding values of genotyped and
non-genotyped animals. Assuming that a genomic rela-
tionship matrix standardized such as GN produces rea-
listic estimates of additive variance, the use of genomic
information resulted in smaller standard errors (0.30)
than only pedigree information (0.44).

Breeding values and accuracies

Estimates of breeding values for genotyped animals were
on average similar regardless the choice of G. Table 4
presents correlations between breeding values obtained
with different relationship matrices. Small differences
were observed in the ranks obtained with different geno-
mic matrices. However, these differences have direct
implications on selection decisions and genetic progress.
For instance, if 597 animals (top 30%) were selected
using GN, 456 animals among the 597 would also be

Table 3 Variance components estimates for litter size
using pedigree and genomic relationship coefficients

Additive Variance (ste') Residual Variance (ste’)

Additive Variance (ste') Residual Variance (ste’)

A 1.26 (+ 0.03) 6.66 (+ 0.02)
GO05 1.28 (+ 0.03) 6.65 (+ 0.03)
GMF 1.28 (£ 0.03) 6.65 (£ 0.03)
GOF 1.27 (£ 0.03) 6.65 (+ 0.03)
GOF* 1.30 (+ 0.03) 6.64 (+ 0.03)
GN 1.27 (£ 0.03) 6.65 (+ 0.03)

A 227 (£ 052) 530 (+ 0.44)
GO5 343 (£ 0.56) 525 (£ 0.29)
GMF 343 (= 0.56) 5.25 (x 0.30)
GOF 241 (£ 039) 5.29 (x 0.30)
GOF* 446 (+ 0.73) 522 (+ 0.30)
GN 225 (£ 0.36) 530 (+ 0.30)

Full data set (n = 338,346), 'ste = standard error.

Subset of genotyped animals (n = 1,919), 'ste = standard error.
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Table 4 Correlations between estimated breeding values
using different relationship matrices
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Table 5 Statistics of estimated breeding values using
pedigree and genomic information

A GO5 GMF GOF GOF* GN Genotyped females (n = 1,919)

A 0.798 0.798 0.793 0.799 0.791 Mean Minimum Maximum Variance
GO5 0.891 1.000 0.995 0.997 0.993 A 0.359 -2.755 2282 0467
GMF 0.891 1.000 0.995 0.997 0.994 GO5 0372 -2.898 2.501 0.443
GOF 0.891 0.997 0.997 0.989 0.999 GMF 0372 -2.904 2.505 0444
GOF* 0.891 0.996 0.996 0.999 0.996 GOF 0.165 -3623 2.660 0.566
GN 0.888 0.998 0.998 0.997 0.986 GOF* 0.165 -2.829 2.110 0376
Genotyped females above diagonal (n = 1,919). GN 0.165 -3.697 2.707 0.589
Genotyped males bellow diagonal (n = 70). Genotyped males (n = 70)

Mean Minimum Maximum Variance
selected using A. For other genomic matrices, the num- 205 8122 :S?; iig ;';22
ber of animals selected in common with GN was: 567 GMF OABS 73'722 2'524 0‘998
for GO5, 568 for GMF, 593 for GOF, and 554 for GOF*. GOF 70‘051 74.428 2'509 1A16O

Correlations between pedigree-based EBV and EBV GOF* 70‘040 73.688 2.180 1A178
obtained using either GO5 or GN were similar. When ! ' ' )
GN -0.074 -4.502 2.522 0.905

applied to dairy data, Aguilar et al. [5] have found sub-
stantially higher accuracies for G with allele frequencies
equal to 0.5 than with either current or estimated base
allele frequencies. When the allele frequency is p, the
relative contribution to the diagonal of G is (2p)?* for
the first homozygote, (1-2p)® for a heterozygote, and
(2-2p)? for the second homozygote. With p = 0.5, these
contributions are 1, 0, and 1, respectively. When the
allele frequencies are assumed different from 0.5, these
contributions are different for each homozygote. For
example, contributions with p = 0.2 would be 0.16 for
the first homozygote, 0.36 for the heterozygote, and 2.56
for the second homozygote. Consequently, rare alleles
contribute more to the variance than common alleles. It
would be interesting to compare the results with a nor-
malized matrix from GO5 by multiplying and deducting
a constant as in VanRaden [1]. However, in our experi-
ence such matrices were not positive definite. Subtract-
ing of a constant from G might be helpful if this does
not create a negative eigenvalue.

Statistics on computed breeding values with various
relationship matrices are in Table 5. The means can be
clustered in two groups, one for matrices based on
the observed allele frequencies where the average off-
diagonal is 0, and another for the remaining matrices.
When the average off-diagonals were larger than zero,
all genotyped animals were related with positive coeffi-
cients. The assumption that all animals are related may
create biases especially when animals of interest have
both phenotypes and genotypes. The exact impact of
large off-diagonals is a topic for future research.

Estimates of accuracy obtained using PEV with differ-
ent genomic matrices are in Table 6. On average, the
increase of accuracy from genomic information was for
genotyped animals only. The increases were higher for
females because of their lower initial accuracy. The

accuracies varied depending on the genomic matrix
used. Assuming that additive variance and accuracy esti-
mates are most realistic with GN, the accuracies using
non-normalized G were inflated. VanRaden et al. [11]
have presented computed and realized genomic accura-
cies for a number of traits, and found the computed
accuracies to be inflated.

Discussion

Pedigrees may include many generations into the history
of the population but must end eventually. In standard
genetic evaluations, founder animals are the earliest gen-
eration recorded and the assumption is that they do not
share genes from older ancestors. Relationship and
inbreeding coefficients from later generations are esti-
mated as deviations from the founders’ relatedness.
Genomic analysis typically reveals that founder animals
actually share genes identical by descent, which shift
relationship and inbreeding coefficients up or down.
Genomic and pedigree-based matrices should be compa-
tible in scale to be integrated. Ideally, genomic relation-
ships should be estimated using the allele frequencies

Table 6 Average accuracy estimates for breeding values
using pedigree and genomic relationship coefficients

Full pedigree  Genotyped females = Genotyped sires
(n = 382,988) (n=1,919) (n =70)

A 0.21 0.22 0.62

GO5 021 037 0.63

GMF 0.21 049 0.64

GOF 0.21 0.30 0.63

GOF* 0.21 043 0.66

GN 0.21 0.28 0.63




Forni et al. Genetics Selection Evolution 2011, 43:1
http://www.gsejournal.org/content/43/1/1

from the unselected base population. This information
can be rarely extracted from historical data and approxi-
mations must to be used. Errors in the allele frequency
estimates may result in biased relationships and conse-
quently biased GEBVs, especially for young animals [5].
Yang et al. [12] have proposed a genomic relationship
matrix that uses the genotyped animals as the base
population. They have presented a slightly different for-
mulation than used here for the diagonal elements of G.
Using the genotyped population as base, A would have
to be re-scaled according to G but allele frequencies in
the base population would not have to be estimated.

Coefficients of GN had greater variance than the cor-
responding elements of A,,. The variance was greater
because individuals equally related in the pedigree have
more or less alleles in common than expected. Genomic
analysis achieved higher accuracies probably because
genomic information improved prediction of the Men-
delian sampling terms. More differentiation within
families and reduction of co-selection of sibs are
expected with genomic-assisted selection because Men-
delian sampling can be better estimated. As a result,
inbreeding across generations is expected to increase
more slowly than it would increase with standard eva-
luations [13].

We considered only phenotypes of crossbred animals.
The performance of crossbred animals is considered a
different trait than the performance of purebred animals
in routine evaluations of this population. Using a multi-
trait model, one can predict EBV for elite animals as
parents at the nucleus and commercial level simulta-
neously. However, only additive inheritance is consid-
ered in this model and differences in allele frequencies
between pure lines are ignored. Cantet and Fernando
[14] have shown that ignoring segregation variance
could lead to unbiased predictions that do not have the
minimum variance. More suitable models should be
used to account for heterosis when the objective is to
rank crossbred animals [15,16].

Estimates of additive variance were sensitive to the
choices of G when a greater part of the pedigree was
genotyped. An entire genotyped population is rarely
found in livestock species, and pedigree and genomic
information have to be combined. Estimates of relation-
ships are always relative to an arbitrary base population
in which the average relationship is zero. Genomic and
pedigree-based relationships must be relative to the
same base to be combined in the H matrix. We chose
to use the animals with unknown parents in A as the
base, and we modified G accordingly. Because there
were no changes in the genetic base, the same additive
variance is expected when including the genomics coef-
ficients. A practical solution to avoid inflation of the
additive variance is to re-scale G to obtain average
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diagonal elements equal to 1, when off-diagonal
elements are already on average zero. In the data set
analyzed, average off-diagonal elements equal to zero
were obtained using the observed allele frequencies.

Several studies have indicated accuracy gains with the
inclusion of genomic information in genetic evaluations
via marker regression or identical-by-descent matrices
[11,17,18]. However, some experiences in the dairy
industry, however, have indicated that actual improve-
ment may differ from expected because of inflation of
genomic breeding values and reliabilities [5,11]. Biases
in genomic predictions can be related to incorrect
weighting of polygenic and genomic components. The
combined pedigree-genomic relationship matrix pro-
vides a natural way to weight both components for opti-
mal predictions. In addition, a single-step genomic
evaluation eliminates a number of assumptions and
parameters required in multiple-step methods, and pos-
sibly delivers more accurate evaluations for young ani-
mals. The single-step procedure can be easily extended
for multiple-traits analysis, and can handle large
amounts of genomic information. Extensions to account
for other distributions of marker effects, i.e., large QTL
or major genes, are also possible [19,20]. Nevertheless,
computational efforts may be an issue long-term
because the genomic matrix needs to be created and
inverted.

Conclusions

Estimates of the additive genetic variance with pedigree
or joint pedigree-genomic relationships are similar when
the differences between the average diagonal and the
average off-diagonal elements in G are similar to those
in A. Adding the genomic information to A results in
lower standard errors of additive variance estimates.
Accuracies of EBV with the pedigree-genomic matrix
are a function not only of the average of diagonal and
off-diagonal elements of G, but also of the difference
between these averages. The accuracy estimates may be
inflated with non-normalized G. Matrix compatibility
can be obtained by using observed allele frequencies and
re-scaling the genomic relationship matrix to obtain
average diagonal elements equal to 1. If allele frequen-
cies in the base population are different from 0.5, rare
alleles contribute more to the genetic resemblance
between individuals than common alleles.
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