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Deregressed EBV as the response variable yield
more reliable genomic predictions than
traditional EBV in pure-bred pigs
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Abstract

Background: Genomic selection can be implemented by a multi-step procedure, which requires a response
variable and a statistical method. For pure-bred pigs, it was hypothesised that deregressed estimated breeding
values (EBV) with the parent average removed as the response variable generate higher reliabilities of genomic
breeding values than EBV, and that the normal, thick-tailed and mixture-distribution models yield similar reliabilities.

Methods: Reliabilities of genomic breeding values were estimated with EBV and deregressed EBV as response
variables and under the three statistical methods, genomic BLUP, Bayesian Lasso and MIXTURE. The methods were
examined by splitting data into a reference data set of 1375 genotyped animals that were performance tested
before October 2008, and 536 genotyped validation animals that were performance tested after October 2008. The
traits examined were daily gain and feed conversion ratio.

Results: Using deregressed EBV as the response variable yielded 18 to 39% higher reliabilities of the genomic
breeding values than using EBV as the response variable. For daily gain, the increase in reliability due to
deregression was significant and approximately 35%, whereas for feed conversion ratio it ranged between 18 and
39% and was significant only when MIXTURE was used. Genomic BLUP, Bayesian Lasso and MIXTURE had similar
reliabilities.

Conclusions: Deregressed EBV is the preferred response variable, whereas the choice of statistical method is less
critical for pure-bred pigs. The increase of 18 to 39% in reliability is worthwhile, since the reliabilities of the
genomic breeding values directly affect the returns from genomic selection.

Background
Genomic selection in pure-bred pigs can be implemen-
ted using a multi-step procedure. Effects of dense
genetic markers are estimated using a reference popula-
tion and these effects are used to predict genomic
breeding values (GBV) of selection candidates [1].
Implementing a multi-step procedure relies on two pre-
requisites: 1) a response variable that summarises the
genetic information for reference animals, and 2) a sta-
tistical method that associates the response variable to
the marker information. The choice of response variable

and statistical method may well depend on the data
structure. Therefore, the challenge is to find a suitable
response variable and statistical method that can handle
pure-bred pig data.
Pure-bred pig data often have low and varying reliabil-

ities of estimated breeding values (EBV). Some Duroc
pigs in the Danish breeding scheme only have their own
records, others only offspring records, while some have
both - depending on the trait. Furthermore, only a sub-
set of pigs are genotyped and these pigs tend to be clo-
sely related. Therefore, a response variable and a
statistical method capable of handling such data are
needed.
Among the possible response variables, EBV and

deregressed EBV are the most promising to date. Gar-
rick et al. [2] showed, at least in theory, that deregressed
EBV with the parent average removed (hereafter referred
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to as “deregressed EBV”) yield more accurate genomic
breeding values than EBV for two reasons. First, dereg-
ressed EBV as the response variable results in less dou-
ble-counting compared to EBV, because the proposed
deregressed EBV excludes ancestral information. If both
an offspring and it’s parent are genotyped, the degree of
double-counting decreases when using deregressed EBV
as the response variable. Second, using EBV as the
response variable results in double shrinkage of the
genomic breeding values, particularly when the reliabil-
ities of the EBV are low. In dairy cattle, Guo et al. [3]
compared the two response variables on simulated data
and found that deregressed EBV yielded slightly lower
reliabilities. However, their simulated data were charac-
terized by low degrees of double-counting. It appears
that most pure-bred pig data, with EBV with low reli-
abilities and high degrees of double-counting, compared
to Guo et al. [3], are more in line with the theoretical
expectations. Therefore, this suggests that deregressed
EBV as the response variable may yield higher reliabil-
ities of genomic breeding values than EBV.
Three types of statistical models have been widely used

in the literature [1,4-14]. These are models that assume
the marker effects to be normally distributed, models
that assume a thick-tailed distribution of marker effects,
and models that assume a mixture of two distributions.
The performance of the different models is predomi-
nantly affected by the number of QTL, the marker den-
sity and the genetic relatedness of the population.
However, there is no unambiguous evidence that one
model will yield more accurate genomic breeding values
for pure-bred pig data for two reasons. First, mixture-dis-
tribution models have shown promising results for some
traits, in particular traits under weak selection, possibly
because these traits can be influenced to a greater extent
by a few large QTL [9,15]. Second, low genetic related-
ness between reference animals and validation animals
appears to favour mixture-distribution models [14], pre-
sumably because mixture-distribution models utilize
linkage disequilibrium more efficiently than normal and
thick tailed distribution models. Probably for the same
reason, Hayes et al. [9] concluded that thick-tailed mod-
els and models assuming normality were equally good
only when data from a single cattle breed were analysed.
It appears that for pure-bred pig data, for which there is
strong selection on traits of interest and high relatedness
between genotyped animals, none of the models would
be favoured over the others. Therefore, the models
assuming mixture-distribution, thick tailed distribution
and normal distribution might yield similar reliabilities of
genomic breeding values.
In summary, we reasoned that 1) deregressed EBV as

the response variable yields higher reliabilities of the
GBV compared to EBV, and that 2) normal, thick-tailed

and mixture-distribution models yield similar reliabilities.
To test these hypotheses, the three models and the two
response variables were assessed for the reliabilities by
which they could predict GBV for the two traits, daily
gain and feed conversion ratio, in Danish Duroc pigs.

Methods
Procedure
Two response variables, EBV and deregressed EBV, and
three statistical methods with normal, thick-tailed, and
mixture-distributions, were assessed for their reliability
to predict GBV for daily gain and feed conversion ratio
in Danish Duroc pigs. The reliabilities were computed
by splitting the genotyped animals into 1375 reference
animals that were performance tested before October
2008 and 536 validation animals that were performance
tested after October 2008 (further details are given
below).

Data
The Duroc pigs were part of the genetic evaluation sys-
tem in Denmark. All data were supplied by the Danish
Agriculture and Food Council, Pig Research Centre.
Genotyping
A total of 1911 Danish Duroc pigs were genotyped
using the Illumina PorcineSNP60 BeadChip (Illumina,
San Diego, CA). A total of 26142 SNP markers and each
of the animals met the following requirements. Each
animal had a call rate greater than 0.95. Each marker
was mapped to an autosome, had a minor-allele fre-
quency greater than 0.05, a call-frequency score greater
than 0.95, and a heterozygote frequency that did not
deviate from Hardy-Weinberg expectations by more
than 1/4

√
pq , where p and q are the allele frequencies

at the marker. The 1/4
√
pq corresponds to a 1/4 stan-

dard-deviation unit when assuming a binomial distribu-
tion of alleles. For each animal and SNP-genotype
combination, the GenCall score was greater than 0.65.
Genotypes less than 0.65 were defined as missing. Ani-
mals with missing genotypes were allocated the popula-
tion mean for the missing markers.
Performance test and pedigree
Daily gain (g/day) and feed conversion ratio (feed units/
kg gain) were observed in the interval 30-100 kg live
weight. Recordings were performed in the period 1992
to 2010. The pedigrees of the animals were traced back
to 1984, and consisted of 345686 and 52537 animals for
daily gain and feed conversion ratio, respectively. Both
pedigrees included 373 unknown parents (base animals).
The reference data consisted of available records on

October 1st 2008 and included 313068 and 23628 mea-
surements of daily gain and feed conversion ratio,
respectively. All of the 1375 genotyped animals in the
reference data had their own records for daily gain,
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whereas only 898 genotyped animals had their own
records for feed conversion ratio. There were 680 geno-
typed animals in the reference data that had more than
four offspring records for daily gain and 633 genotyped
animals that had more than four offspring records for
feed conversion ratio.
The full data consisted of records available until May

2010 and included the records from the reference data
and additional 32618 and 3344 measurements of daily
gain and feed conversion ratio, respectively. All 536 gen-
otyped validation animals were phenotyped for both daily
gain and feed conversion ratio after October 1st, 2008.

Response variables
The EBV were calculated for daily gain and feed conver-
sion ratio by single-trait animal models, and deregressed
EBV were calculated by applying the procedure pro-
posed by Garrick et al. [2].
The single-trait animal models were based on the rou-

tine evaluation model, with the regression effect of start
weight, fixed effect of herd-week-section, random effect
of pen and a random additive genetic effect. The model
fitted to daily gain also included a fixed effect for sex and
a random effect for birth litter. The variance components
were estimated using REML. The heritabilities for daily
gain and feed conversion ratio were 0.27 and 0.21. The
1375 reference animals had mean reliabilities for EBV of
0.62 (sd = 0.18) and 0.36 (sd = 0.12) for daily gain and
feed conversion ratio, respectively. The software DMU
[16] was used to estimate variances and predict the
breeding values. Single-trait animal models were used
because preliminary analyses showed that predictions of
GBV were not improved with a bivariate model.
The deregression procedure of Garrick et al. [2] adjusts

for ancestral information, such that the deregressed EBV
only contains their own and the descendant’s information
on each animal. The deregression also eliminates shrink-
age contained in the EBV, and therefore deregressed EBV
behave as though they were observations with a heritabil-
ity equal to the reliability of the deregressed EBV (reli-
abilities computed as in Garrick et al. [2]). Deregressed
EBV have unequal variances and should be used in a
weighted analysis. To ensure the quality of deregressed
EBV, only animals with a deregressed reliability above
0.05 were included in the analysis. This resulted in 35
animals being removed from the analyses with dereg-
ressed EBV for feed conversion ratio.

Statistical methods to estimate marker effects
The marker effects were estimated by fitting linear,
additive models to the response variables. The model
was:

Y = μ + Xβ + ε, (1)

where Y is a n × 1 vector of responses, with n being
the number of reference animals. The mean is denoted
μ, which is a scalar. The coefficient matrix for the mar-
kers, X, assume the values -1, 0 or 1, and has dimension
n × p, where p is the number of markers. The vector of
marker effects is denoted b and has dimension p × 1,
whereas the vector of residuals, ε, has dimension n × 1,

and is distributed ε ∼ N(0, σ 2
ε W), where W is a diago-

nal matrix with elements w1, ..., wn.
For the analyses with EBV as the response variable, w1 =

. . . = wn = 1, whereas for the analyses with deregressed
EBV as the response variable, a weighted analysis was per-
formed according to Garrick et al. [2]. The weight for the
ith animal was wi = (1 − h2)/[(c + (1 − r2i )/r

2
i )h

2] , where
c, the part of the genetic variance not explained by mar-
kers, was assumed to be 0.1, h2 was the heritability of the
trait, and r2i was the reliability of the deregressed EBV of
the ith animal.
The statistical models studied differ by the distribu-

tional assumptions made on b, and by the shortness of
presentation they are referred to by the corresponding
inferential procedure. A brief description of each
method is provided in the following.
GBLUP
The model for genomic BLUP (GBLUP) can be
described as in equation (1), where the vector of marker

effects are distributed β ∼ N(0, σ 2
v I). Alternatively, the

model could be written as Y = μ + g + ε, where the
genetic effects g ∼ N(0, σ 2

v XX
T) , i.e. a model with a

genomic relationship matrix [7]. In this study, the latter
form was used, where XXT for computational reasons
was replaced by (X - P)(X - P)T with P containing the
row means of X across animals. Variance components
were estimated using REML, and the GBV were BLUP
solutions from the mixed model equations. Software
DMU [16] was used to fit GBLUP models.
Bayesian Lasso
The model for Bayesian Lasso assumes that the marker
effects follow a double exponential distribution [12,17],
which is a thick-tailed distribution. This is also referred
to as a Laplace distribution. Thus, b ~ Laplace(0, lI)
where l is a scaling parameter. The MCMC software
BayZ [18] was used for estimation. A Gibbs sampler was
applied and a total of 40000 iterations of sampling was
performed, with a burn-in of 10000 iterations.
MIXTURE
The model for MIXTURE assumes that the marker
effects follow a mixture of two normal distributions
with similar characteristics as the mixture model in
Meuwissen [19]. The distributional assumption can be

described as: β ∼ π0N(0, σ 2
β0I) + π1N(0, σ 2

β1I) , where

π0 = 0.9, π1 = 0.1, and σ 2
β0 = 0.01 · σ 2

β1 . The MCMC
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software BayZ [18] was used for estimation. A Metropo-
lis-Hastings sampler was applied with a total of 40000
iterations of sampling and a burn-in of 10000 iterations.

Evaluation criterion
The predictive ability of each method was evaluated by
the reliability of the GBV on the genotyped validation
animals. To avoid use of overlapping information
between the reference and validation animals [20], we
based the validation on the own phenotype of genotyped
validation animals, adjusted for fixed effects and non-
genetic random effects. The computation of adjusted
phenotypes for genotyped validation animals was based
on the full data, and the adjusted phenotypes were the
sum of EBV and the estimated residual errors (ĝ + ê) .

The reliability of the GBV, r2(GBV) , is the squared corre-

lation r2(GBV,g) between GBV and the vector of genetic

effects, g, for genotyped validation animals. Using that
the vector of residual errors, e, for these animals is inde-
pendent of the GBV, and that g + e ≈ ĝ + ê , we obtain a
formula for the reliability of the GBV

r2(GBV) = r2(GBV,g) = r2(GBV,g+e) · ω
≈ r2(GBV,ĝ+ê) · ω,

(2)

where ĝ is the vector of EBV for validation animals, ê
is the estimated residual vector, ω = (σ 2

e + σ 2
a )/σ

2
a , σ 2

e is

the residual variance and σ 2
a is the additive genetic var-

iance of the trait. The formula above for the reliability is
similar to other formulas shown in the literature [14,21].
A test was performed to investigate whether the reli-

abilities of the GBV from the two methods were signifi-
cantly different from each other within each trait. The
test hypothesis was that the reliability of GBV from
method A was equal to the reliability of GBV from

method B, i.e. H0 : r2(GBVA ,ĝ+ê)
· ω = r2(GBVB,ĝ+ê)

· ω . Since

ω is simply a constant for each trait, the test hypothesis
can be reduced to H0 : r(GBVA ,ĝ+ê) = r(GBVB,ĝ+ê) . However,
ĝ + ê appears in both correlations and the two correla-
tions are not independent within each trait. This issue
of testing equality of correlated correlations was
addressed by the Hotelling-Williams t-test [22,23],
which was applied to each trait with a confidence level
of 5%.

Results
Response variables
The response variable, deregressed EBV, resulted in
higher reliabilities than EBV for both feed conversion
ratio and daily gain (Table 1). For daily gain, the reliabil-
ities were on average 35% higher for deregressed EBV

with GBLUP, Bayesian Lasso and MIXTURE. The reli-
abilities for daily gain increased from approximately 0.25
to 0.34. For feed conversion ratio, the reliabilities were
on average 18% higher for deregressed EBV for GBLUP
and Bayesian Lasso, which approached significance (p-
values between 0.05 and 0.11). Use of deregressed EBV
instead of EBV increased reliabilities from approximately
0.16 to 0.19 for GBLUP and Bayesian Lasso. For the
method MIXTURE, the deregressed EBV yielded 39%
higher reliabilities than EBV, increasing reliabilities from
0.15 to 0.20.

Statistical methods
The three statistical methods, GBLUP, Bayesian Lasso
and MIXTURE did not yield different reliabilities (Table
1). For daily gain, the reliabilities ranged from 0.33 to
0.34 for deregressed EBV and from 0.25 to 0.26 for
EBV. For feed conversion ratio, the reliabilities ranged
from 0.19 to 0.20 for deregressed EBV and from 0.15 to
0.16 for EBV.

Discussion
The hypothesis that deregressed EBV yield higher reli-
abilities than EBV was supported. The increase in relia-
bility of 18 to 39% for Duroc pigs is worthwhile, since
the reliabilities of the genomic breeding values directly
affect the returns from genomic selection. The hypoth-
esis that the different statistical methods yielded similar
reliabilities was also supported. Therefore, we believe
that when applying genomic selection within a pure-
bred pig population, deregressed EBV is the preferred
response variable, while the choice of the statistical
method is less critical.
The fact that the increase in reliabilities due to dereg-

ression was so large was surprising, since results
reported by Guo et al. [3] suggested that EBV is the
more suitable response variable. There are three possible

Table 1 Reliabilities of GBV, r2(GBV), based on the three
statistical methods and the two response variables for
daily gain and feed conversion ratio.

r2(GBV)
EBV deregressed EBV

Daily gainŦ

GBLUP 0.26a 0.33b

Bayesian Lasso 0.25a 0.34b

MIXTURE 0.25a 0.34b

Feed conversion ratio∓

GBLUP 0.16ab 0.19ab

Bayesian Lasso 0.16ab 0.19ab

MIXTURE 0.15a 0.20b

∓ Reliabilities within daily gain and feed conversion ratio with different
superscripts are significantly different (P < 0.05) Reliabilities for daily gain and
feed conversion ratio are not comparable
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reasons. In our study less information was available for
the reference animals compared to Guo et al. [3], which
implies that the expected double shrinkage was
increased when using EBV as the response variable. The
amount of information was more heterogeneous among
the reference animals, and this favours deregressed EBV.
The heterogeneity in amount of information was larger
for daily gain than for feed conversion ratio, which also
explains why the effect of deregression was larger for
this trait. The combination of less information per refer-
ence animal and several parent-offspring relationships
within the reference population increases double-count-
ing further. If a genotyped parent has only one offspring,
and this offspring is genotyped, the degree of double-
counting is much larger than if both the parent and the
offspring have many ungenotyped offspring. So, the
combination of sire-son relationships with a low and
heterogeneous amount of information in the reference
data seems to favour deregressed EBV over EBV.
There are two reasons why the three statistical methods

performed equally well. First, the traits have been subject
to strong selection, which suggests that MIXTURE would
not have an advantage over the other methods [9,15]. Sec-
ond, we considered only one breed, in which the geno-
typed animals were closely related, implying that Bayesian
Lasso and MIXTURE, which utilize linkage disequilibrium
more efficiently, have no advantage over GBLUP [9,14].
Thus, the small difference between the statistical methods
is caused by the pure-bred pig data with its high related-
ness between genotyped animals and traits that have been
subject to strong selection.
The results from this study may only partly apply to

other species, traits and data structures. The positive
effect of using deregressed EBV as the response variable
will depend on the degree of double-counting, and the
amount and heterogeneity of information for genotyped
animals. However, since the deregressed EBV proposed
by Garrick et al. [2] are theoretically more appropriate
than EBV, we believe that deregressed EBV will be
advantageous in most circumstances. In contrast, the
conclusion about equal performances of the statistical
methods is not generic. For traits controlled by large
QTL, data from multiple breeds or distantly related gen-
otyped animals, or when using a denser marker panel,
MIXTURE and Bayesian Lasso could outperform
GBLUP. The reason for this is that MIXTURE and
Bayesian Lasso utilize linkage disequilibrium more effi-
ciently. We believe that the positive effect of using
deregressed EBV applies to most situations, whereas
choosing the best statistical method is more sensitive to
the particular situation.
The applied multi-step method has the benefit of

being readily applicable in most breeding schemes. EBV
with reliabilities are easily predicted, and can then be

used to calculate deregressed EBV [2]. The deregression
procedure itself is very simple and only requires little
computing power. The association of marker effects
with the response variable by GBLUP is relatively sim-
ple, since GBLUP is implemented in common breeding
value estimation software. Bayesian Lasso and MIX-
TURE are available in various MCMC software,
although particularly MIXTURE is sensitive to the prior
information given, which makes the use of these meth-
ods less appealing. A final step, which has not been
examined in the present study, would be to combine the
genomic breeding values with the traditional pedigree
information [24,25].
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