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Abstract

Background: Structural equation models (SEM) are used to model multiple traits and the casual links among them.
The number of different causal structures that can be used to fit a SEM is typically very large, even when only a
few traits are studied. In recent applications of SEM in quantitative genetics mixed model settings, causal structures
were pre-selected based on prior beliefs alone. Alternatively, there are algorithms that search for structures that are
compatible with the joint distribution of the data. However, such a search cannot be performed directly on the
joint distribution of the phenotypes since causal relationships are possibly masked by genetic covariances. In this
context, the application of the Inductive Causation (IC) algorithm to the joint distribution of phenotypes
conditional to unobservable genetic effects has been proposed.

Methods: Here, we applied this approach to five traits in European quail: birth weight (BW), weight at 35 days of
age (W35), age at first egg (AFE), average egg weight from 77 to 110 days of age (AEW), and number of eggs laid
in the same period (NE). We have focused the discussion on the challenges and difficulties resulting from applying
this method to field data. Statistical decisions regarding partial correlations were based on different Highest
Posterior Density (HPD) interval contents and models based on the selected causal structures were compared
using the Deviance Information Criterion (DIC). In addition, we used temporal information to perform additional
edge orienting, overriding the algorithm output when necessary.

Results: As a result, the final causal structure consisted of two separated substructures: BW®AEW and
W35®AFE®NE, where an arrow represents a direct effect. Comparison between a SEM with the selected structure
and a Multiple Trait Animal Model using DIC indicated that the SEM is more plausible.

Conclusions: Coupling prior knowledge with the output provided by the IC algorithm allowed further learning
regarding phenotypic causal structures when compared to standard mixed effects SEM applications.

Background
Structural equation models or SEM [1,2] are used to
model multiple traits and functional links among them,
which may be interpreted as causal relationships. These
models were adapted for the context of quantitative
genetics mixed models by [3], and henceforth applied
and extended by a number of authors [4-11].
Fitting SEM requires choosing a causal structure a

priori. This structure describes qualitatively the causal
relationships among traits by determining the subset of

traits that imposes causal influence on each phenotype
studied. By fitting a SEM, it is possible then to infer the
magnitude of each causal relationship pertaining to the
causal structure, which is quantified by model para-
meters called structural coefficients. However, choosing
the causal structure may be cumbersome, given the typi-
cally very large space of possible causal hypotheses, even
when only a few traits are studied. The choice of causal
structures for the aforementioned SEM applications that
followed the work of [3] were performed on the basis of
prior beliefs, resulting in poor exploration of structures
spaces.
Methodologies such as the IC algorithm [12,13] make

it possible to search for recursive causal structures that
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are compatible with the joint probability distribution of
the variables considered. Therefore, applying these
methodologies allows the selection of causal structures
without relying on prior knowledge alone. Nonetheless,
such algorithms are constructed based on specific
assumptions regarding the data, such as the causal suffi-
ciency assumption (for more details, see [12,14]). Under
this assumption, the residuals of the SEM for which the
causal structure will be chosen are regarded as indepen-
dent between traits. This construction is necessary to
establish the connection between the selected causal
structures and the joint probability distribution under
study, such that d-separations [12,14] in causal struc-
tures among traits are reflected as null partial correla-
tions. Under this scenario, the IC algorithm takes a
correlation matrix as input and searches for causal
structures that are capable of producing that matrix,
with its conditional dependencies and independencies.
However, multiple phenotypes may present unobserved
correlated genetic effects which confound such search,
as discussed by Valente et al. [15]. When using mixed
effects SEM to represent this scenario, this confounding
may take place even if model residuals are regarded as
independent. As an alternative, Valente et al. [15] pro-
posed a methodology which couples Bayesian model fit-
ting and the application of the IC algorithm to the joint
distribution of phenotypes conditional on the genetic
effects.
With the purpose of validating and illustrating their

method, Valente et al. [15] applied it to simulated data
based on different scenarios. Here, we present the first
application of such methodology to a real data set, by
exploring the space of causal structures among five pro-
ductive and reproductive traits in European quail. The
discussion is focused on the challenges and benefits
resulting from applying this method to field data, as
well as on proposing approaches to overcome such
challenges.

Methods
Data
The data refer to 849 female European quail (Coturnix
coturnix coturnix) from six distinguished hatch seasons.
The birds were raised in an experimental station, with
ad libitum access to water and 2, 900 kcal/kg and 28%
crude protein diet. They were kept on the floor until 35
days of age, and then transferred to individual cages,
and provided a laying diet henceforth. Five traits were
analyzed: birth weight (BW), weight at 35 days of age
(W35), age at first egg (AFE), average egg weight from
77 to 110 days of age (AEW), and number of eggs laid
in the same period (NE). Measurements for all five traits
were available for every bird, with no missing data.
Means and standard deviations for each trait are

presented in Table 1. Additionally, the analysis consid-
ered pedigree information, containing 10, 680
individuals.

Structural equation models
The SEM used to fit the data may be represented as
[3,15]:

y = (� ⊗ In) y + Xβ + Zu + e, (1)

with the joint distribution of vectors u and e as:
[
u
e

]
∼ N

{[
0
0

]
,
[
G0 ⊗ A 0

0 �0 ⊗ In

]}
, (2)

where y, u and e are, respectively, vectors of phenoty-
pic records, additive genetic effects and model residuals
for t traits, sorted by trait and subject within trait; b is a
vector containing the (fixed) effects of hatch season for
each trait; X and Z are incidence matrices relating
effects in b and u to y; Λ is a (t × t) matrix with zeroes
on the diagonal and with structural coefficients or zer-
oes on the off-diagonal (the causal structure defines
which entries contain free parameters and which entries
are constrained to 0); G0 and Ψ0 are the additive genetic
and residual covariance matrices, respectively; and A is
the genetic relationship matrix, constructed from pedi-
gree information. The model given by (1) may be rewrit-
ten as:

[Itn − (� ⊗ In)] y = Xβ + Zu + e, (3)

such that the so-called reduced model is expressed as:

y = [Itn − (� ⊗ In)]−1Xβ + [Itn − (� ⊗ In)]−1Zu+

[Itn − (� ⊗ In)]−1e. (4)

Therefore,

p
(
y | �, β,u,�0

) ∼ N
{
[Itn − (� ⊗ In)]−1 (Xβ + Zu) ,

[Itn − (� ⊗ In)]−1�[Itn − (� ⊗ In)]′
−1

}
, (5)

Table 1 Mean and standard deviation (SD) for each trait

Traita Mean SD

BW 10.06 0.94

W35 262.30 25.13

AFE 53.32 10.14

AEW 13.58 1.29

NE 29.98 7.42
a BW = birth weight (g); W35 = weight at 35 days (g); AFE = age at first egg
(days); AEW = average egg weight from 77 to 110 days (g); NE = number of
eggs laid from 77 to 110 days
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where Ψ = Ψ0⊗In.

Recursive causal structure selection
Selection of causal structure was performed by following
the methods presented by [15]. As mentioned by these
authors, there are algorithms that search for recursive
causal structures (i.e. causal structures with no cycles or
feedback relationships between traits) assuming that
conditional independencies in the joint probability dis-
tribution of the studied variables mirror d-separations in
the causal structure (for more details, see [12,14-16]).
One of such algorithms is the Inductive Causation (IC)
algorithm, which is able to search, within typically vast
causal structure spaces, for a class of minimal structures
that are compatible with the conditional independencies
carried by the joint distribution of the data. This class
consists of statistically equivalent causal structures that
impose the same set of stable conditional independen-
cies in the joint distribution (i.e. they cannot be distin-
guished on the basis of data evidence) and may be
represented by a partially oriented graph, i.e., a causal
structure carrying directed and undirected edges, the
latter representing causal connections with unspecified
causal direction. The edges that are left undirected by
the algorithm may present one direction or the other in
different structures within the class, such that no direc-
tion results in causal cycles or further unshielded colli-
ders (sub-structures consisting of unlinked vertices with
a common child, such as yj® yj’’ ¬ yj’, where j, j’, and j’’
are indexes indicating three different phenotypic traits,
and yj® yj’ indicates that yj directly affects yj’). The IC
algorithm, when applied to a set P of t phenotypic traits,
can be described as follows:
Step 1. For each pair of phenotypic traits yj and yj’ (j ≠

j’ = 1, 2, ..., t) in P, search for a set of traits Sjj’ such
that yj is independent of yj’ given Sjj’. If yj and yj’ are
dependent for every possible Sjj’, connect yj and yj’ with
an undirected edge. This step returns an undirected
graph U.
Step 2. For each pair of non-adjacent traits yj and yj’

with a common adjacent trait yj’’ in U (i.e., yj - yj’’ - yj’),
search for a set Sjj’ containing yj’’ such that yj is indepen-
dent of yj’ conditional on Sjj’. If there is no such set,
then add arrowheads pointing at yj ’’ (yj® yj ’ ’ ¬ yj ’).
Otherwise, continue.
Step 3. In the partially oriented graph returned by the

previous step, orient as many undirected edges as possi-
ble in such a way that it does not result in new
unshielded colliders or in cycles.
An important point to observe regarding the study of

causal structures among phenotypic traits is that even if
the residual covariance matrix is considered as diagonal,
which is a consequence of the causal sufficiency
assumption, unobserved correlated genetic effects act as

sources of confounding [15,16]. Such feature damages
the connection between causal structures and joint
probabilities such that d-separations in the former are
not expected to be reflected as conditional independen-
cies in the latter. However, conditionally on the genetic
effects, this connection is restored. Assessing this condi-
tional probability distribution is possible since such
effects can be ‘controlled’ based on a genetic distance
matrix (e.g. a genetic relationship matrix). The condi-
tional covariance matrix of y given u can be obtained by
fitting a standard multiple trait animal model (MTAM,
[17]) and obtaining the estimated residual covariance
matrix, here represented by R∗

0 . In some systems, other
factors (e.g. correlated maternal effects) may also impose
confounding in the search, and in these cases they
should also be incorporated in the MTAM from which
R∗
0 will be taken as the algorithm’s input. Using Baye-

sian data analysis with a Markov chain Monte Carlo
(MCMC) implementation, the following approach was
proposed by [15]:
Step 1. Fit a MTAM and draw samples from the pos-

terior distribution of R∗
0 .

Step 2. Apply the IC algorithm to the posterior sam-
ples of R∗

0 to make the statistical decisions required.
Specifically, for each query about the statistical indepen-
dence between phenotypes yj and yj’ (j ≠ j’ = 1, 2, ..., t)
given a set of traits S and, implicitly, the genetic effects:

a) Obtain the posterior distribution of residual par-
tial correlation rj, j’|S. These partial correlations are
functions of R∗

0 . Therefore, samples from their pos-
terior distribution can be obtained by computing the
correlation at each sample drawn from the posterior
distribution of R∗

0 .
b) Compute the highest posterior density (HPD)
interval with some specified probability content for
rj, j’|S.
c) If the HPD interval contains 0, declare rj, j’|S as
null. Otherwise, declare yj and yj’ as conditionally
dependent.

Step 3. Fit a SEM using the selected causal structure
(or one member within the class of statistically equiva-
lent structures returned by the IC algorithm) as the
‘true’ causal structure.
More details on causal structure search based on

observational data are given by [12,14]. Additionally, the
approach proposed to select recursive causal structures
in the quantitative genetics mixed model context is dis-
cussed by [15] and reviewed in [16].
Application of the IC algorithm involves performing a

set of statistical decisions about declaring partial correla-
tions as null or not. As the posterior distribution of
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these parameters becomes flatter, the statistical deci-
sions get poorer, i.e. errors become more likely. In this
scenario, using a high content HPD interval (such as
95%) protects against declaring a null correlation as
non-null, but the algorithm becomes more prone to
declaring non-null correlations as null. However, these
two types of errors are equally important when explor-
ing causal structure spaces [18], and therefore, in sce-
narios where posterior distributions of partial
correlations are not sharp, results may be better when
decisions are made on the basis of HPD intervals with
lower content. In this article we applied several HPD
content magnitudes (70, 75, 80, 85, 90, and 95%), and
compared the final causal structures obtained. This
approach may indicate the edges and the structures that
are more stable to changes in the magnitude of HPD
contents used for the statistical decisions.

Bayesian inference and fully recursive model
The models studied were fitted via Bayesian analysis and
consisted of SEM with recursive causal structures and a
diagonal residual covariance matrix, as described in [15].
A fully recursive model is represented by a SEM where
every entry below the diagonal of Λ is treated as a free
parameter. The likelihood equivalence between MTAM
and SEM with fully recursive causal structures [9] was
explored to make inferences about the parameters of
the former model by fitting the latter. The residual cov-
ariance matrix of an MTAM, which is needed for the
recursive causal structure search, was obtained by fitting
a fully recursive SEM and then transforming its residual
covariance matrix by:

R∗
0 =

(
I − �fr

)′−1
� fr

(
I − �fr

)−1,

where Λfr and Ψfr are, respectively, a matrix of struc-
tural coefficients and a diagonal residual covariance
matrix, both associated with a fully recursive model.
Such approach allowed all the models studied in this
article to be fitted by using the same program.
The following joint prior distribution was assumed for

location and dispersion parameters of model (1):

p (�, β,u,G0,�0) = p (�) p (β) p (u | G0) p (G0)

t∏
j=1

p
(
ψj

)

∝ N(u | 0,G0 ⊗ A) × IW(G0 | υG,G•
0)×

t∏
j=1

Inv - χ2(ψj | υψ , s2),

where N(u|0, G0⊗A) is a multivariate normal density
centered at 0 and covariance matrix G0⊗A,
IW(G0 | υG,G•

0) is an Inverse Wishart density with υG
degrees of freedom and scale matrix G•

0 , Inv-c
2(ψj|υψ,

s2) is a scaled inverse-chi-square distribution with υψ
degrees of freedom and scale parameter s2, and ψj is the
residual variance for trait j. Unbounded uniform distri-
butions were assigned as prior distributions for b and
for each structural coefficient in Λ. Furthermore, υG,
G•

0 , υψ and s2 were regarded as known hyperparameters
of the prior distribution. The following hyperparameter
values were used for all SEM considered:

s2AFE = 70, s2AEW = 0.7, s2NE = 40 -

s2AFE = 70, s2AEW = 0.7, s2NE = 40 and υψ = 3 for every entry
of the diagonal of Ψ; υG = 7 and

G•
0 =

⎡
⎢⎢⎢⎢⎣

0.3 0 0 0 0
0 200 0 0 0
0 0 30 0 0
0 0 0 0.3 0
0 0 0 0 10

⎤
⎥⎥⎥⎥⎦ .

The analyses were carried out using programs written
in R [19], which are available from the authors upon
request. As all fully conditional posterior distributions
had closed forms, a Gibbs sampler, as discussed in [15],
was applied to obtain a single chain of 300, 000 itera-
tions for each model fitted. On the basis of visual
inspection of a subset of parameters, including the
structural coefficients, genetic and residual covariances,
the initial 100, 000 samples of each chain were dis-
carded as a conservative burn-in. The remaining 200,
000 iterations were regarded as samples from the pos-
terior distributions of the parameters. The retained sam-
ples were used as basis for recursive causal structure
search via IC algorithm, model comparison, and infer-
ences about the parameters of the model fitted condi-
tionally on the selected causal structure.

Model comparison
Causal structures within a class of observationally
equivalent structures cannot be distinguished on the
basis of data evidence because they result in the same
set of probabilistic conditional independencies. There-
fore, they cannot be compared using criteria that rely
on the likelihood function. However, structures from
distinguished classes are expected to induce distinct fea-
tures on the joint distribution, such that they may be
compared using data evidence. In the present article, we
used the Deviance Information Criterion (DIC, [20]) to
compare models that present causal structures pertain-
ing to distinct classes of structures. Such approach is
followed here because different classes of causal struc-
tures may emerge from applying the search methodol-
ogy using different HPD interval contents for statistical
decisions. The same criterion was used to check the
quality of fit of the SEM conditional on the selected
causal structures by comparing them with a standard
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MTAM, which carries no restrictions on the dispersion
parameters. Considering θ as a vector containing the
model parameters, and D(θ) = -2log(p(y|θ)), which is
called the deviance function, the DIC was obtained as
follows:

DIC = 2D̄ − D
(
θ̄
)
,

where θ̄ , which is the posterior mean of θ, and

D̄ = Eθ|yD (θ) were obtained from the posterior samples
of θ.

Results and discussion
Fitting the fully recursive SEM resulted in posterior
means and 95% HPD intervals of each R∗

0 and G•
0 entry

as given in Table 2. These matrices represent residual
and additive genetic covariance matrices pertaining to a
MTAM, respectively. The posterior distributions of the
heritabilities as obtained from the same model are pre-
sented in Figure 1. It shows that the analyzed traits pre-
sent moderate to high heritabilities, with posterior
means ranging from 0.151 (NE) to 0.591 (BW).
After applying the described approach for causal

structure search based on different HPD interval con-
tents, the three undirected graphs depicted in Figure 2
were selected. The output was completely undirected for
each search performed because no evidence of
unshielded colliders was detected. It should be stressed
that finding unshielded colliders is essential for edge
orienting by the IC algorithm.
As already stated, the undirected or semidirected

graphs returned by the IC algorithm represent classes of
equivalent causal structures. However, the undirected

graph returned when using a 70% HPD interval for the
statistical decisions (Figure 2a) implies a set of observa-
tional consequences that, given the algorithm assump-
tions, cannot result from a SEM with recursive causal
structure and independent residuals. Specifically, any
attempt to direct the edges of the graph inevitably
results in a causal cycle, or in unshielded colliders. Cau-
sal cycles belong to structures that are outside the
explored space, and adding unshielded colliders diverges
from the algorithm’s output, which indicated that no
evidence of such sub-structures was found from the par-
tial correlations studied in the second step. These types
of results indicate that some assumption(s) of the model
or of the IC algorithm may not hold. As suggested by
[12,14,18], one may combine the IC algorithm frame-
work with prior knowledge to select causal structures.
Here we choose to consider the structure in Figure 2a
as a ‘skeleton’ and orient its edges according to temporal
information. The temporal sequence followed by the
phenotypic traits is: (1) BW, (2) W35, (3) AFE and (4)
AEW and NE. This information prompted us to propose
a causal structure as in Figure 3a, which presents two
unshielded colliders that were not detected in the initial
search, but carries all the edges that were previously
detected.
Given the HPD contents applied to the IC algorithm,

the output in Figure 2b may be considered as the most
stable, since it was consistently selected when using
HPD intervals of 75%, 80%, 85% and 90%. This structure
is similar to the one obtained using 70% HPD intervals,
except for the absence of the edge connecting BW and
NE. Another difference from the previous selected struc-
ture is that this slightly sparser undirected graph reflects

Table 2 Posterior means and 95% HPD intervals for the dispersion parameters pertaining to a MTAM

Parametera Posterior mean 95% HPD Interval Parametera Posterior mean 95% HPD Interval

σ 2
e1

0.32 [0.25, 0.40] σ 2
g1

0.47 [0.36, 0.59]

re1e2 0.03 [-0.12, 0.19] rg1g2 0.41 [0.22, 0.59]

re1e3 0.07 [-0.05, 0.20] rg1g3 0.09 [-0.14, 0.31]

re1e4 -0.24 [-0.40, -0.08] rg1g4 0.64 [0.50, 0.77]

re1e5 –0.07 [-0.17, 0.04] rg1g5 0.12 [-0.14, 0.38]

σ 2
e2

210.74 [164.90, 256.86] σ 2
g2

165.81 [106.42, 228.82]

re2e3 -0.13 [-0.25, -0.02] rg2g3 0.06 [-0.20, 0.31]

re2e4 0.12 [0.00, 0.25] rg2g4 0.48 [0.29, 0.67]

re2e5 0.01 [-0.09, 0.10] rg2g5 0.22 [-0.06, 0.49]

σ 2
e3

35.19 [29.82, 40.53] σ 2
g3

13.42 [8.11, 19.16]

re3e4 -0.08 [-0.19, 0.03] rg3g4 0.10 [-0.16, 0.35]

re3e5 -0.12 [-0.20, -0.04] rg3g5 -0.11 [-0.40, 0.18]

σ 2
e4

0.79 [0.64, 0.93] σ 2
g4

0.48 [0.30, 0.67]

re4e5 -0.01 [-0.10, 0.08] rg4g5 0.09 [-0.21, 0.37]

σ 2
e5

31.02 [27.30, 34.78] σ 2
g5

5.51 [2.95, 8.31]
aσ 2

gj = additive genetic variance of trait j; rgjgj′ = additive genetic correlation between traits j and j’, σ 2
ej = residual variance of trait j; rejej′ = residual correlation

between traits j and j’ (j, j’ = 1 (BW), 2 (W35), 3 (AFE), 4 (AEW), 5 (NE))
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a set of conditional independencies that could effectively
result from a recursive SEM. In other words, this undir-
ected graph represents a non-empty class of recursive
causal structures, which is in contrast to the graph pre-
viously discussed, which suggested features in the joint
distribution that could not result from an acyclic SEM
under the causal sufficiency assumption. However, every

instance of this class conflicts with the prior knowledge
regarding the temporal sequence of the studied traits, i.
e. every structure of this class considers that at least one
trait is affected by some other trait not yet expressed.
More specifically, for every member of this causal struc-
ture class, AEW is regarded as a cause of W35, or a
cause of BW, or both. Here we allowed the temporal

Figure 1 Posterior density of MTAM heritabilities. BW = birth weight, W35 = weight at 35 days, AFE = age at first egg, AEW = average egg
weight from 77 to 110 days, and NE = number of eggs produced from 77 to 110 days.
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sequence information to override the algorithm output,
leading to the oriented structure presented in Figure 3b,
which involves adding in the unshielded collider BW ®
AEW ¬ W35.
Finally, the last selected structure resulted from using

the proposed approach based on 95% HPD intervals to
make the statistical decisions. As presented in Figure 2c,
this structure is also undirected, and consists of two dis-
connected sub-structures. Unlike the previous outputs,
this class of structures carries one structure that is con-
sistent with the temporal information regarding the stu-
died traits, which is depicted in Figure 3c. Moreover,
the edges conveyed by this undirected graph were the
most stable, as they were present for every HPD interval
content that was used in the search methodology.

Three distinguished SEM were constructed condition-
ally on the causal structures presented in Figure 3a
(model A), 3b (model B) and 3c (model C). DIC’s
obtained for each of these models are presented in
Table 3. This criterion indicated that model C, which is
the simplest among these models, should be preferred.
Models that present extra edges are typically expected
to present a better fit. However, DIC may not assign
better scores to such complex models if the extra good-
ness of fit achieved is not sufficient to compensate for
the penalty given for model flexibility (number of para-
meters). Furthermore, it should be observed that models
A and B carry unshielded colliders that are not sup-
ported by data evidence, i.e. the statistical consequences
of their presence in the causal structure were not found

Figure 2 Graphs returned by the IC algorithm using HPD 70% (a), 75, 80, 85 and 90% (b), and 95% (c) for the statistical decisions
involving the traits considered. BW = birth weight, W35 = weight at 35 days, AFE = age at first egg, AEW = average egg weight from 77 to
110 days, and NE = number of eggs produced from 77 to 110 days.
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when the posterior distribution of R∗
0 was used as input

for the IC algorithm. This may have resulted in extra
penalty in the DIC of these models due to decreased
goodness of fit, which is suggested by their larger DIC
when compared to the MTAM. On the other hand, the

smaller DIC of model C when compared to MTAM’s
indicates that this structure is indeed plausible, present-
ing a good fit despite having the strongest constraints
among the models studied.
Inferences about the dispersion parameters of a SEM

that carries the selected structure (model C), as well as
its structural coefficients, are presented in Table 4 and
Figure 4, respectively. According to the causal structure
selected and the parameter inferences, W35 imposes a
negative causal effect over AFE. The posterior distribu-
tion of the magnitude of the change in AFE due to a 1g
increase in W35 is given in Figure 4a, with a posterior
mean of -0.052 day/g. In turn, AFE also imposes a nega-
tive effect on NE, with a posterior mean of -0.113 egg/
day and the posterior distribution depicted in Figure 4c.

Figure 3 Graphs selected by combining prior temporal information with the output of the IC algorithm using HPD 70% (a), 75, 80, 85
and 90% (b), and 95% (c) for the statistical decisions involving the traits considered. BW = birth weight, W35 = weight at 35 days, AFE =
age at first egg, AEW = average egg weight from 77 to 110 days, and NE = number of eggs produced from 77 to 110 days.

Table 3 DIC obtained for SEM with causal structures as in
Figure 3a (Model A), 3b (Model B), 3c (Model C), and for
a Multiple Trait Animal Model (MTAM)

Model DIC

A 22423.39

B 22442.31

C 22365.63

MTAM 22382.31
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This structure also implies that W35 presents an indir-
ect positive causal effect on NE. Finally, inferences con-
cerning the remaining edge indicate that BW has a
negative causal effect on AEW, for which the posterior
distribution is depicted in Figure 4b, with posterior
mean of -0.408 g/g. At first sight, this result may seem
unexpected given that phenotypes for these traits pre-
sent positive covariance. However, according to the
inferences for MTAM dispersion parameters, this posi-
tive phenotypic association is due to a strong positive
additive genetic association (genetic covariance with
posterior mean of 0.30 g2). Conditional on the genetic
effects, the association between these traits becomes
negative, as represented by residual covariance with a
posterior mean of -0.12 g2. As a consequence, the causal
association between BW and AEW could only be nega-
tive given that the causal association between BW and
AEW is disconnected from the remainder of the causal
structure, and given that causal sufficiency is assumed in
the causal structure search.
The reduction of a SEM transforms model parameters

in parameters of a MTAM. Inferences about heritabil-
ities, residual and genetic covariances from a reduced
model based on model C are shown in Figure 5 and
Table 5. These posterior distributions are quite similar to
the posterior distributions obtained for MTAM for the
same parameters (Figure 1 and Table 2). This similarity

was expected given that the IC algorithm searches for
causal structures that are minimal and yet compatible
with the distribution of the data (which is in principle
described without constraints by a MTAM) and that

Table 4 Posterior means and 95% HPD intervals for the
dispersion parameters pertaining to Model C

Parametera Posterior mean 95% HPD Interval

ψ1 0.33 [0.26, 0.40]

Ψ2 195.78 [155.99, 235.96]

ψ3 34.65 [29.25, 40.03]

ψ4 0.68 [0.52, 0.84]

ψ5 30.62 [26.98, 34.32]

σ 2
g1

0.45 [0.36, 0.58]
rg1g2 0.45 [0.31, 0.58]
rg1g3 0.21 [0.02, 0.38]
rg1g4 0.80 [0.68, 0.90]
rg1g5 0.07 [-0.16, 0.29]

σ 2
g2

185.36 [130.23, 244.55]
rg2g3 0.21 [-0.14, 0.53]
rg2g4 0.58 [0.47, 0.70]
rg2g5 0.19 [-0.05, 0.43]

σ 2
g3

14.09 [8.34, 20.41]
rg3g4 0.16 [-0.05, 0.38]
rg3g5 0.09 [-0.27, 0.44]

σ 2
g4

0.89 [0.51, 1.29]
rg4g5 0.05 [-0.18, 0.29]

σ 2
g5

5.19 [2.75, 7.87]
aσ 2

gj = additive genetic variance of trait yj; rgjgj′ = additive genetic correlation
between traits yj and yj’, ψ2

j = residual variance of trait yj (j, j’ = 1 (BW), 2
(W35), 3 (AFE), 4 (AEW), 5 (NE))

Figure 4 Posterior densities of structural coefficients pertaining
to Model C.
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using the chosen structure resulted in good fit according
to the comparison between model C and MTAM via
DIC. An opposite scenario with strong disagreements
between inferences obtained under both models would
indicate that features of the selected causal structure are
not coherent with data evidence. This conflict would
denote that the selected causal structure is not plausible.

It should be stressed that one’s interpretation of the
output provided by the approach proposed by [15] must
be guided by the (causal) assumptions one is willing to
accept. This methodology could be regarded as causal
structure inference in situations where the assumptions
provided by [14] are accepted (namely: (1) causal suffi-
ciency, (2) same causal relations for every individual in

Figure 5 Posterior density of heritabilities pertaining to a reduced SEM with causal structure C. BW = birth weight, W35 = weight at 35
days, AFE = age at first egg, AEW = average egg weight from 77 to 110 days, and NE = number of eggs produced from 77 to 110 days.
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population, (3) faithfulness of joint distribution to an
acyclic directed graph, and (4) correctness of statistical
decisions). Some causal learning may still take place
even if we do not accept the strong assumption of cau-
sal sufficiency (i.e., that every variable which affects two
or more variables under study is already in the set of
the studied variables). Applying this to the results of the
present study, the existence of causal influence of AFE
over NE could be claimed by simply accepting the Cau-
sal Markov Condition (which is not an assumption as
strong as causal sufficiency) and by acknowledging tem-
poral information (W35 before AFE, and the latter
before NE) [21]. Nevertheless, structural equation mod-
eling may be used without learning from the causal
information carried by it. Under this circumstance, the
goal may simply be to represent a joint probability dis-
tribution in a more parsimonious fashion. Generally,
when a recursive causal structure is applied with this
purpose, the residual covariance matrix is constructed
as diagonal to achieve parameter identifiability. None-
theless, this is exactly the statistical consequence of
accepting the IC algorithm’s causal sufficiency assump-
tion, so that the described methodology may be properly
used under this construction. Because the proposed
approach searches for minimal causal structures, apply-
ing the retrieved structures to fit a recursive SEM would
result in parsimonious modeling of joint probability dis-
tributions derived from multiple trait models.
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