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Abstract

Genome-wide breeding value (GWEBV) estimation methods can be classified based on the prior distribution
assumptions of marker effects. Genome-wide BLUP methods assume a normal prior distribution for all markers with
a constant variance, and are computationally fast. In Bayesian methods, more flexible prior distributions of SNP
effects are applied that allow for very large SNP effects although most are small or even zero, but these prior
distributions are often also computationally demanding as they rely on Monte Carlo Markov chain sampling. In this
study, we adopted the Pareto principle to weight available marker loci, i.e., we consider that x% of the loci explain
(100 - x)% of the total genetic variance. Assuming this principle, it is also possible to define the variances of the
prior distribution of the ‘big’ and ‘small’ SNP. The relatively few large SNP explain a large proportion of the genetic
variance and the majority of the SNP show small effects and explain a minor proportion of the genetic variance.
We name this method MixP, where the prior distribution is a mixture of two normal distributions, i.e. one with a
big variance and one with a small variance. Simulation results, using a real Norwegian Red cattle pedigree, show
that MixP is at least as accurate as the other methods in all studied cases. This method also reduces the hyper-
parameters of the prior distribution from 2 (proportion and variance of SNP with big effects) to 1 (proportion of
SNP with big effects), assuming the overall genetic variance is known. The mixture of normal distribution prior
made it possible to solve the equations iteratively, which greatly reduced computation loads by two orders of
magnitude. In the era of marker density reaching million(s) and whole-genome sequence data, MixP provides a
computationally feasible Bayesian method of analysis.

Introduction
Genomic selection (GS) is currently being adopted by
the dairy cattle breeding industries around the world
[1]. Genome-wide breeding value (GWEBV) prediction
plays a pivotal role for this new technology. Its accu-
racy depends on the statistical methods used, the gen-
ome, the population structure, and trait heritability.
GWEBV estimation methods are categorized based on
the assumptions of their prior distributions of marker
effects. Genome-wide BLUP (GBLUP) methods e.g. [2],
assume a normal prior distribution for all marker loci
with a constant variance. In Bayesian methods, a more
flexible prior distribution of SNP effects can be applied
that allows for a few but with very large SNP effects
whilst most are small or even zero. However, Bayesian
methods often use Monte Carlo Markov chain

(MCMC) algorithms which make them computation-
ally demanding.
Meuwissen et al. [2] proposed BayesB for the estima-

tion of SNP effects, which assumes that a fraction (1 -
π) of the SNP have no effect and π SNP have an effect
with a t-distributed prior that is more thick tailed than
the normal distribution, i.e. it allows for a few SNP with
very large effects and many SNP with small ones. Based
on the work of [3] and [4] suggesting that normal priors
give similar results as t-distributed priors, Luan et al. [5]
used a mixture of two normal distributions as a prior,
with probability π of the SNP effects coming from a
normal distribution with a large variance and with prob-
ability (1 - π) from a normal distribution with a small
variance. This was also justified by the observation that
in practice GBLUP yields high accuracy [6], which sug-
gests that the best predictions are obtained if the SNP
with small effects are not neglected. This mixture prior
distribution has two unknown parameters, π, the var-
iance of the SNP with large effects. These parameters
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are difficult to estimate partly because the true distribu-
tion of the SNP effects is probably not a mixture of two
normal distributions.
The Pareto principle, or the 80:20 rule, is often

observed in economy and sociology [7]. It states that,
for many events, roughly 80% of the effects come from
the 20% biggest causes. This principle turned out to be
widely valid in many fields, and can be generalized to
(100 - x): x, where 0 < x ≤ 50. If x = 50, the effects are
all equal (50% of the effects cause 50% of the variance).
In this study, we tried to apply this principle for the
prior distribution of the SNP effects, i.e. the x% of the
SNP with the largest effects cause (100 - x)% of the
genetic variance (Vg). Given that π (= x/100) and using
the Pareto principle, the variances of the large and small
SNP effects are, respectively:

σ 2
1 = (1−π)Vg

πM

σ 2
2 = πVg

(1−π)M

}
(1)

where M is the number of SNP, such that
M(πσ 2

1 + (1 − π)σ 2
2 ) = Vg. Thus, assuming the overall

genetic variance is known, applying of the Pareto princi-
ple reduces the number of unknown parameters of the
prior distribution from 2 to 1, i.e. π.
The aim of this paper is to present this novel

approach using the Pareto principle applied on indivi-
dual marker loci (MixP), and to compare it with other
single SNP based GWEBV prediction methods in a real
Norwegian Red cattle (NRF) pedigree, and on a real
wheat dataset.

Methods
The MixP method
For the estimation of SNP effects, we used the Iterative
Conditional Expectation (ICE) algorithm of Meuwissen
et al. [4]. The ICE algorithm is similar to the Iterative
Conditional Mode (ICM) algorithm of [8,9], except that
it estimates the mean instead of the mode of the SNP
effects. The latter is because the posterior of the SNP
effects may be bimodal [10], in which case estimation of
the mode does not make much sense (both modes may
be quite far away from the mean). In order to simplify
the estimation process, we will use a mixture of two
normal distributions, with a 0 mean and variances σ 2

1

and σ 2
2 , respectively, as a prior for the SNP effects,

instead of the Spike and Slab distribution [11,12] that
was used by [4].
The normal and Laplacian distributions are reported

to yield similar results [9,13]. The latter is a more realis-
tic distribution for gene effects [14]. Thus, the prior dis-
tribution of the SNP effects is assumed as a mixture of
normals:

p(gi) = πφ(gi|0, σ 2
1 ) + (1 − π)φ(gi|0, σ 2

2 )

where gi is the effect of SNP i; π is the probability that
the SNP effect belongs to the distribution of larger var-
iance; φ(·|μ, σ 2

· ) is the normal distribution density func-
tion with mean μ and variance σ 2

· . Variances of the
large and small SNP effects are σ 2

1 and σ 2
2 , respectively

and are known from the Pareto principle (equation (1))
given that π is known. The model for the records is:

y = μ1 +
∑
i

bigi + e

where y is a (n × 1) vector of n records, μ is the over-
all mean; bi is a (m × 1) vector of the m ’standardized’
SNP genotypes, i.e.,

bi =
−2pi√
2pi(1−pi)

, 1−2pi√
2pi(1−pi)

, or 2(1−pi)√
2pi(1−pi)

for SNP genotype

‘0 0’, ‘0 1’, or ‘1 1’, respectively, and SNP allele frequency
pi; gi is the effect of the ith SNP genotype; e is the vec-
tor of environmental effects, with Var(e) = Iσ 2

e ; and
summation is over all SNP. The algorithm estimates the
effect of every SNP in turn in an iterative manner,
where the effects of all other SNP are assumed to equal
their current estimates in the iteration. In iteration [k],
let ỹi denote the records corrected for μ and for current
solutions of all other SNP effects, except SNP i, i.e.

ỹi = y − 1μ −
∑
j�=i

bjĝj (2)

The expectation of the effect of SNP i given ỹi is writ-
ten out as:

ĝi =

∫
giφ(ỹi|bigi, Iσ 2

e )p(gi)δgi∫
φ(ỹi|bigi, Iσ 2

e )p(gi)δgi

=
πL1iĝ1i + (1 − π)L2iĝ2i

πL1i + (1 − π)L2i

(3)

where L1i =
∫

φ(ỹi|bigi, Iσ 2
e )φ(gi|0, σ 2

1 )δgi is the likeli-

hood of the data ỹi, i.e. L1i ∝ |V1i|−
1
2 exp(− 1

2 ỹ’iV
−1
1i ỹi),

where V1i = bib’iσ 2
1 + Iσ 2

e . Analogously, L2i is defined
with σ 2

2 replacing σ 2
1 . In the numerator,

L1iĝ1i =
∫
giφ(ỹi|bigi, Iσ 2

e )φ(gi|0, σ 2
1 )δgi, where ĝ1i is the

standard BLUP estimate of gi assuming that the prior
variance of gi is σ 2

1 . Analogously, ĝ2i is calculated assum-
ing a prior variance of σ 2

2 .
Thus, ĝi is the weighted mean of BLUP estimates of gi

assuming that the prior variance of gi is either σ 2
1 or σ 2

2
and where the weights equal the posterior probability of
either belonging to the first (πL1i) or to the second dis-
tribution ((1 - π)L2i). As described above, the calculation
of L1i requires the inversion of the V1i matrix, but the
Appendix shows how to avoid this matrix inversion.
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Equation (3) is applied to every SNP in turn, whilst
updating the values of ỹi for the new solutions using
Equation (2). The mean is updated by the equation:

μ =
1’(y − ∑

j bjĝj)

n

Iteration is continued until the sum of the squares of
the changes become less that 10-5 times the sum of the
squares of the solutions. We refer this method as MixP.

Other statistical methods
Two other estimation methods were compared. BayesB
is implemented as in [5], where the SNP with a small
effect are assumed to come from a normal distribution
with a small variance (instead of having no effect as in
[2]). The variance of these small effects is sampled, and
thus these small effects may be seen as modeling the
polygenic background genes. As in the original BayesB,
some SNP are allowed to have a big effect. The number
of iterations for BayesB is 10000, and that for burn-in is
3000. The degrees of freedom for the inverse c2 distri-
bution is 4.2. GBLUP is also used, as described in [2].

Materials
Norwegian Red cattle
The Norwegian Red cattle pedigree used in this study
consisted of 19523 individuals distributed over eight
generations kindly provided by GENO AS (http://www.
geno.no). The data also contained an identifier indicat-
ing whether a bull was genotyped or not. A total of
2165 bulls were genotyped including 104 imported bulls.
We based our simulations on this real pedigree and
assumed that the genotyped animals were those in the
pedigree. The cattle population data was first sorted out
to make sure that the parents were placed before their
offspring. The 1915 oldest genotyped bulls were marked
as the training set, and the youngest 250 bulls were
marked as the evaluation set, i.e. for which EBV are pre-
dicted. The total genetic variance Vg and number of
QTL were assumed as known parameters in this study.

Genome structure
The parents of unknown origin were sampled from an
ideal population of effective size 200 in each scenario,
which was simulated for 10000 generations to achieve a
mutation drift balance and linkage disequilibrium
between the loci. The genome consisted of 1 Morgan/
108 base-pairs. The mutation rate was 10-8 per base-pair
per meiosis. Markers and QTL loci were randomly
selected amongst those with an allele frequency greater
than 0.05. The number of markers corresponded to
those inherited from the ideal population, whereas var-
ious numbers of QTL and heritabilities were simulated.

QTL effects were sampled from a Laplace distribution
with a 0 mean and scale parameter = 1. The genotypes
of the last generation were gene-dropped into the sorted
real population pedigree. No additional mutation occurs
at this stage. The 1915 training bulls were genotyped
and phenotyped, and the 250 evaluation bulls were only
genotyped. The heritabilities, h2chr, used here should be
interpreted as per chromosome heritabilities, i.e. they
are about 30 times smaller than the total trait heritabil-
ities (or reliabilities in case of daughter-yield-deviations).

Scenarios
Three scenario parameters, i.e., chromosome heritability
(h2chr = .01, · · · .05), marker density (Nmkr = 100, 200,
500, 1000, 1500), and number of QTL per chromosome
(NQTL = 5, 30, 100) varied in the simulation study. QTL
were sampled randomly from the mutated loci in the
ideal population simulation. Marker loci were then
sampled randomly with a minimum allele frequency
(MAF) of 0.05. Each scenario was repeated 100 times.
The simulated genetic and environmental variances
were also used to analyze the data by GBLUP, BayesB
and MixP. The π value used for MixP was NQTL/Nmrk, i.
e. the ratio of number of QTL simulated to that of mar-
kers used.

Real data analysis
The publicly available wheat dataset as described in [15]
was used to test the methods on a real dataset. This
dataset consisted 599 wheat lines. Grain yields in four
different environments were recorded. These lines were
typed at 1,447 loci. Markers with an allele frequency
between 0.05 and 0.95 were used for the analysis. Ten
replicates of a ten-fold cross-validation were done by
randomly and evenly dividing the lines into 10 groups.
In each replicate, each group was used as a validating
set in turn. The correlation coefficients between
GWEBV and phenotypes were averaged across all the
validation folds and replicates for grain yield in each
environment. The estimates of π for method MixP were
optimized through a grid search with a step size 0.01
between 0.01 and 0.50. The heritability of grain yields
used for the analysis was 0.34, 0.30, 0.41 and 0.37 for
environment 1 to 4, respectively [15].

Results
Accuracy of GWEBV estimations
Accuracy of GWEBV estimations was measured by the
correlation coefficient between GWEBV and true geno-
type values. Figures 1 and 2 show the accuracy of the
alternative scenarios.
From Figures 1 and 2, we can see that results from

MixP and BayesB were very similar and better than the
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GBLUP methods. A comparison between Figures 1 and
2 showed that the accuracy increased with h2chr and
Nmkr. Accuracy trends on NQTL differed: the accuracy of
MixP and BayesB decreased with increasing NQTL, as
was found by [16]. The GBLUP method was as good as
BayesB and MixP when the number of QTL is 100.
It may also be noted that the accuracy of GBLUP was

very much independent of the number of QTL, which is
expected since GBLUP does not give extra weight to the
SNP with big effects. Hence, it does not benefit from
the fact that a few genes have a big effect. This can also
be seen from the formula for the accuracy of GBLUP, as
shown by [17] and [18], which depends on the number
of independent segments in the genome, but not on the
actual number of QTL.

Results with the wheat dataset
Table 1 summarizes the accuracies of the three meth-
ods, GBLUP, MixP and BayesB, on the wheat yields in

all four available environments and shows that they are
very similar. The estimates of π, obtained by 10-fold
cross-validation, were quite high, indicating that many
markers had a large effect on the traits. The curve relat-
ing prediction accuracy versus π was fairly flat for values
of π >0.2 for all four yields (results not shown). Results
of π = 0.2 for MixP are also listed in Table 1. Since π is
not known in the wheat data, five alternative values
were evaluated (0.05, 0.1, 0.2, 0.3 and 0.4) in the BayesB
method. Their accuracies are very flat, i.e., no accuracy
difference is greater than 0.01 within each trait. Esti-
mates of π that give the top estimates for BayesB are
also listed in Table 1.

Computational speeds
Table 2 shows the relative computational speeds, mea-
sured in CPU time of each method. With an Intel Cor-
e™Duo CPU E8500, the computational time needed for
the GBLUP method is 0.14, 0.34, 0.72 and 1.13 seconds
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Figure 1 Comparison of accuracies of BayesB, GBLUP, and MixP with a heritability per chromosome = 0.01.
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Figure 2 Comparison of accuracies of BayesB, GBLUP, and MixP with a heritability per chromosome = 0.03.
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for 200, 500, 1000 and 1500 markers, respectively. Con-
vergence was assumed for MixP and GBLUP when the
sum of the squares of the deviations of the estimates of
the SNP effects between subsequent iterations relative
to the total sum of the squares of the estimates of the
SNP effects was smaller than 10-5. Of all the scenarios,
GBLUP is the fastest. The speed of MixP is in the same
order of magnitude of that of GBLUP. BayesB is more
than two orders of magnitude slower. The MixP algo-
rithm typically converged within 50 iterations, and
always converged in more than 4000 datasets.

Discussion
Here we applied the Pareto principle to estimate gen-
ome-wide EBV (GWEBV). Because a simple prior distri-
bution was used, i.e. a mixture of normal distributions,
an iterative method to calculate the BayesB type of
GWEBV was obtained, which was called MixP. MixP
yielded accuracies that were very similar to BayesB (Fig-
ures 1 and 2). The latter is not surprising because the
prior distributions of both MixP and BayesB are mixture
distributions, putting a lot of weight on a few SNP with
large effects and little weight on many SNP with small
effects.
For 100 or more QTL per chromosome, i.e. for more

than 3000 QTL in a 30 chromosome genome with a
marker density of 1500 per chromosome, there was no
significant difference between MixP and GBLUP. Thus,
the advantage of allowing for large SNP effects
decreased when the number of QTL became large,
which was also observed by Daetwyler et al. [16].
Because the estimated π values for grain yield were high
(between 0.16 and 0.49), it appears that grain yield was
also affected by many QTL, which explained the small

differences in accuracy between MixP and GBLUP
(Table 1). With the same wheat dataset, Crossa et al.
[15] reported a slightly higher accuracy by a few per-
cents than that found here, but this may be explained
by the fact that they simultaneously fitted a polygenic
effect, which was not done here. The use of the Pareto
principle reduced the number of hyper-parameters, i.e.
parameters of the prior distribution, from 3 (π, σ 2

1 , and
σ 2
g ) to 2 (π and the total genetic variance Vg). We will

assume here that the total genetic variance was known.
An estimate of Vg could be obtained easily using the
GBLUP model and a variance component estimation,
which would provide an approximately unbiased esti-
mate. If the total genetic variance was known, the num-
ber of parameters would be reduced to 1 (π), which
could be estimated by cross-validation [19] in real data
situations.
The reduction in number of parameters due to the use

of the Pareto principle avoids the need for a multi-para-
meter cross-validation (for π, σ 2

1 , and σ 2
2 ), which implies

searching through a grid of parameter combinations. If
however the multi-parameter cross validation results in
a parameter combination that does not adhere to the
Pareto principle and is significantly better than the best
Pareto principle parameter combination, multi-para-
meter cross-validation should be preferred to the Pareto
principle. The latter will require a very large dataset to
clearly demonstrate a significant deviation of the Pareto
rule.
The mean of the posterior distribution was used here

to estimate SNP effects and to predict genetic values,
which implemented the ICE algorithm of [4]. Alterna-
tively, the posterior mode could have been used, which
would have resulted in the ICM algorithm [8,9]. How-
ever, the use of a mixture of normals as a prior may
result in a bimodal posterior distribution, see [10]. In
the case of a mixture of Laplacian distributions, bimod-
ality did indeed occur [4]. In the case of a bimodal pos-
terior, the mode of the distribution depends on which of
the two modes happens to have the higher probability
density, and may thus differ widely even when the pos-
terior distributions are quite similar. It is well estab-
lished in statistics that the posterior mean maximizes
the accuracy of the SNP effects and consequently yields
most accurate GEBV. Since this argument did not
depend on the posterior being bimodal or not, we esti-
mated the mean of all the considered posterior distribu-
tions, as described by equation (3).
Figure 3 shows the accuracy of GWEBV estimation

with various π. Only the scenarios involving a number
of markers of 1500 and h2CHR = 0.03 were plotted. The
prior π was used from 0.001 to 0.01 with a 0.001 step,
and then to 0.50 with a 0.01 step. Accuracies were

Table 1 Accuracies of GBLUP, MixP and BayesB for the
prediction of grain yield in four environments called 1-4
in wheat

Yields 1 2 3 4

GBLUP 0.53 0.50 0.39 0.46

BayesB 0.52 0.49 0.38 0.44

(π) 0.40 0.40 0.10 0.40

MixP 0.53 0.50 0.40 0.46

(π) 0.49 0.49 0.16 0.33

MixP (π = 0.2) 0.52 0.49 0.40 0.45

Table 2 Relative computer CPU times using GBLUP, MixP
and BayesB (the CPU time of GBLUP was set to 1

Number of SNP 100 200 500 1000 1500

GBLUP 1.0 1.0 1.0 1.0 1.0

MixP 1.2 1.2 1.2 1.3 1.3

BayesB 242.1 286.2 337.0 388.4 401.1
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averaged over 200 repeats. The results show that unless
π was not assumed to be much too small and the num-
ber of QTL was not small (in which case the QTL
might have been mapped directly) the accuracy was not
very sensitive to π. Similar graphs were obtained for the
other scenarios (results not shown).
Alternatively, the two hyper-parameters (π, σ 2

1 ) can be
estimated by MCMC estimation which 1) increases
computation time significantly, and 2) may result in
hyper-parameter estimates that are adapted to the cur-
rent data, and will not perform well when used to pre-
dict records outside the current data, as is needed for
genomic selection. An advantage of the MCMC algo-
rithm is that the sampling also results in standard errors
of the estimates. In the current algorithm, standard
errors may be obtained from a parametric bootstrapping
approach [20]. In this approach, replicated simulated
data sets are obtained, where the estimates of the real
data are to be taken as the true effects and randomly
sampled error terms from the normal distribution are
added to obtain simulated records. By estimating the
SNP effects of the replicated data sets, the standard
deviation of the SNP effects is obtained.
The Pareto principle assumes a small but non-zero

effect for the SNP with small effects, whereas the origi-
nal BayesB of [2] assumed no effect for such SNP. The
assumption that the small SNP effects are real, implicitly
implies that a polygenic effect is fitted where the mar-
ker-based relationship matrix is used to model the rela-
tionships between the animals. In the current and other
simulation studies, this is usually not needed, as there
are no background genetic effects next to the simulated
QTL. However in real data, the fitting of a polygenic
effect was found to outperform methods that did not
allow for such polygenic effects [5]. In fact, in many

cases, the fitting of only one polygenic effect, i.e.
GBLUP, was found to yield the highest accuracy [1].
However, it may be expected that the increasing density
of the SNP chips facilitates pinpointing QTL positions
and methods such as BayesB and MixP will become
relatively more accurate. It may also be noted that with
π = 0.5, MixP reduces to GBLUP, i.e. optimizing the
value of π can automatically result in GBLUP.
The simulation results presented here assumed only

one chromosome, whereas most species have many
chromosomes. This was however compensated for by
simulating only a small (per chromosome) heritability.
Using the equation for accuracy from [17] and [18], we
can see that accuracies remain unchanged if the genome
size and the heritability are reduced simultaneously and
proportionally, i.e.:

r2 =
Nh2

Nh2 + 4NeLv

where N is the number of training records, L is the
genome size, 4NeL is the actual number of chromosome
segments from population genetics results, v is the ratio
of effective and actual segments, so 4NeLv is the effec-
tive number of segments. This proportional reduction of
the genome size and heritability can greatly reduce the
simulation time, i.e., only around 1/30 of the computer
time was needed here. Thus, using h2 = h2chr · L, we can
compare the results obtained here with other results
using a full genome size.
The main advantage of MixP over BayesB is that MixP

is more than two orders of magnitude faster (Table 2).
This is due to the fact that BayesB requires MCMC
sampling and thus many cycles in order to obtain an
accurate estimate of the mean of the parameters,
whereas MixP requires a limited number of iterations.
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Figure 3 Accuracies with different prior probabilities of SNP having a large effect on MixP with heritability per chromosome = 0.03
and 1500 markers, the vertical line indicates where π = NQTL/1500.
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Hence, MixP will be able to handle high density SNP
chips such as the currently available bovine 500-800k
SNP chips, whereas the MCMC based methods such as
BayesB are computationally too demanding to apply to
half a million or more SNP and many thousands of
training records.

Appendix
Calculation of multivariate log-likelihood using
Henderson’s mixed model equations
Let us assume the following model which fits a single
SNP effect:

y = bg + e

where y is a (n × 1) vector of records; b is a (n × 1)
vector of standardized SNP genotypes, g is the marker
effect of a single SNP (Var(g) = s2), and e is a vector of
error effects (Var(e) = Iσ 2

e ). The log-likelihood of this
model comes from the multivariate normal distribution:

LogL = C − .5 · log(|V|) − .5 · ey′V−1y

where C is a constant and V = (Iσ 2
e + bb′σ 2). The

determinant of V can be calculated using only scalars:

|V| = (σ 2
e )

n(b’b
σ 2

σ 2
e
+ 1)

And since [21]:

V−1 =
I

σ 2
− bb’

(b’b + σ 2

σ 2
1
)σ 2

we have:

y’V−1y = σ−2(y’y − y’bĝ)

where ĝ is the BLUP solution of g:

ĝ =
b’y

b’b + σ 2

σ 2
1

Thus, the calculation of y’V-1y requires only some
products of vector (y’y and y’b) and the calculation of ĝ,
which was needed anyway in order to update the solu-
tions in MixP.
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