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Abstract

Background: Knowing the phase of marker genotype data can be useful in genome-wide association studies,
because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of
alleles and it can lead to a large increase in data quantities via genotype or sequence imputation. Long-range
phasing and haplotype library imputation constitute a fast and accurate method to impute phase for SNP data.

Methods: A long-range phasing and haplotype library imputation algorithm was developed. It combines
information from surrogate parents and long haplotypes to resolve phase in a manner that is not dependent on
the family structure of a dataset or on the presence of pedigree information.

Results: The algorithm performed well in both simulated and real livestock and human datasets in terms of both
phasing accuracy and computation efficiency. The percentage of alleles that could be phased in both simulated
and real datasets of varying size generally exceeded 98% while the percentage of alleles incorrectly phased in
simulated data was generally less than 0.5%. The accuracy of phasing was affected by dataset size, with lower
accuracy for dataset sizes less than 1000, but was not affected by effective population size, family data structure,
presence or absence of pedigree information, and SNP density. The method was computationally fast. In
comparison to a commonly used statistical method (fastPHASE), the current method made about 8% less phasing
mistakes and ran about 26 times faster for a small dataset. For larger datasets, the differences in computational
time are expected to be even greater. A computer program implementing these methods has been made
available.

Conclusions: The algorithm and software developed in this study make feasible the routine phasing of high-
density SNP chips in large datasets.

Background
Knowing the phase of marker genotype data can be use-
ful in genome-wide association studies (GWAS), because
it makes it possible to use analysis frameworks that
account for identity by descent (IBD) or parent of origin
of alleles [1] and it can lead to a large increase in data
quantities via genotype or sequence imputation
e.g. [2,3]. Phasing entire genomes in GWAS datasets has
been a computational bottleneck due to the unavailabil-
ity of robust heuristic phasing methods when a family
structure does not exist and to the computationally

intensive nature of statistically based phasing methods,
e.g. fastPHASE [4] and Beagle [5].
Long-range phasing (LRP) is a fast and accurate heur-

istic method for phasing of marker genotypes, which
uses information from both related and seemingly unre-
lated individuals by invoking the concepts of surrogate
parents and Erdös numbers, as defined in Kong et al.
[6]. In comparison to phasing methods based on statisti-
cal inference, LRP has been reported to be 1,000 times
faster with a 34% lower error rate than fastPHASE [6].
However, while LRP is powerful and efficient, the
method is not fully robust. Applying LRP can result in
parts of a given dataset being not phased or phased
incorrectly. Incorrect identification of surrogate parents
leads to incorrect phasing and this can occur when
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there is insufficient combinatorial power in the data to
correctly identify, partition, or eliminate surrogate par-
ents, or when genotyping errors exist. For any given
locus, failure to find information pertaining to phase
within the surrogate parents of an individual results in
the locus being unphased.
The objective of this research was to expand the LRP

algorithm of Kong et al. [6] in several ways to improve its
robustness and ability to access more of the information
contained within a dataset. We use the term long-range
phasing and haplotype library imputation (LRPHLI) for
the expanded algorithm, combining the concept of long-
range phasing (LRP) and haplotype library imputation
(HLI). In order to handle insufficient combinatorial power
and errors in genotypes or physical maps, LRPHLI uses
information from multiple surrogate parents and a more
robust definition of surrogacy using the concepts of cores
and tails (defined below). The LRPHLI partitions surrogate
parents into paternal/maternal surrogates with or without
pedigree information. A method to impute phase by HLI
was developed to increase the overall phasing yield, parti-
cularly when the information pertaining to phase within
the surrogate parents of an individual is insufficient. The
haplotype library corrects mistakes created by false surro-
gate definition and/or genotyping errors. The performance
of the method was evaluated using simulated data on both
simulated and real pedigree structures as commonly found
in livestock and human populations, with varying family
sizes, depths of pedigree, historical effective population
sizes, and SNP density. It was also evaluated using
real human and livestock datasets. The method has
been implemented in a new software package called
AlphaPhase.
The sections that follow describe the LRP method of

Kong et al. [6], the improvements made to LRP, the
method of HLI, the simulated and real datasets that
were used to test different aspects of the LRPHLI algo-
rithm, and finally the performance of the LRPHLI
algorithm.

Methods
Long-range phasing
The LRP method of Kong et al. [6] is illustrated in Figure 1.
These authors have suggested to phase a string of consecu-
tive SNP in a single genome region (termed a core in our
algorithm) by first identifying surrogate parents of each
proband. Surrogate parents are individuals who share a
haplotype with the proband and are identified as those
individuals that do not have any opposing homozygote
genotypes with the proband [6]. We propose to identify
surrogate parents based on both this core and adjacent
‘tails’ (Figure 2), as further described below. These surro-
gates are termed Erdös 1 surrogates, meaning that they are
one degree removed from the proband on the basis of

haplotype identity [6]. The Erdös 1 surrogates of the pro-
band are partitioned into surrogates of the paternal and
maternal haplotypes. The partitioning of surrogate parents
into surrogates of the paternal and maternal haplotypes is
done in two ways: using pedigree information if it is avail-
able; and using a k-medoids clustering algorithm if it is
not. Details on these strategies are given in Appendix A.
For the proband, inference of the phase at each locus

within the paternal/maternal haplotype is attempted by
stepping through the paternal/maternal surrogates until
a surrogate is found that is homozygous at that locus
and thus can be used to declare the phase. This is
termed accessing Erdös 1 information. If a homozygote
is not found at Erdös 1, the algorithm proceeds to infor-
mation from surrogates at the Erdös 2 layer. Erdös 2
surrogates of a proband are surrogates who do not
share a haplotype with the proband but do share a hap-
lotype with Erdös 1 surrogates of the proband. The
algorithm can continue like this for as many Erdös
layers as contained within the data (Figure 1). Errors
created due to incorrect surrogate identification are par-
tially resolved by pruning from the surrogate list those
surrogate parents whose haplotypes (phased by an ear-
lier round of LRP) do not agree with the genotype of
the proband (because of genotyping errors or insuffi-
cient combinatorial power to eliminate or partition sur-
rogate parents properly), and then re-phasing all
individuals using the pruned list of surrogates.

Description of the long-range phasing and long
haplotype imputation algorithm
The expansions to the LRP algorithm proposed in this
research are first described individually and then fol-
lowed by a description of the entire LRPHLI algorithm.

Cores and tails
A core (Figure 2) is defined as a consecutive string of
SNP loci for which phasing is being attempted. Tails
(Figure 2) are defined as consecutive strings of SNP loci
immediately adjacent to either end of a core. Informa-
tion on homozygous loci across both core and tails are
used to define surrogates. Specifically, opposing homo-
zygotes between two individuals illustrates lack of IBD
and surrogacy in that region. Tails provide additional
information, thus reducing the risk of false surrogate
definition, especially near the ends of the core region.
Without using tails, combinatorial power may be insuffi-
cient at the ends of cores and this would result in failure
to eliminate individuals that are not surrogate parents
due to recombination events in these regions.

Sparse storage and indexing of surrogate information
For each core, each individual in a dataset has poten-
tially many surrogate parents at each Erdös level and
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potentially many Erdös levels (Figure 1). This informa-
tion can be collapsed into a single square matrix of
order equal to the number of individuals in the dataset
with genotype information. For each individual, only
information on Erdös 1 surrogate parents is stored
explicitly, with this information identifying whether a
surrogate parent is of the paternal haplotype, maternal
haplotype, or of both. Surrogate parents at higher Erdös
layers are thus stored implicitly. Storing an indicator as

to whether a surrogate parent is paternal, maternal, or
both, facilitates the use of the partitioned surrogates at
the Erdös layer 1 while allowing all information to be
used at higher Erdös layers. It is not necessary to parti-
tion the surrogates into maternal/paternal at higher
Erdös layers [7], giving greater flexibility and power.

Sequential long-range phasing algorithm (LRP)
The algorithm attempts to phase each locus for each
proband by sequentially stepping through each Erdös
layer and accessing the surrogate parents at each of
these layers until a target number of surrogate parents
is accessed. Once this target number of surrogate par-
ents is accessed, the phase is determined if a proportion
of these greater than a small error threshold (i.e. <10%)
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Figure 1 Illustration of the long range phasing process.
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Figure 2 A core and its adjacent tails.
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agrees on what the phase is. If there is disagreement
amongst the surrogate parents on what is the phase, a
statistical significance test can be performed.
The sequential approach ensures that even though

individual surrogate parents can appear at several differ-
ent Erdös levels, they are only used at their lowest Erdös
level because the algorithm steps through the Erdös
levels from the lowest to the highest. A restriction is
included to ensure that the route to a homozygous surro-
gate parent can only pass through heterozygous surrogate
parents. Phasing using consensus information from many
surrogates reduces the impact of any individual surro-
gate. If information is used only from the first found
homozygote, surrogate phasing error can result when
false surrogates have been identified or when a surrogate
contains a genotype error. Using information from multi-
ple surrogates alleviates the need to carry out the surro-
gate pruning step of the Kong et al. [6] algorithm.

Error thresholds
Identification of surrogates of a proband as individuals
who show no opposing homozygotes with that proband
across long strings of consecutive loci is easily disrupted
by both genotype and mapping errors. This can be over-
come by allowing a small percentage of opposing homo-
zygotes without rejecting surrogacy. However this creates
a new problem of increased numbers of individuals being
identified as surrogates that are not in fact true surro-
gates. Several steps are taken to deal with this problem,
including haplotype library imputation (described below),
using information from multiple surrogates, and removal
of surrogates that break certain rules (described below).

Haplotype library imputation (HLI)
LRP may not work in some individuals for which there is
insufficient surrogate information (e.g. due to a recombi-
nation in a gamete), or for which surrogate information
is inconsistent. Some of these problems can be overcome
at the end of the LRP by building a library of all unique
haplotypes that LRP has found in the dataset and sequen-
tially imputing phase for unphased individuals from this
library. At each round, individuals that have one of their
pair of gametes unphased can have it phased as the com-
plement of its phased gamete via the genotype. At each
round, new haplotypes that have been created through
recombination can be detected and added to the library.
A number of steps (described in Appendix A) are
invoked during HLI to determine if a suitable haplotype
exists in the library and for it to be declared as phase for
the unphased gamete of the proband.

The entire LRPHLI algorithm
Step 1: Define start point and end point of the cores and
tails.

Step 2: Loop across the cores and complete the fol-
lowing steps for each core.
Step 2a: Identify Erdös 1 surrogate parents for each

genotyped individual by looping across all SNP in the
core and tails and counting the numbers of homozygote
genotypes in agreement and in disagreement between
the individual and all other genotyped individuals. If the
count of the loci in disagreement is less than a deter-
mined threshold (e.g. 2%), an individual is taken to be a
surrogate parent.
Step 2b: Partition Erdös 1 surrogates into surrogates

of the paternal or maternal gamete, using the mutually
exclusive strategies that are listed in Appendix A per-
taining to step 2b.
Step 2c: Loop across the genotyped individuals and

phase their loci based on information from the various
Erdös levels as required, following strategies that are
listed in the part of Appendix A that pertains to step 2c.
Step 2d: Build a haplotype library containing all com-

pletely phased haplotypes found in the dataset.
Step 2e: Impute the phase for gametes that are not com-

pletely phased by LRP by matching their phased loci to
haplotypes in the haplotype library, following strategies
listed in the part of Appendix A pertaining to step 2e.
Step 2f: In each proband, all phased loci are paired to

create a genotype and this genotype is checked for com-
patibility with the genotype and if across a whole core
more than 10% disagreement is found, the heterozygous
loci have their phase call removed for this proband. In
this case, homozygous loci are assumed to have no gen-
otyping error and are thus phased de facto for this core
of this proband.
Steps 2e and 2f are iterated until no new haplotypes

are added to the library.

Testing of performance
Performance of the LRPHLI algorithm was tested using
an extensive range of simulated and real datasets.

Simulations
In each simulation, a sample of haplotypes representing
a single chromosome of 1 Morgan (100,000,000 base
pairs) with the per-site mutation rate set to 10-8 was
created using MaCS [8], which invokes a neutral coales-
cent model. Two different population scenarios (Ne100,
and Ne1000), which were based on the results of [9,10],
were followed. Scenario Ne100 followed the effective
population size (Ne) of Holstein cattle. Briefly, its cur-
rent Ne was set to 100, the Ne 1,000 years ago to 1,200,
the Ne 10,000 years ago to 4,500, and the Ne 800,000
years ago to 80,000, with gradual decreases in Ne in the
intervening periods. The population with the larger
Ne1000 could reflect a sheep breed. Its historical Ne
matched that of Ne100 from 800,000 years ago until
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2000 years ago, while from 2000 years ago until the pre-
sent time, its Ne remained at 1000. Scenario Ne100 cre-
ated approximately 56,000 segregating sites along the 1
Morgan (100,000,000 base pairs) region, while Ne1000
created approximately 115,000 segregating sites, with lit-
tle sampling variation about these numbers. Either of
these effective population sizes could possibly represent
isolated human populations.
The simulated haplotypes were then dropped through

eight pedigrees, which reflect a spectrum of datasets for
which LRPHLI may be suitable. These included pedi-
grees of completely unrelated individuals, pedigrees of
small, intermediate and large half-sib family structures,
general livestock pedigrees, and a general pedigree of an
isolated human population. Details are in Appendix B.
SNP arrays, for a single chromosome, with densities

equivalent to 60,000 SNP per genome were created by ran-
domly selecting 2,000 of the segregating sites which had
minor allele frequencies of > 5% after the haplotypes had
been dropped through the pedigree (60 k set). Briefly, the
aims of the different simulation strategies were as follows.
Pedigrees 1 to 4 tested the effect of family size, with four
sire family sizes of 1, 2, 10, and 100. Pedigrees 5 to 8 were
real pedigrees for livestock and human populations, which
feature inbreeding loops and overlapping generations.
Including and excluding genotypes on parental individuals
in pedigrees 1 to 4 attempted to verify the importance of
parental genotypes. Genotyping the sires rather than the
last 2000 individuals in pedigrees 6 and 7 was designed to
test the effect of more (sires) and less (last 2000) sparse
relationships amongst genotyped individuals. To explore
the effect of SNP density, a SNP array with a density of
300,000 SNP per genome (10,000 SNP per chromosome)
was also created for the pedigree 1 Ne1000 dataset (300 k
set). To explore the effect of dataset size, four subsets of
pedigree 1 were created, comprising 100, 500, 1000, and all
2000 individuals. To assess the sampling error, eight repli-
cates of pedigree 1 Ne1000 were carried out.

Real datasets
Six real datasets (sheep, pig, beef cattle, dairy cattle, and
human) were used to test the algorithm, all of these

using SNP that had passed suitable sets of quality con-
trol criteria. The numbers of individuals genotyped, the
numbers of SNP used, and the chromosome number are
given in Table 1. The sheep and beef datasets had half-
sib designs. The pig dataset comprised a full-sib family
structure with highly related individuals and some half-
sibs. The dairy dataset comprised bulls with progeny,
young sires, and some bull dams. The pig dataset pedi-
gree and data structure were actually that of pedigree 5
in the simulated datasets. The human dataset pedigree
and data structure were actually that of pedigree 8 in
the simulated datasets.

Phasing settings for simulated data
The simulated datasets were phased using a wide range
of core and core plus tail lengths (CplusT) and using and
ignoring pedigree information. CplusT length encom-
passes the core length plus the two tail lengths of equal
size adjacent to each end of the core. For example, when
the core length is 100 and the CplusT length is 100, the
tail length is zero, and when the core length is 100 and
the CplusT length is 200, the tail length is 50 SNP. For
the 60 k SNP datasets, we varied core lengths from 100
to 2000 SNP and CplusT lengths from 100 to 2000 SNP.
For the 300 k SNP dataset core lengths varied from 400
to 10000 and CplusT length from 400 to 10000 SNP.

Phasing settings for real data
For the real datasets, core and CplusT lengths were
similar to those for the 60 k simulated datasets. For
each of the datasets, genotype error/missing genotype
thresholds (M/E%) of 0%, 1%, 2%, 3%, 4%, and 5% were
used and the pedigree information that was available
was used.

Results
Phasing performance
The method performed well in terms of percentage of
alleles correctly phased (% correct), percentage of alleles
incorrectly phased (% incorrect), and percentage of
alleles not phased (% not phased), across the wide spec-
trum of simulated scenarios when near optimal core and

Table 1 Phasing performance for real data sets

Dataset 1Nb individuals 2Nb SNP 3Core/CplusT length 4M/E% 5Time 6% phased

Sheep chr. 4 1019 2278 100/300 1.00 3 min 39 s 98.17

Sheep chr. 5 1016 1927 100/400 1.00 5 min 1 s 97.62

Pig chr. 1 2723 3999 100/500 0.00 364 min 96.87

Beef chr. 24 2171 874 100/300 0.00 17 min 8 s 98.42

Dairy chr. 1 5057 2296 100/400 0.00 456 min 97.99

Human chr. 1 879 4472 100/300 1.00 3 min 29 s 93.73
1Numbers of individuals in the dataset; 2Numbers of SNP to be phased; 3Optimal core and CplusT length parameter; 4Optimal missing genotype/genotype error
% (M/E%) error threshold parameter; 5Computation time measured on a 64 bit desktop with an Intel i7 3.07 GHz quad core processor running Linux was used to
measure computation time; computation time includes time required to parse and summarise the data and write out the results; 6Percentage of alleles phased.
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CplusT lengths were used. This was also the case in
terms of the percentage of alleles phased (% phased)
and % not phased across the wide spectrum of real data-
sets when near optimal core and CplusT lengths and M/
E% thresholds were used.
The results were not subject to large sampling varia-

tion, e.g., the mean % correct for the eight independent
replicates of pedigree 1 Ne1000 was 99.15%, with mini-
mum and maximum values of 99.11% and 99.19%,
respectively. Therefore, the summary results presented
in Table 2, for the most optimal core and CplusT
lengths for each simulated scenario, are based on a sin-
gle replicate of each scenario. The % correct was greater
than 97% and the % incorrect was less than 0.66% for
all simulated scenarios, with the exception of pedigree 8,
which was the smallest dataset with 879 genotyped indi-
viduals. The highest % correct (99.76) was observed for
pedigree 4 with parents genotyped and Ne1000. The low-
est % correct (95.01) was observed for pedigree 8 Ne100.
When the % correct was high, the % incorrect was low,
while when it was low, the % incorrect was still low.
This shows the algorithm’s robustness to error, even
when the overall phasing yield (in terms of % of alleles
phased) is low. The % phased was greater than 97.5%
for all the real datasets (Table 1), with the exception of
the human pedigree.
Ignoring pedigree information gave better % correct

than using it in ten out of the twelve comparisons possible
for Ne100, although the differences were small (Table 2).
For Ne1000, ignoring pedigree information gave better %
correct results in seven of the eleven comparisons and
gave worse results in four scenarios (each of which had a
half-sib design). However pedigree information generally
reduced the % incorrect (Table 2), meaning that pedigree

information could be interpreted as being of marginally
positive value. However differences were small in compari-
son to the absence of pedigree.
The algorithm was invariant to family structure. Pedi-

gree 1 comprised unrelated individuals, while pedigrees
2, 3, and 4 comprised half-sib designs with sire family
sizes of 2, 10, and 100 respectively. These pedigrees
showed very small differences in the % correct (< 0.5%
for Ne100 and < 0.65% for Ne1000) (Table 2) when all
individuals were genotyped. Results from real livestock
pedigrees confirmed these results, with very small differ-
ences in accuracy between sheep, pig and dairy cattle
pedigrees.
Genotype information on parents in pedigrees 2, 3,

and 4 gave slightly better results than not having it
(Table 2), with differences in % correct less than 1% in
all cases except for pedigree 2 Ne1000, for which the dif-
ference in % correct was close to 2%. It is possible that
these differences are due to the reduction in size of the
datasets rather than a real effect of having parents geno-
typed (discussed in the next section). Two genotyping
strategies were applied to pedigrees 6 and 7, one which
genotyped the sires in these pedigrees and another
which genotyped the 2000 most recently born indivi-
duals. The difference in these strategies was very small
and no consistent trend was discernable.
Pedigree 8 had the lowest number of individuals geno-

typed (879 individuals) and gave results that were
noticeably worse than those of other datasets. To further
explore the effect of dataset size, four subsets of the
pedigree 1 dataset, with a random 100, 500, and 1000
individuals, and all 2000 individuals, were used. The %
correct increased with increasing dataset size; the 100,
500, 1000, and 2000 individuals datasets gave % correct

Table 2 Percentage of alleles correctly/incorrectly phased by the most optimal setings1 for the simulated data sets

Ne 100 Ne 1000

with pedigree without pedigree with pedigree without pedigree

Pedigree 1 99.11/0.30 99.11/0.30

Pedigree 2 NPG2 97.85/0.43 98.49/0.63 97.73/0.29 97.88/0.39

Pedigree 2 PG3 98.85/0.49 99.03/0.42 99.70/0.17 99.48/0.17

Pedigree 3 NPG2 98.35/0.38 98.61/0.63 99.23/0.14 99.14/0.27

Pedigree 3 PG3 99.23/0.37 99.05/0.41 99.76/0.16 99.58/0.13

Pedigree 4 NPG2 98.20/0.41 98.61/0.63 98.19/0.41 98.61/0.63

Pedigree 4 PG3 99.35/0.31 99.29/0.32 99.74/0.20 99.59/0.15

Pedigree 5 97.59/0.42 98.28/0.60 99.30/0.30 99.31/0.22

Pedigree 6 sires 97.05/0.45 98.40/0.62 99.05/0.17 99.25/0.20

Pedigree 6 last 2000 98.24/0.39 98.24/0.39 99.34/0.20 99.42/0.26

Pedigree 7 sires 97.56/0.40 98.71/0.50 98.98/0.20 99.15/0.29

Pedigree 7 last 2000 96.86/0.46 98.40/0.66 98.85/0.20 99.34/0.26

Pedigree 8 95.01/1.10 96.67/1.39 96.02/0.57 96.36/1.01
1Optimal settings refer to the optimal core and CplusT lengths; core length was 100 SNP, CplusT length varied between 300 and 500 SNP; 2NPG indicates that
this dataset did not have parents genotyped; 3PG indicates that this dataset had parents genotyped.
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of 71.61%, 96.19%, 98.14%, and 99.11%, respectively,
suggesting that datasets of less than 1000 individuals are
too small for providing accurate phasing results.
The effect of SNP density was tested by comparing a

300 k density with the 60 k density for Pedigree 1
Ne1000. The results for the 300 k density were better
than those of the 60 k density in terms of both % cor-
rect and % incorrect (99.11% correct and 0.30% incor-
rect for 60 k and 99.61% correct and 0.21% incorrect for
300 k). Similar to the 60 k density, small-sized cores
and intermediate-sized CplusT gave the best results for
the 300 k density, with the best results being obtained
for a core of 400 SNP and a CplusT of 1200 SNP. Simi-
lar to the 60 k density, the 300 k density consistently
gave very low % incorrect (< 0.62%) with all core or
CplusT lengths, with the exception of those that were
very short (i.e. ≤ 800 SNP). Given appropriate adjust-
ment of core and CplusT length, the algorithm was
invariant to the two SNP densities tested, with core
lengths of about 5 cM and CplusT lengths of about
15 cM being close to optimal for both.
A wide range of core and CplusT lengths was explored

for each pedigree and data scenario and for each effective
population size. The observed trend across these scenar-
ios was similar, with results for pedigree 1 Ne1000 being
illustrative (Figures 3, 4, and 6). Very long cores and
CplusT’s gave lower performance in terms of % correct
because very long (e.g. 100 cM) haplotypes are more
varied and have a lower frequency, making both the iden-
tification of surrogates and the HLI more difficult. Extre-
mely short CplusTs and cores suffer from a lack of
combinatorial power, resulting in difficulty in partition-
ing and eliminating surrogates and in difficulty for the
haplotype imputation step to find unique pairs of haplo-
types that explain the genotype (due to there being too
many compatible haplotypes). The best results, in terms
of % correct, were generally obtained by using a short
core (100 SNP) and an intermediate CplusT length

(300 to 500 SNP). In terms of % incorrect, shorter
CplusT lengths (≤200 SNP) gave by far the worst results
due the lack of combinatorial power. Intermediate and
longer cores gave the best results, with generally less
than 0.2% error (Figure 4). Importantly, the algorithm
was robust to most deviations from the optimal core and
CplusT lengths within reasonably wide boundaries
(Figure 6). The sharp optimal frontier in Figure 6 sug-
gests that achieving 100% correctly phased alleles is not
possible at the SNP densities tested due to lack of combi-
natorial power. However in Figure 6, the points tend
to the bottom and to the right, effectively forming a par-
eto-front that constitutes a set of possible outcomes
dependent on the relative emphasis on % correct and %
incorrect. The sharp curve at the bottom right is fortui-
tous, as it shows good performance for both criteria.

Effect of the haplotype library imputation step
The benefit of the HLI step was evaluated by phasing
the Ne100 60 k datasets for the eight pedigrees of a

Figure 3 Effect of core and CplusT lengths on the percentage
of alleles correctly phased for pedigree 1 Ne1000.

Figure 4 Effect of core and CplusT lengths on the percentage
of alleles correctly phased for pedigree 1 Ne1000.

Figure 5 Percentage of alleles phased for the sheep
chromosome 4 dataset. Six M/E% thresholds (0%, 1%, 2%, 3%, 4%,
and 5%), a core length of 100 SNP and seven CplusT lengths were
used.
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single replicate of simulated data using the full LRPHLI
algorithm and the full algorithm with the HLI step
turned off. Across the eight pedigrees, the full algorithm
had an average of 97.51% correct and 0.69% incorrect,
while the full algorithm with the LHI step turned off
had an average of 83.15% correct and 0.97% incorrect.
We do not consider that this reflects the relative perfor-
mance of the Kong et al. [6] LRP algorithm compared
to the LRPHLI algorithm described here because several
additional steps in the LRP component of LRPHLI that
were included to reduce % incorrect have a heavy pen-
alty on the overall yield. However, LRPHLI can afford to
do this because the haplotype library imputation step
resurrects this lost yield.

Computation costs
The computation time required for the different datasets
for Ne1000 using cores of 100 SNP and CplusTs of 300
SNP ranged from less than three minutes to 321 min-
utes (Table 3). The trends in Table 3 and other results
not shown indicate that, while increases in dataset size,
relatedness/effective population size, and SNP density
each increase computation time, consistent trends across
all datasets and scenarios do not exist. The principle
computation bottleneck was the partitioning of surro-
gate parents into their paternal and maternal surrogate
parent clusters and this was directly related to the num-
bers of surrogate parents. The numbers of surrogate
parents in a dataset is determined by its size, its effective
population size, level of relatedness amongst its indivi-
duals, the proportion of genotype errors allowed for,
and the length of the CplusTs. More related individuals
are more likely to carry the same haplotypes. Shorter
CplusTs are more likely to result in more surrogates

because shorter haplotypes are more common than
longer ones and shorter CplusTs have less combinatorial
power to eliminate individuals as surrogates. These
interacting factors make predictions about computation
time difficult. However rules of thumb can be suggested
based on the following logic. Increasing size, relatedness,
and inbreeding levels increase the number of surrogate
parents in a dataset, which increases the computational
requirements, in some instances drastically. Increasing
CplusT length reduces the number of surrogates, thus
reducing the computational requirements. Higher levels
of relatedness and inbreeding can sustain longer CplusT.
Therefore knowledge of such features of a dataset can
be used to determine suitable core and CplusT lengths
to obtain a high % of phased alleles with reasonable
computational costs.
For example, for pedigree 5 Ne1000 and ignoring pedi-

gree information, the computation time was 179 min-
utes for a core length of 100 SNP and a CplusT length
of 300 SNP and only 39 minutes for a core length of
100 SNP and a CplusT length of 500 SNP, with little
difference in phasing yield. Optimal core and CplusT
lengths in terms of phasing accuracy coincided with
intermediate computational time requirements. Given
that phasing accuracy is robust to minor changes in
CplusT lengths around the optimum, the opportunity
exists for using slightly longer CplusT lengths with
minimal loss in phasing performance but major advan-
tages in terms of computation time (Figure 2, 3, and 4).

Figure 6 X-Y plot for percentage incorrectly phased and
percentage correctly phased for all core and CplusT lengths
tested on pedigree 1 Ne1000.

Table 3 Computation time1 required to phase 2000 2SNP
for the simulated Ne1000 data when using or ignoring
pedigree information

Number of
individuals

With
pedigree

Without
pedigree

Pedigree 1 2000 30 min 34 s

Pedigree 2 NPG3 1000 4 min 3 s 3 min 3 s

Pedigree 2 PG4 2000 39 min 21 s 26 min 58 s

Pedigree 3 NPG3 1000 7 min 56 s 5 min 20 s

Pedigree 3 PG4 1600 18 min 23 s 17 min 11 s

Pedigree 4 NPG3 1000 9 min30 s 50 min 27 s

Pedigree 4 PG4 1510 17 min 4 s 10 min 48 s

Pedigree 5 3000 106 min 37 s 179 min 52 s

Pedigree 6 sires 2578 78 min 22 s 39 min 43 s

Pedigree 6 last
2000

2000 48 min 24 s 321 min 27 s

Pedigree 7 sires 1777 23 min 47 s 22 min 18 s

Pedigree 7 last
2000

2000 54 min 1 s 74 min 15 s

Pedigree 8 879 4 min 14 s 2 min 41 s
1A 64 bit desktop with an Intel i7 3.07 GHz quad core processor running Linux
was used to measure computation time; computation time measured in
minutes and seconds includes time required to parse and summarise the data
and write out the results; 2using a core length of 100 SNP and a CplusT length
of 300 SNP for each dataset; 3NPG indicates that this dataset did not have
parents genotyped; 4PG indicates that this dataset had parents genotyped.
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Computation time is also affected by the number of
SNP to be phased. For example, the pedigree 1 Ne1000
dataset (core 800, CplusT 1200) took 83 minutes with
300 k SNP but only 30 minutes with 60 k SNP. The num-
ber of SNP does not increase computation time linearly
because greater SNP density gives greater power to elimi-
nate surrogates, which can reduce computation time.
Using pedigree information reduced the computation

time in the larger datasets, which had more relatedness
amongst the genotyped individuals, because both relat-
edness and large data set size cause more surrogate par-
ents (Table 3). Memory requirements were minimal;
less than 0.4 gigabytes, even for the largest datasets
(pedigree 5).

Comparison to fastPHASE
The first 1000 SNP of each of the eight replicates of
pedigree 1 Ne1000 were also phased using the default
settings of fastPHASE [4]. The mean % correct across
the 10 core lengths of 100 SNP across each of the eight
replicates was 91.0%, with the remainder being phased
incorrectly. The computation time was 13 hours for
each of these datasets. In comparison, LRPHLI com-
pleted the task for twice as many SNP in these datasets
in 30 minutes, 99.1% phased correctly. Although better
results may be possible with fastPHASE [4] if the default
settings had not been used, a very large difference would
likely remain between these methods in terms of speed
and accuracy.

Real data
In the real datasets, the LRPHLI algorithm performed
well in terms of % phased, % not phased, and computa-
tion time. With the exception of the human dataset, the
% phased was greater than 97.5% (Table 1). The human
dataset, which only had a 93.7% phased, was the smallest
dataset in terms of numbers of individuals genotyped
(879) and probably has a larger effective population size
than the livestock datasets. The highest % phased was for
the dairy cattle dataset (98.4%), which had the largest
number of individuals genotyped (Table 1). Across the
large spectra of core and CplusT lengths that were tested,
the highest % phased in each of the datasets was obtained
with relatively short core lengths and intermediate
CplusT lengths (results not shown because the patterns
were very similar to those for the simulated datasets).
The highest % phased was obtained with low M/E%

thresholds (e.g. 0 or 1%). The lower % phased obtained
with higher thresholds was probably due to ambiguity in
eliminating or partitioning surrogates and a consequen-
tial conflict in what the surrogates suggest the phase is,
which results in an uncalled phase for such an allele.
For shorter CplusT lengths, the % phased tended to be

lower with a 1% M/E% threshold than with a 0% M/E%
threshold but there was little difference between these
thresholds for intermediate CplusT lengths, because
intermediate CplusTs lengths were better able to com-
pensate for ambiguity introduced by accounting for M/E
% threshold than the short CplusTs lengths. This sug-
gests that in datasets with missing genotypes or geno-
typing errors, slightly longer CplusTs should be used in
conjunction with a low M/E% threshold.

Discussion
This study investigated an extended version of long-
range phasing, and combined it with haplotype library
imputation, resulting in an accurate and fast phasing
method. Phasing results of up to 99.5% correct in simu-
lated data and up to 98.5% phased in real data were
achieved. Computation time was very tractable even for
datasets of 5000 genotyped individuals and 300 k SNP
densities. This new LRPHLI algorithm outperformed
fastPHASE manyfold in both accuracy and speed, mak-
ing the routine phasing of datasets for genome-wide
association studies and genomic selection feasible. For
much larger datasets (e.g. 400,000 individuals), a similar
framework to the one presented here could be used but
with some additional steps [11]. This involves first phas-
ing small (random or strategic) subsets of the large data-
set using the complete LRPHLI algorithm described
herein, followed by phasing the remaining individuals
using the haplotype library imputation step alone. This
framework avoids much of the task of partitioning sur-
rogates parents into their paternal and maternal clusters,
which is the primary computation bottleneck in
LRPHLI.
The LRPHLI algorithm adds a number of components

to the original Kong et al. [6] LRP algorithm. These
include pedigree and pedigree free strategies for parti-
tioning of surrogate parents, the concepts of cores and
tails for more accurate surrogate parent definition, steps
to avoid errors (e.g. removal of surrogate parents who
are not different enough, using information from multi-
ple surrogates), steps to avoid low yields where recombi-
nation events create new haplotypes (haplotype library
imputation), and measures to handle missing genotype/
genotype error. It is the combination of these additions
that give the algorithm its robust performance.
A drawback of our proposed algorithm is that chro-

mosomes are partitioned into cores that are generally
not aligned with respect to each other. Strategies to
align cores along a chromosome include the use of pedi-
gree information (either explicitly or as part of a segre-
gation analysis), using overlapping cores to step across a
chromosome, or aligning based on the similarity
between clusters of surrogates for adjacent cores. This
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latter strategy could also be used to speed up the parti-
tioning of surrogate steps (i.e. good starting values),
while the segregation analysis strategy could also be
used to impute dense genotype or sequence information
in sparsely genotyped pedigrees [11], where scarcity
both refers to low density genotyping arrays and to
completely ungenotyped individuals in the pedigree.
Imputation of genotype data is currently part of many
national genetic evaluation systems, e.g. [12-15]. A
major advantage of the LRPHLI algorithm for phasing
and of the LRPHLI algorithm when combined with seg-
regation analysis for imputation of genotypes, is that
other phasing and imputation methods [13-16] require
more restrictive genotyping strategies, e.g. that both par-
ents are densely genotyped. The LRPHLI algorithm can
transfer information upwards, downwards and sideways
in a pedigree, similar to the algorithm outlined by Van-
Raden [12].
The haplotypes obtained from the LRPHLI algorithm

can be used directly in association studies. Because the
small error percentages (e.g. 0.5% incorrect) create pairs
or clusters of haplotypes that are very similar (e.g. 99.5%
identical) but that are identified as different by LRPHLI,
clustering these haplotypes into groups of similar haplo-
types could be useful.

Conclusions
The long-range phasing and haplotype library imputa-
tion algorithm performs well in both simulated (up to
99.5% correct) and real datasets (up to 98.5% phased)
and had low computation requirements, making the
routine phasing of high density SNP chip datasets feasi-
ble. The phasing performance was robust to effective
population size, pedigree and data structure, and SNP
density. The best results were obtained with short core
lengths (e.g. 100 SNP for 60 k SNP density and 400
SNP for 300 k SNP density) and intermediate CplusT
lengths (e.g. 300 SNP for 60 k SNP density and 1200
SNP for 300 k SNP density). The partitioning of surro-
gate parents into their paternal and maternal clusters
was the principle computation bottleneck and was
affected by the dataset size, effective population size,
and the degree of relatedness among the individuals.
Ignoring pedigree information had a negligible effect on
the phasing performance but did increase computation
time in the larger datasets.

AlphaPhase
The algorithm is implemented in a new software pack-
age called AlphaPhase, which was written in Fortran 95.
AlphaPhase is controlled by a parameter file and is
freely available for research purposes from http://sites.
google.com/site/hickeyjohn/alphaphase.

Appendix A
Detailed description of key steps in the LRPHLI algorithm
Step 2b: Partition Erdös 1 surrogates into surrogates of
the paternal or maternal gamete using the following
mutually exclusive strategies, which are listed in order
of the precedence:

i. If both parents of a proband are genotyped, pater-
nal (maternal) surrogate parents are identified as
those surrogate parents who are surrogate parents of
the father (mother) but not of the mother (father).
The remaining surrogates are banned from use at
any Erdös level for this proband.
ii. If the father of a proband is genotyped, surrogate
parents that are also surrogate parents of the father
are placed in the paternal surrogate parent cluster.
Maternal surrogate parents are identified by first
choosing a dummy mother. A dummy mother is
chosen by looping through the remaining surrogate
parents until the surrogate parent with greatest
numbers of opposing homozygote loci with the
father is found and if this individual has a count of
opposing homozygotes greater than 10% of the SNPs
in the core and tail in disagreement with the father
it is taken to be the dummy mother. The dummy
mother is assumed to be a maternal surrogate par-
ent. The remaining surrogate parents are iteratively
added to the maternal surrogate parent cluster if
they are not surrogate parents of one of the paternal
surrogate parents and are surrogate parents of the
dummy mother or one of the subsequently identified
maternal surrogate parents.
iii. If the mother of a proband is genotyped the par-
titioning is similar to that described in ii, but for the
mother.
iv. If neither parent is genotyped but pedigree infor-
mation is available, a dummy father (mother) is
identified as a surrogate parent who has a coefficient
of relationship of greater than a set threshold with
the sire (dam) of the proband and of less than a cer-
tain threshold with the dam (sire) of the proband.
Paternal (maternal) surrogate parents are identified
as those who are surrogate parents of the proband
and the dummy father (mother) but not the dummy
mother (father).
v. If the proband has offspring which are genotyped,
one of the offspring is chosen to be a dummy father
(with arbitrary gender allocation for simple presenta-
tion), the dummy father and other offspring which
are also surrogates of the dummy father are arbitra-
rily labelled the paternal surrogate parents. A
dummy mother is chosen by looping through the
remaining surrogate parents until a surrogate parent
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who is not a surrogate parent of the dummy father
and has a count of opposing homozygotes greater
than 10% of the SNPs in the core and tail in dis-
agreement with the dummy father is found. The
dummy mother is assumed to be a maternal surro-
gate parent. The remaining surrogate parents are
iteratively added to the paternal (maternal) surrogate
parent cluster if they are not surrogate parents of
one of the maternal (paternal) surrogate parents and
are surrogate parents of the dummy father (mother)
or one of the subsequently identified paternal
(maternal) surrogate parents.
vi. If there is no pedigree information available or
the surrogate parents have not been clustered by any
of the preceding methods, the k-medoids clustering
algorithm is invoked to divide the surrogate parents
into two clusters which are arbitrarily labelled pater-
nal and maternal. The clustering algorithm works
with a symmetrical matrix of dimension equal to the
number of surrogate parents and elements indicating
surrogacy amongst the surrogate parents, with 1’s
denoting surrogacy and 0’s otherwise. The two clus-
ters are initialised by ascribing the first surrogate
parent found and all surrogate parents who are also
surrogate parents of this surrogate parent to one
cluster and all surrogate parents who are not surro-
gate parents of this surrogate parent to the other
cluster. The medoids of the two clusters are repre-
sented by two vectors of length number of surrogate
parents, with each element containing the sum of 1’s
for that location divided by the square of the num-
ber of individuals currently in the cluster. The dis-
tance between each surrogate parent and the medoid
of both clusters is calculated as the average absolute
deviation of the elements in the row of the symme-
trical matrix from the corresponding element in the
medoid vector. Surrogate parents are moved to the
alternative cluster if the distance to the alternative
clusters medoid is less than the distance to its cur-
rent medoid. The medoids are recalculated when a
surrogate parent moves clusters and the algorithm
proceeds until convergence or the maximum per-
mitted iterations is reached. The maximum number
of iterations permitted is set to the number of surro-
gate parents of the proband.

Step 2c: Loop across all individuals carrying out the
following steps:

i. Individuals, which are not Erdös 1 surrogates of
the proband but whose count of opposing homozy-
gote loci with the proband only exceeds the thresh-
old for inclusion as a surrogate parent by a count of

less than the average difference of those genotyped
individuals that are not identified as surrogate par-
ents, are banned from use at any Erdös level for this
proband.
ii. Long-range phases all loci within the core for
both the paternal and maternal gametes by sequen-
tially stepping from Erdös level 1 to the maximum
Erdös level, until one of the stopping criteria is met.
As surrogates are accessed, they are banned from
use at higher Erdös levels. nTarget is the targeted
number of homozygote surrogate parents (including
the proband itself if it is homozygous) across which
information about phase is accumulated. Once nTar-
get is reached the stepping through the Erdös levels
stops, phase is declared if a proportion greater than
an error threshold (e.g. 10% error) of the nTarget
surrogate parents indicate that phase is in one direc-
tion, or a statistically significant proportion of the
surrogates indicates phase is on one direction rather
than the other. If the search through all surrogate
parents at all Erdös levels does not yield nTarget
homozygous surrogate parents phase is declared if
all surrogate parents which are found to be homozy-
gous at this locus indicate that phase is in one direc-
tion, or a statistically significant proportion of the
surrogate parents which are found indicate phase is
on one direction rather than the other.
iii. Check across all loci in the core that the phased
gametes are compatible with the genotype. If the
count of incompatible loci exceeds a threshold (e.g.
5%), all loci which are heterozygous or missing are
declared unphased at this stage.

Step 2e: Impute phase for gametes which are not com-
pletely phased by LRP by matching their phased loci to
haplotypes in the haplotype library. This matching is
carried out by one of the following steps which are
listed in the order of precedence:

i. If one of a proband’s gametes is completely phased
the library is searched for candidate haplotypes
which, when paired with the proband’s completely
phased gamete can explain the proband’s genotype
given a certain tolerance for error along the core. If
one candidate haplotype is identified it is assumed
to explain the phase of the unphased loci in the
core. If more than one candidate haplotype is identi-
fied, phase for the unphased loci is determined at
the loci where the candidate haplotypes agree. If no
candidate haplotype is identified phase for the
unphased loci is assumed to be the complement of
the phased loci of the phased gamete via the geno-
type and this new haplotype is added to the library.
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ii. If neither of the proband’s gametes is completely
phased the library is searched for candidate haplo-
types which agree given a certain tolerance for error
with the phased loci along one of the proband’s
gametes. If one candidate haplotype is found for the
paternal gamete and one candidate haplotype is
found for the maternal gamete these are paired and if
the sum agrees with the genotype at all loci given a
certain tolerance for error this pair of haplotypes is
assumed to explain the phase of the unphased loci in
the core. If one candidate haplotype is found for the
paternal gamete and more than one candidate haplo-
type is found for the maternal gamete the paternal
candidate and each of the maternal haplotypes are
paired and if only a single of these pairs agrees with
the genotype at all loci given a certain tolerance for
error this pair of haplotypes is assumed to explain the
phase of the unphased loci in the core. If more than
one of these pairs are compatible, phase for the
unphased loci is determined at the loci where the
candidate haplotypes agree. A similar step is carried
out where one candidate haplotype is found for the
maternal gamete and more than one candidate haplo-
type is found for the paternal gamete.
iii. If more than one candidate haplotype is found for
the paternal gamete and no candidate haplotype is
found for the maternal gamete, phase for the
unphased loci of the paternal gamete is determined
at the loci where the candidate haplotypes agree. A
similar step is carried out where more than one can-
didate haplotype is found for the maternal gamete
and no candidate haplotypes are found for the pater-
nal gamete.
iv. Probands which are still not completely phased
but have more than one candidate haplotype identi-
fied have these candidates exhaustively paired. If
only a single pair explains phase given a certain tol-
erance for error this pair of haplotypes is assumed
to explain the phase of the unphased loci in the
core. If more than 1 pair explains phase given a cer-
tain tolerance for error a k-medoids type clustering
algorithm (described above) is invoked to make two
clusters out of the candidate haplotypes. All loci in
the core of the proband being worked on have their
previously determined phase information deleted,
the homozygous loci for this proband are assumed
to have no genotyping error and are thus re-phased
de facto and phase for heterozygous loci for this pro-
band is determined at the loci where all the candi-
date haplotypes within a cluster agree. It is assumed
that one of the clusters represents the maternal hap-
lotype and the other cluster represents the paternal
haplotype.

Appendix B
Detailed description of the structures and genotyping
strategies for the eight pedigrees used to test
performance of the algorithm
Pedigree structure
Pedigree 1 comprised 2,000 “unrelated” individuals with
unknown parents. Pedigree 2 comprised 2,000 indivi-
duals from two generations (500 sires, 500 dams, and
1000 offspring). Pedigree 3 comprised 1,600 individuals
from two generations (100 sires, 500 dams, and 1000
offspring). Pedigree 4 comprised 1,510 individuals from
two generations (10 sires, 500 dams, and 1000 off-
spring). Pedigree 5 was a real pedigree of a commercial
pig population (courtesy of the Pig Improvement Com-
pany) comprising 6,242 individuals, across 16 genera-
tional tiers with the largest sire family size being 66
individuals. Pedigree 6 was obtained from an Australian
terminal sire sheep breed (courtesy of Sheep Genetics
Australia) comprising 9,557 individuals across 21 gen-
erational tiers with the largest sire family size being 142
individuals. Pedigree 7 represented the genotyped
Australian Holstein sires (courtesy of Australian Dairy
Herd Improvement Scheme) comprising 20,792 indivi-
duals, across 13 generational tiers with the largest sire
family size being 528 individuals. Pedigree 8 was a
human pedigree of genotyped individuals from the
ORCADES study in the Orkney Islands, Scotland [17],
comprising 12,294 individuals across 12 generational
tiers with the largest sire family being 8 individuals.
Genotyping strategy
For pedigree 1, all individuals were genotyped. For pedi-
grees 2, 3, and 4, either all individuals or only second
generation offspring were assumed genotyped. For pedi-
gree 5, the genotypes for 3,000 individuals were assumed
known, reflecting the same animals genotyped as in the
actual Pig Improvement Company dataset. For pedigrees
6 and 7, two genotyping strategies were implemented,
with either the last 2,000 individuals of the pedigree or
the sires (2,578 sires in pedigree 6 and 1,777 sires in
pedigree 7) genotyped. For pedigree 8, we used data
from all 749 individuals for which genotypes were avail-
able in the Orkney Complex Disease Study (ORCADES).
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