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Abstract

Background: Estimation of genetic covariance matrices for multivariate problems comprising more than a few
traits is inherently problematic, since sampling variation increases dramatically with the number of traits. This paper
investigates the efficacy of regularized estimation of covariance components in a maximum likelihood framework,
imposing a penalty on the likelihood designed to reduce sampling variation. In particular, penalties that “borrow
strength” from the phenotypic covariance matrix are considered.

Methods: An extensive simulation study was carried out to investigate the reduction in average ‘loss’, i.e. the
deviation in estimated matrices from the population values, and the accompanying bias for a range of parameter
values and sample sizes. A number of penalties are examined, penalizing either the canonical eigenvalues or the
genetic covariance or correlation matrices. In addition, several strategies to determine the amount of penalization
to be applied, i.e. to estimate the appropriate tuning factor, are explored.

Results: It is shown that substantial reductions in loss for estimates of genetic covariance can be achieved for
small to moderate sample sizes. While no penalty performed best overall, penalizing the variance among the
estimated canonical eigenvalues on the logarithmic scale or shrinking the genetic towards the phenotypic
correlation matrix appeared most advantageous. Estimating the tuning factor using cross-validation resulted in a
loss reduction 10 to 15% less than that obtained if population values were known. Applying a mild penalty, chosen
so that the deviation in likelihood from the maximum was non-significant, performed as well if not better than
cross-validation and can be recommended as a pragmatic strategy.

Conclusions: Penalized maximum likelihood estimation provides the means to ‘make the most’ of limited and
precious data and facilitates more stable estimation for multi-dimensional analyses. It should become part of our
everyday toolkit for multivariate estimation in quantitative genetics.

Introduction

Estimation of genetic parameters, i.e. the partitioning of
phenotypic variation into (co)variances due to genetic
effects and other sources, is one of the basic tasks in
quantitative genetics. Increasingly, livestock improvement
schemes consider a multitude of traits. In turn, this
requires complex, multivariate analyses that consider
more than just a few traits simultaneously. Advances in
modelling, improvements in computational algorithms
and of corresponding software, paired with the capabil-
ities of modern computer hardware have brought us to a
point where large-scale analyses comprising numerous
traits and records on tens of thousands of individuals are
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feasible. For example, Tyrisevi et al. [1] recently pre-
sented multivariate analyses for 25 traits, more than
100 000 sires and up to 325 parameters to be estimated.
However, comparatively little attention has been paid to
the problems associated with sampling variation that are
inherent in multivariate analyses, which increase dramati-
cally with the number of traits and the number of para-
meters to be estimated.

It has long been known that the eigenvalues of esti-
mated covariance matrices are over-dispersed, i.e. that
the largest sample eigenvalues are systematically biased
upwards and the smallest values are biased downwards,
while their mean is expected to be unbiased [2]. More-
over, a large proportion of the sampling variances of
estimates of individual covariances can be attributed to
this excess dispersion [3]. This is the more pronounced
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the larger the matrix, the smaller the data set and the
more similar the population eigenvalues are. Hill and
Thompson [4] demonstrated how this affected estimates
of genetic covariance matrices and that it resulted in
high probabilities of obtaining non-positive definite esti-
mates. While maximum likelihood (ML) based methods
of estimation make efficient use of all the data and read-
ily allow estimates of covariance matrices to be con-
strained to the parameter space [5], the problems of
sampling variation remain. Even multivariate analyses
based on relatively large data sets are thus likely to yield
imprecise estimates. Furthermore, we have scenarios
where the numbers of records are invariably limited.
This includes data for new traits or traits which are
‘hard to measure’, e.g. carcass characteristics of meat
producing animals. Similarly, evolutionary biologists
concerned with quantitative genetics of natural popula-
tions are usually restricted to rather small samples.

Hence, any avenue to ‘improve’ estimates, i.e. to
obtain estimates which are on average closer to the
population values, should be given serious consideration.
To begin with, we have accumulated a substantial body
of knowledge about genetic parameters for various traits.
However, typically this is not used. While the Bayesian
paradigm directly provides the means to incorporate
such prior information, applications in estimating covar-
iance components often assume flat or uninformative
priors [6], i.e. do not fully exploit its advantages. Sec-
ondly, multivariate covariance matrices can often be
modelled parsimoniously by imposing some structure.
This decreases sampling variation by reducing the num-
ber of parameters to be estimated. Common examples
are factor-analytic and reduced rank models or treating
covariance matrices as ‘separable’, i.e. as the direct pro-
duct of two or more smaller matrices (see Meyer [7] for
a detailed review). Finally, statistical techniques are
available - often referred to as regularization methods -
which substantially reduce sampling variance, albeit at
the expense of introducing some bias, and thus yield
‘better’ estimates. Interest in regularized estimation for
multivariate analyses and the trade-off between sampling
variance and bias dates back to the 1970’s and earlier,
stimulated in particular by the work of Stein, e.g. [8,9].
Recently, applications involving estimation in very high-
dimensional settings have attracted resurgent attention,
in particular for genomic data, e.g. [10-13].

However, there has been little interest in regularized
estimation in estimating genetic parameters. An early
proposal, due to Hayes and Hill [14], was to shrink the
canonical eigenvalues in a one-way analysis of variance
towards their mean and thus to reduce sampling varia-
tion. This yielded an estimate of the genetic covariance
matrix that was a weighted combination of the standard
(i.e. not regularized) estimate and the phenotypic
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covariance matrix multiplied by the mean eigenvalue.
The authors thus described their method as ‘bending’
the genetic towards the phenotypic covariance matrix. A
simulation study demonstrated that ‘bending’ could sub-
stantially increase the achieved response to selection
based on an index derived using the modified estimates
[14]. However, ‘bending’ has found little application
except to force covariance matrices obtained by pooling
estimates from multiple sources to be positive definite.

Recently, Meyer and Kirkpatrick [15] proposed to
employ penalized restricted maximum likelihood
(REML) to estimate genetic covariance matrices, and
showed that imposing a penalty proportional to the var-
iance among the canonical eigenvalues acted analo-
gously to ‘bending’. They demonstrated by simulation
that this greatly reduced sampling and mean square
errors, and, moreover, that this held for animal model
analyses with a complicated pedigree structure and
many different types of covariances between relatives.
This paper extends the approach of Meyer and Kirkpa-
trick [15] to different types of penalties and, based on
an extensive simulation study, examines various strate-
gies to determine the amount of penalization to be
applied.

Penalized maximum likelihood estimation
Improved estimation

The quality of a statistical estimator is generally quanti-
fied by some measure of the difference between the esti-
mator and the true value, or [oss. A well known quantity
is the mean square error which is a quadratic loss, com-
prised of the sampling variance and the square of the
bias in the estimator. We talk about improving an esti-
mator when we are able to modify it in some way so
that it has reduced loss, i.e. is closer to the true value.
Usually this involves a trade-off between a reduction in
sampling variance and additional bias. For covariance
matrices, commonly employed measures of divergence
are the entropy (L;) and quadratic (L,) loss [8]:

Li(Z,E)=t(X7'8) —log | Z7'¥ | —¢ and

1
Ly(Z, ) =tr(Z71E —1)? W

where £ and % denote a covariance matrix of size ¢ x g
and its estimator, respectively, and g represents the num-
ber of traits.

A reduction in loss can often be achieved by regulariz-
ing estimators. In broad terms, regularization describes
a scenario where estimation for somewhat ill-posed or
overparameterized problems is improved through use of
some form of additional information. Frequently the lat-
ter involves a penalty for the deviation from a desired
outcome. For example, in modelling curves using splines
a ‘roughness penalty’ is employed to place preference on
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simple, smooth functions [16]. Well known forms of
regularization are ridge regression [17] and the LASSO
(Least Absolute Shrinkage and Selection Operator) [18].
Whilst these methods were originally developed to
encourage shrinkage of regression coefficients, corre-
sponding applications for the estimation of high-dimen-
sional covariance matrices have been described; see
Meyer and Kirkpatrick [15] for a review and references.

Penalizing the likelihood

In Bayesian estimation, some degree of regularization is
‘built in” through the specification of a prior and the asso-
ciated degree of uncertainty. In a ML framework, either
‘full’ ML or REML, prior information can be incorporated
by penalizing the likelihood. A general way to select a pen-
alty is to specify a prior distribution for the parameters to
be estimated for a suitable choice of parameterisation. The
penalty is then obtained as minus the logarithmic value of
the density of the prior, and a so-called tuning factor deter-
mines the relative emphasis to be given to the data and the
penalty. In the following, we consider penalized REML esti-
mation for two categories of penalties: those which are a
function of the canonical eigenvalues and those which act
on a complete covariance or correlation matrix.

The framework

Consider a simple ‘animal model’ for g traits, y = Xb +
Zg + e with y, b, g and e the vectors of observations,
fixed effects, additive genetic and residual effects,
respectively, and X and Z the corresponding incidence
matrices. Let s and Xz denote the matrices of additive
genetic and residual covariances among the g traits.
This gives a vector of parameters to be estimated, 6 of
length g(q + 1), comprising the distinct elements of Xg
and Xz. Furthermore, let Var (g) = X ® A = G, where
A is the numerator relationship matrix between indivi-
duals, and Var (e) =R =)} Ry, where ‘" is the direct
matrix sum. Ry is a function of X, e.g. for single
records per trait it is the sub-matrix of X correspond-
ing to the traits recorded for the k-th individual. The
phenotypic covariance matrix of the vector of observa-
tions is then Var (y) = ZGZ’ + R =V, and the pertain-
ing REML log likelihood is, apart from a constant,

log £(0) =— ) (log | V| +log | X,V ™'X |

(2)
+ (y = Xb)'V~!(y — Xb))

where X, is a full-rank submatrix of X, e.g. [5]. Regu-
larized estimates can be obtained by maximizing the
penalized likelihood

log Lp(8) = log L(8) — 1¥P(6) 3)

where the penalty P(0) is a selected function of the
parameters, aimed at reducing loss in their estimates,
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and y is a tuning factor which specifies the relative
emphasis to be given to the penalty compared to the
unpenalized estimator. For y = 0, this simplifies to the
standard, unpenalized likelihood. The factor of 1/2 in
(Eq. 3) is for algebraic consistency and could be omitted.
Penalties on eigenvalues

Recognition of the systematic bias in the eigenvalues of
estimates of covariance matrices has led to the develop-
ment of various estimators, which modify the eigenva-
lues whilst retaining the corresponding eigenvectors. As
the mean eigenvalue is expected to be unbiased, a speci-
fic proposal has been to regress eigenvalues towards
their mean to reduce their excessive spread.

Hayes and Hill [14] proposed to apply this type of
shrinkage to the canonical eigenvalues (4,), i.e. the
eigenvalues of EglEG, with £, = X5 + X the phenoty-
pic covariance matrix. The equivalent to such ‘bending’
in a (RE)ML framework is obtained by placing a penalty
proportional to the variance among the canonical eigen-
values on the likelihood [15]:

P, o tr(A-AL)?  with A =tr (A)/q (4)

for A = Diag {4;}. The canonical decomposition gives
Y6 = TAT and X = T(I - A)T’, with I an identity
matrix and T the matrix of eigenvectors of E;IEG,

scaled by a matrix square root of X,. Hence, P, pena-
lizes both X5 and Xy at the same time. Thus, while the
motivation for ‘bending’ appears somewhat ad hoc, the
same penalty can be derived assuming the canonical
eigenvalues have a Normal prior [10].

Penalizing eigenvalues transformed to logarithmic scale,
i.e. defining A = Diag{log(1,)}, yields a related penalty, P?,
similar to the log eigenvalue posterior mean shrinkage
estimator suggested by Daniels and Kass [19]. While quad-
ratic penalties on (1 - 4;) and A; are equivalent, this does
not hold on the log scale. Hence, for A; = Diagf{log(4;)}
and A, = Diagflog(1 - A,)} (with A; = tr(A;)/q), a third
penalty is

’sz X tI'(Al — Xll)z + tl’(Az — )_»21)2 (5)

For X positive semi-definite, the canonical eigenva-
lues lie in the interval [0,1]. Hence a natural alternative
to a normal prior is the beta distribution, which is
usually defined on this domain and is thus frequently
used as prior for binomial proportions in a Bayesian set-
ting. It has two shape parameters, & > 0 and 3 > 0, and
probability density function

B Fe+B) ,1

PO = rrp” 79 (©)
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with I'(-) denoting the gamma function, and mean
a/(o + B). Hence, for o = B, p(x) is symmetric with the
mean at 0.5. For & > 1 and 8 > 1, it is uni-modal with
probability mass increasingly concentrated at the mean
as o and f§ increase. A restricted domain [x, x,] (with
x1 and x, the lower and upper limits for x) can be taken
into account by fitting a four parameter beta function
[20] or by replacing x in (Eq. 6) with x = (x - x1)/ (%o -
x1). The distribution of estimates of the canonical eigen-
values clearly depends on the population parameters
and may well not cover the whole interval [0,1]. As we
expect standard estimates of eigenvalues to be over-dis-
persed, a suitable, if somewhat inflated, estimate of the
range may be given by the estimates of the extreme
values from an unpenalized analysis (i.e. = 0), denoted
henceforth by a superscript of 0. Assuming eigenvalues
are numbered in descending order of magnitude, this

gives Af = (A —AJ)/(AY — AJ) and penalty
P oc (@ — 1) log(27) + (B — 1) log(1 — A7) (7)

A suitable choice for the shape parameters might be
o= =2, 3,., ie asymmetric distribution for A7 with
probability mass somewhat more spread out than a nor-
mal distribution.

Alternatively, o and 8 can be estimated from esti-
mates Y. Using the fact that the mean and variance
of the standard beta distribution are o/(x + ) and o8
(¢ + B)*(oc + B + 1), results in the method of
moment estimators ¢ = 3y and g =(1— 1)y, with

v=gr(1-2)/ 30, (10— )_\)2) —1 and } the mean of
the A?[20]. This may result in estimates of & and 8

less than unity, implying probability distributions that
are U- or J-shaped with a high mass at the extremes.
To ensure a uni-modal beta distribution, we add a
constant z (z = 0). This gives penalty

Py o (o +2— 1) log(hi) + (B +z— 1)log(1 — ;) (8)

Penalties considered so far implied that estimated
eigenvalues were samples from a distribution with a
common mean ), . However, while quadratic penalties
on eigenvalues or eigenvalues transformed to logarith-
mic scale have been found to be highly effective when
the corresponding population values are similar, they
resulted in substantial over-shrinkage when population
values were spread apart [3,15,19]. Hence, if population
eigenvalues are markedly different, it may be advanta-
geous to shrink towards individual targets. Ordering
variables according to size introduces a specific distribu-
tion. The i-th order statistic of a g-variate sample is the

Page 4 of 15

i-th smallest value. Assuming a uniform distribution, the
order statistics on the unit interval have marginal beta
distributions with scale parameters i and g - i + 1.
Treating values A} as independent order statistics gives
the penalty

q
Phoc Yy (z+i—1)log(x}) + (z+q—i)log(1 —2}) (9)

i=1

Again, we allow for a modifying constant z in (Eq. 9).
For the distribution of order statistics, z = 0. A value of
z > 0 causes individual distributions to be ‘squashed’
together, i.e. yields a compromise between the assump-
tion of a common mean for the A} and that of an even
distribution over the unit interval.

Penalties on matrix divergence

Motivated by the historical emphasis on the role of sam-
ple eigenvalues of covariance matrices, we have concen-
trated on penalties on these characteristics so far. A
conceptually simpler alternative is to consider the covar-
iance matrix as a whole and its prior distribution.

A standard assumption in Bayesian estimation of covar-
iance matrices is that of an inverse Wishart prior distribu-
tion, because, for observations with a multivariate normal
distribution, this is a conjugate prior. It has the probability

density function p(x | @,v) | );|é(v+t7+1) exp[—! w(Z7'Q)]
e.g. [21], with Q denoting the scale parameter and v the
degree of belief we assign to the prior. Omitting terms not
depending on X or Q and taking logarithms gives (v + g +
1) log |X| + v tr(Z™ Q). Corresponding to the penalties
that ‘borrow strength’ from the phenotypic covariance
matrix considered above, a penalty which regularizes the
estimate of X by shrinking it towards X, can be obtained
by using X, as a scale matrix. Adopting an empirical Bayes
approach, we substitute the estimate from an unpenalized

REML analysis, El‘l, in place of Xp [22]. Further, replacing
v with the tuning factor y, then gives a penalty

Ps o« Clog | Z¢ | + tr(Z;'ZD) (10)
with C = (y + g + 1)/w. If C is approximated with
unity, Py is proportional to the Kullback-Leibler diver-
gence between X and X5, which is the entropy loss L;
() with £ and ¥ exchanged [23]. The relationship
between Ps and P; can be seen by rewriting (Eq. 10)
in terms of the canonical decomposition, which gives
Ps o« C(log | A | +log | TT |) +tr(A~'T 25T 7).
Assuming that £ ~ T T, i.e. that the estimate of the
transformation and of the phenotypic covariance matrix
are largely unaffected by penalized estimation, gives

Px o Clog|A| + tr(A™") oc Y7 Clog(xi) + ;1. This
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shows that Py implies a substantial penalty on the
smallest canonical eigenvalues. We can also penalize
both X and X simultaneously using

PL o Colog | T¢ | + (25 28) + Celog | Tp | + t(Z5'29)  (11)

weighted by either a joint (Cg = Cg) or separate tun-
ing factors.

Based on empirical evidence that estimates of genetic
(rg ) and phenotypic (rp) correlations are often similar,
Cheverud [24] proposed to substitute rp for rg if the
data did not support accurate estimation of rg. Adopting
this suggestion, Meyer and Kirkpatrick [25] demon-
strated that estimating X5 and Xz or Xp under the
assumption of a joint correlation structure resulted in
highly parsimonious models and a dramatic reduction in
mean square errors when the underlying assumptions
were approximately true. Conversely, estimates could be
substantially biased if they were not. A more flexible
alternative is to penalize the divergence between esti-
mates of the genetic (Rg) and phenotypic correlation
(Rp) matrix, i.e. to shrink the estimate of Rg towards
Rg. Analogous to (Eq. 10), this can be achieved by

using a penalty

P, x Clog | Rg | + tr(R;'RY) (12)
or
P2 o Cglog | Rg | + tr(RG'RY) + Celog | R | + tr(R;'RY)  (13)

More generally, such penalty on the complete matrix
can be used to shrink an estimated covariance (or corre-
lation) matrix towards any chosen structure. This allows
for a data-driven compromise between the assumed
structure and an unstructured matrix. For instance,
Chen [26] presented an empirical Bayesian approach to
estimate a covariance matrix by shrinking towards a
prior that was assumed to have a factor-analytic or com-
pound symmetric structure. More recently, Schifer and
Strimmer [27] considered shrinkage towards a number
of target matrices with diagonal structure or constant
correlations. Within our penalized (RE)ML framework,
this can be achieved by substituting the structured
matrix for the scale matrix  in (Eq. 10). This may be a
suitable matrix chosen a priori or, in an empirical vein,
an unpenalized estimate obtained from the data, impos-
ing the structure selected.

Simulation study

Simulation set-up

Data for a simple paternal half-sib design comprising s
unrelated sires with # = 10 progeny each were simulated
by sampling from appropriate multivariate normal distri-
butions for ¢ = 5 and g = 9 traits. Sample sizes

Page 5 of 15

considered were s = 50, 100, 150, 200, 300, 400, 600 and
1000. A total of 90 sets of population parameters, 60 for
q = 5 and 30 for g = 9 traits were examined.
Population parameters for ¢ = 5 were obtained by
combining 12 sets of heritabilities (A to L) with five
scenarios for genetic (rg) and residual (rg) correlations
and phenotypic variances, named [ to V. This resulted
in 60 combinations, labelled A-7 to L-V in the follow-
ing. Similarly, 10 sets of heritabilities (M to V) for g =
9 traits were combined with correlation scenarios I, VI
and VII to yield combinations M-I to V-VII. Heritabil-
ities were chosen so that the mean was 0.4 (A to G
and M to Q), 0.3 (H) or 0.2 (I to L and S to V), with
values declining with an increasing trait number.
There were different degrees of spread in heritabilities,
ranging from equal values for all traits (A, I, M and R)
to sets of values which spanned a length interval of
0.80 (E, H, and O) and sets with a very uneven distri-
bution of heritabilities (G, H, L, U and V). Sets of
population values for the correlations that were used
were rg; = g = 0, rg; = 0.8 and rgy; = 0, rgij = 0.6!"7!
and rg;= -04'"7 + 0.5, rg; = -0.8/71 + 0.02i and rg; =
04171 1+ 0.5, g, = -1°0.05j + 0.5 and rg; = -1/0.1i +
0.2, rgy = 077" and rg; = -170.05i + 0.2, and rg;; =
-0.8!71 '+ 0.02i and rg; = -0.2/771 + 0.5, for correlation
scenarios [ to VII, respectively. Population phenotypic
for II,

012=052=3, 022=a42=2 and 032=1 for I II, IV and

2 2 2 2. 2_ 2 2
V, and o{=0;=0f=05 =2, 05 =04 =04=1 and

0} =07 =3 for VI and VII This yielded coefficients of
variation among the corresponding canonical eigenva-

lues ranging from O to 175%. A total of 1000 replicates
per case and sample size were sampled.

variances were of =1 for I, o?=15"

Analyses
REML estimates of Xs and Xy for each sample were
obtained for different penalties and tuning factors by
using a method of scoring algorithm to locate the maxi-
mum of log £(0) or log £,(8), followed by simple deri-
vative-free search steps to ensure that convergence had
been reached. This was done using a parameterisation
to the elements of the canonical decomposition, A1; and
tij € T, as described by Meyer and Kirkpatrick [15],
restraining estimates of A; to the interval of [0.0001,
0.9999].

A total of 10 penalties were examined, six penalties on

the canonical ’PA,’PZ,’PU,PE for
a=p=2, Pg for z = 1 and P for z = 1, and four

eigenvalues,

penalties on matrices, Py, P%, Pp and ’Pg, as described

above. All employed a single tuning factor. In addition,
two different tuning factor to the parts of penalties
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Pﬁ and Pﬁ that corresponded to genetic and residual

components were employed.

Estimating the tuning factor
To determine the tuning factor (w) for each analysis,

estimates of X and X, denoted as Zg and E}é’ , were

obtained for a range of possible values for y. A total of
311 values were used, comprising values of 0 to 2 in
steps of 0.1, 2.2 to 5 in steps of 0.2, 5.5 to 10 in steps of
0.5, 11 to 100 in steps of 1, 102 to 250 in steps of 2,
255 to 500 in steps of 5 and 510 to 1000 in steps of 10.
The ‘best’ value was then chosen using three different
approaches.

First, as in previous work [15], knowledge of the
population parameters was used. For each y and esti-

mates Eé’ and ):g, the corresponding unpenalized log

likelihood was calculated as

log £(6)Y =— ) [(s— 1)(log | Zp | +tr(Z5 ' Mp))

(14)
+s(n—1)(log | Tw | +tr(Zy' Mw))]

with Ty =2 +32” and $5=%y+ Inxf. This
requires validation ‘data’ which, for a paternal half-sib
design, can be summarized as the matrices of mean
squares and cross-products between (Mp) and within
(Myy) sires, as from an analysis of variance. For strategy
V1, Mp and My were obtained by sampling one addi-
tional data set from the same distribution as the data
used in the analysis. For strategy Veo, My and M, were
constructed from the population parameters. This is
equivalent to sampling an infinite number of additional
data sets, hence the notation Veo. For both strategies,
the value of y which maximised log £(8)¥ was then
chosen as the appropriate tuning factor.

Secondly, K-fold cross-validation (CV) was used to
estimate y using only the data available. For this, data
were split into K folds of approximately equal size by
sequentially assigning complete sire families to subsets.
For i = 1, K, the i-th subset was set aside for validation,
while all the remaining K-1 subsets were used to obtain

estimates Zg and Eg for all values of y considered.
Corresponding values for the unpenalized likelihood,
]ogﬁ(O);” (Eq. 14), in the validation data were then

obtained and accumulated across folds. Finally, y was
chosen as the value for which the average likelihood,
Zfil log L(O);.”/K, was maximized. Values of K = 3 and
5 were considered, with the corresponding strategies
denoted as CV3 and CV5 in the following.

The third approach used simply involved choosing
as the largest value of y for which the reduction in the
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unpenalized likelihood due to penalization from the
maximum at v =0, | log £(8)” —log £(0)° |, did not
exceed a selected value. The limit chosen was the xf

value (x)) employed in a likelihood ratio test of a sin-

gle parameter with error probability y, 1.92 for y = 0.05.
This will be referred to as strategy L5%.

Summary statistics

As suggested by Lin and Perlman [28], the effect of
penalized estimation was evaluated as the percentage
reduction in average loss (PRIAL) due to penalization,

100 L1 (Zx, 2%) L1 (2x =) /11 (3, 29)

where %9 is the standard, unpenalized REML esti-
mate of Xy and Zg the penalized estimate, for X = G,

E and P, and L (-) denotes the entropy loss (see (Eq. 1)),
averaged over replicates. In addition, the absolute and
relative bias (in %) for parameter 6; were calculated as
| 6; — 6; | and 100 (; — 6;)/6;, respectively.

Results
Comparing penalties
Mean PRIAL values across all cases for individual covar-
iance matrices and all penalties considered are summar-
ized in Table 1 for a sample size of s = 100. Using
known population values (strategy Veo), achieved reduc-
tions in average loss in estimates of X were substantial,
ranging from about 60% to more than 72%. The main
exception was P, (which penalized the canonical eigen-
values rather than their logarithmic values), for which
PRIALs for X were substantially higher than for Xg.
On average PRIAL values were somewhat smaller for ¢
= 9 than g = 5 traits because cases for ¢ = 9 comprised
more unfavourable scenarios, i.e. population values with
a large and uneven spread of the canonical eigenvalues.
As reported earlier [15], taking logarithms of the
canonical eigenvalues (P!) greatly improved the efficacy
of a penalty proportional to their squared deviations
from the mean. Because canonical eigenvalues are a
function of both X and X, all penalties on A; yielded
marked improvements in estimates of Xy as well as Xg.
Considering log(1 - 4,) in addition to log(4,) (P{? and
all Pg) increased PRIALs for X further without affect-
ing estimates of X detrimentally. Among the penalties
based on the beta distribution, those that estimated the

scale parameters (’Pg) performed best. With different

underlying assumptions, the similarity of results for Pg,
the penalty based on order statistics, and results for
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Table 1 Mean percentage reduction in average loss in estimates of covariance matrices (Zg: genetic, Xg: residual and

X,: phenotypic).

1

Cov. Strategy? Penalty

Pr PL P2 Py Py Py Ps Py P P

5 traits
s Voo 3538 713 729 66.7 714 679 706 70.0 720 722
V3 231 559 60.7 592 58.1 61.1 549 529 544 56.9
5% 413 683 70.2 67.6 69.5 69.3 64.1 66.7 70.5 715
X Voo 579 434 616 593 609 59.7 133 54.2 373 60.0
V3 14.1 26.7 443 38.7 36.0 396 10.7 43.0 22.8 409
5% 436 350 559 54.2 54.1 54.0 72 514 332 55.7
X Veo 1.1 12 13 13 12 1.2 12 1.7 22 24
Cv3 -04 04 0.5 03 0.1 0.3 02 0.1 04 038
5% -0.7 0.7 0.8 0.5 0.5 05 03 1.0 1.0 12

9 traits
s Voo 484 64.8 684 65.3 689 66.7 64.0 62.8 713 733
5% 24.1 675 67.7 654 66.5 66.4 68.0 67.7 69.5 694
Xr Voo 629 60.5 68.8 67.8 673 683 104 61.1 579 702
5% 63.0 164 593 60.9 626 61.7 99 474 17.2 56.3
Xp Voo 13 19 19 20 18 20 12 1.7 25 3.0
5% 1.2 05 1.1 1.2 13 1.2 0.6 0.7 1.1 1.2

Data for s = 100 sire families; using different penalties and up to three strategies to determine the tuning factor (Veo: using population values, CV3: using 3-fold

cross-validation, and L5%: limiting the change in log likelihood)
!Covariance matrix
2Method to determine the tuning factors

penalties that assumed a common mean of all 4; was
somewhat surprising.

Whilst achieving comparable PRIAL on Xg, penalizing
the difference between genetic and phenotypic covar-
iance or correlation matrices behaved different to penal-
ties on canonical eigenvalues (Table 1). As to be
expected, considering X only (Pyx) yielded only small
improvements in estimates of Xr. Adding a correspond-
ing penalty on the residual covariances (P%) increased
PRIAL for Xf to levels comparable to those obtained
when penalizing canonical eigenvalues, again without
reducing the mean PRIAL for Xs notably. For g = 9
traits, there was an unexpected but substantial difference
between imposing penalties on the covariance versus the
correlation matrix. Penalizing both genetic and residual

correlations increased the PRIAL for 3. by 2% (Psvs,

Po). In contrast, corresponding differences for ¢ = 5
were considerably smaller. It is not clear how much this
was an effect of the dimension or due to differences in
population values. Allowing for different tuning factors
for parts of the penalty that correspond to genetic and
residual effects increased the PRIAL for Xs for ¢ = 5
from 72.9 to 73.7% for sz, from 70.0 to 72.7% for P%

and from 72.2 to 74.3% for Pj, i.e. by less than 3%.
Corresponding PRIAL for Xy were 65.6% (P;?), 64.9%

P2 and 62.7%, i.e. increased by more than 10% for P2 .
While non-negligible, the gains for estimates of Xs were
deemed too small to off-set the dramatically increased
computational requirements that arose from the two-
dimensional search for the optimal tuning factors, and
was not given further consideration.

Mean PRIAL values discussed so far concealed a con-
siderable range and variation in the ranking of penalties
for individual cases. This is illustrated in Figure 1, which
shows the PRIAL for X for g = 9 traits, with individual
cases in declining order of the PRIAL obtained using
PL2. For strategy Veo, penalties on canonical eigenvalues
that assumed a common mean performed best when
populations values for the A; were fairly similar, e.g. for
R-I and M-I all population values were equal. For g = 9,
there was little difference in PRIAL for X between
penalties that assumed a normal distribution on the
logarithmic scale (P} and P{?) or a beta distribution

with estimated scale parameters (Pg), although some

tendency for PE to yield slightly higher values for cases

where penalized estimation worked least well was evi-
dent. Conversely, penalties derived assuming an inverse
Wishart matrix prior mostly yielded larger PRIAL for
the other cases, in particular when penalizing the differ-
ence between genetic and phenotypic correlations. For
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Figure 1 Percentage reduction in average loss (PRIAL) in estimates of the genetic covariance matrix for individual cases and different
penalties. Data for g = 9 traits, determining tuning factors on the basis of population values (Veo) and by limiting the change in likelihood

q = 5, penalties P, and 735 performed best for 35% of
the individual cases considered, mainly those for which
PRIAL for I were less than average, while P¢ and ’Pf
yielded the highest values for 37% of cases. For g = 9,
’Pg yielded the highest PRIAL for 80% of cases - mostly

due to population canonical eigenvalues having a sub-
stantial spread for the majority of these cases.

Estimating tuning factors

A crucial part of penalized estimation is the estimation
of the appropriate tuning factor to be used. Mean
PRIAL values for X for different strategies to determine
w are summarized in Table 2 for selected penalties, g =
5 traits and s = 100 sires, together with the average pro-
portion of replicates for which penalization increased
rather than decreased the loss in X. Corresponding
PRIAL values for all penalties for strategies Veo, CV3
and L5% are given in Table 1. Clearly, mean values well
above 70% when using the population values (Vo) pre-
sent an overly optimistic view of the efficacy of pena-
lized estimation. Considering only one additional sample
for validation (strategy V1) introduced considerable
sampling error and thus reduced PRIAL achieved by
about 10%.

Examining regularized estimation of a single covariance
matrix, Rothman et al. [29] reported that strategy V1
yielded similar results to CV. However, in our case, mean
PRIAL values using CV to determine y were consistently
lower, i.e. suffered from additional noise (Table 2). Some-
what surprisingly, PRIAL tended to decrease with the
number of folds considered, K. This was accompanied by
increasing variability of results for individual cases.

Table 2 Mean percentage reduction in average loss for
the genetic covariance matrix together with the average
proportion of replicates for which penalisation increased
loss

Penalty % reduction in average % replicates with increased
loss loss

Vo V1 CV3 CV5 L5% Ve V1 CV3 CV5 L5%
’Pf 713 606 559 504 683 73 87 146 146 120
'sz 729 637 607 581 702 65 75 130 132 100
732 714 629 581 539 695 64 75 136 140 98
Ps 706 606 549 527 641 46 89 154 155 156
Pp 720 629 544 516 705 40 71 99 102 9.2

Data for g = 5 traits and s = 100 sire families; using different penalties and
strategies to determine the tuning factor (Veo: using population values, V1:
sampling one additional data set, CV3 and CV5: 3- and 5- fold cross-validation,
and L5%: limiting the change in log likelihood)



Meyer Genetics Selection Evolution 2011, 43:39
http://www.gsejournal.org/content/43/1/39

Clearly, there was a trade-off between the sizes of the
training and validation sets. One might expect that a
smaller training set (low K) would yield a y that was too
high, as it pertained to the sample size of the subset,
while a larger number of folds (high K) might off-set
potential inabilities to ascertain optimal values for w due
to the limited size of the validation set. However, results
for CV5 were consistently worse than for CV3. Addi-
tional analyses for K = 10 (not shown) yielded even lower
PRIAL than CV5. Inspection of the mean tuning factors

() did reveal a trend for v to decline with increasing

K. For penalties Pg, Py, and P,, values for ¢ from CV

were substantially higher than for strategy Veo, suggesting
that lower PRIALs from CV were due to over-penaliza-

tion. For P} and ’sz, results were less consistent: for

these penalties y determined using Veo tended to be very
high for cases with little spread in the population 4;,
while corresponding values using CV tended to be sub-
stantially lower, so that the average, 1, from strategies
Veo, CV3 and CV5 were similar. CV also reduced differ-
ences between penalties. Interestingly, penalty Pg
appeared least affected by the ‘noise” introduced by esti-
mating y. For strategy CV3, Pj yielded the highest
PRIAL in X for 35% of the individual cases (g = 5 and
s = 100), compared to 2% for strategy Veo.

Difficulties in deriving the optimal ‘bending’ factor
theoretically, led Hayes and Hill [14] to suggest a choice
based on sample size. An alternative in a likelihood fra-
mework is to select the tuning factor so that the corre-
sponding reduction in the unpenalized likelihood does
not exceed a given limit. When carrying out a likelihood
ratio test for the difference between estimates from dif-
ferent models, minus twice the difference in log likeli-
hood is contrasted to a value of the y* distribution
corresponding to the number of parameters tested and
an error probability . The smallest number of para-
meters which can be tested is p = 1. Hence, choosing y
as the largest value for which the resulting change in

log £(0) (sign ignored) does not exceed ;Xf for one

degree of freedom will result in a statistically non-signif-
icant change in estimates. While it may not yield the
optimal amount of regularization, it allows for selection
of a mild degree of penalization without having to justify
significant changes in parameter estimates. In addition,
computational requirements for such a strategy are con-
siderably less than for CV.

As shown in Table 1 and Table 2, determining y in
this way yielded substantially improved estimates of Xg,
with PRIAL consistently higher than for CV. Values for
the average tuning factor v (not shown) were markedly
and consistently lower than those for Veo, indicating
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that this approach indeed resulted in under-penalization.
This held especially for cases with similar population
canonical eigenvalues (E-7, H-1, I-1, M-I and R-I). As
illustrated in Figure 1, choosing y using this strategy
also blurred differences between penalties. In a number
of cases, in particular for g = 9 traits, PRIAL for Xg
from strategy L5% were higher than those from Veo.

Effects of sample size

The effect of sample size on the efficacy of regularized
estimation is illustrated in Figure 2 for g = 5. Clearly,
penalization was most advantageous for small samples,
with mean PRIAL for Xs decreasing substantially as the
number of sire families increased. There were marked
differences between penalties and strategies to deter-
mine y, especially in the rate of decline of PRIAL with

increasing s. This rate was least for penalty 77/3 and,

moreover, choosing tuning factors on the basis of the
change in log £(0) performed almost as well as exploit-

ing knowledge of the population values. Using 795

resulted in the highest PRIAL for both X5 and X for all
sample sizes, when using the change in log £(8) to esti-
mate y.

As noted above, PRIAL in Xs when using CV to
determine the tuning factor were substantially less than
for the other strategies. This difference tended to
increase with sample size. Whilst consistently perform-
ing worst for strategy Veo, the penalty on A; derived
from the distribution of order statistics (Pg) resulted in

the highest PRIAL in X4 for strategy CV3. It is not clear
what this comparatively larger robustness against noise
in estimates of y can be attributed to. The decline in
PRIAL with sample size was clearly a function of the
number of traits considered, with reductions for g = 9

markedly smaller. For instance, for 735 and strategy L5%

the average PRIAL in X5 declined from 69.4% for s =
100 to 64.1% for s = 400 and 60.2% for s = 1000.

Respective values for P{2 were 67.7%, 64.2% and 54.2%.

This suggests that mild penalization is advantageous
even for larger samples as the dimensions of the covar-
iance matrices to be estimated increase.

Bias

As emphasized earlier, regularized estimation entails a
trade-off between sampling variance and bias. Table 3
gives the mean relative bias in estimates of canonical
eigenvalues for a sample size of s = 100 sires and strat-
egy Veo. Figure 3 further illustrates the relationship
between estimates of A; and their true values for selected
penalties and strategy Veo, with the solid line showing a
one-to-one correspondence (unbiased estimates) and the
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Figure 2 Mean percentage reduction in average loss (PRIAL) in estimates of the genetic covariance matrix for different sample sizes.
Data for g = 5 traits; @ using population values (Veo), ® imiting the change in likelihood (L5%) and ¥ using cross-validation (CV3) to determine

dashed line representing the linear regression of esti-
mates on population values. Patterns obtained when
selecting the tuning factor using L5% or CV were simi-
lar. As expected, without penalization, estimates of the
largest values were biased upwards and those of the
smallest values biased downwards. Whilst the mean was
expected to be estimated without bias, a small upwards
bias in the average eigenvalue, } , together with a clus-
tering of the smallest A; at zero were evident, reflecting
the effects of constraints on the parameter space. A pen-
alty on canonical eigenvalues tended to result in over-
shrinkage, i.e. causing a downward bias of the largest
and an upward bias of the smallest values. This was the
more pronounced the further the population 4; were
spread apart. Similar results for a single matrix were
reported by Daniels and Kass [19]. While the relative

bias was substantial for the smallest 1;, absolute changes
tended to be small and penalization clustered estimates
closer to the one-to-one line.

Penalties on matrix divergence clearly acted in a dif-
ferent manner to penalties on canonical eigenvalues,
although PRIAL in X; were comparable. For Py, the
upwards bias in 4; was of a similar magnitude and indi-
vidual estimates exhibited the same pattern (Figure 3) as
for unpenalized REML estimates, while penalization pre-
dominantly affected the smallest values. This was due to
Ps being approximately proportional to the reciprocal
of A;. Shrinking genetic correlations towards their phe-
notypic counterparts (P,) yielded the least relative bias
in estimates of the leading canonical eigenvalues.

However, it should be stressed that bias in estimates
of eigenvalues does not directly translate into bias in the
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Table 3 Mean relative bias (in %) in estimates of the i-th canonical eigenvalue and of the mean eigenvalue (1), and

mean absolute bias in estimates of the i-th heritability (x100).

Penalty
@ i Nee Pn PL PP Py Py Py Px Py Pu P
Canonical eigenvalues
5 i 23 54 6.6 2.1 34 -1.2 1.0 1.2 109 47 2.3
1 95 -129 -37 -96 -89 -129 -115 8.1 32 13 -30
2 26.5 16.1 163 16.1 24.7 19.5 19.5 249 26.3 16.2 155
4 -194 9.1 57.7 483 388 31.0 394 39.1 47.0 373 371
5 -78.8 -38.1 101.3 81.6 36.1 266 522 753 88.6 57.2 56.7
av.? 30.2 196 416 364 283 234 303 344 388 26.6 265
9 A 44 -99 95 32 1.8 038 7.2 19.7 182 6.3 25
1 224 =224 -3.8 -137 -6.9 -185 -12.7 216 88 29 -4.2
2 166 -175 -6.8 -10.0 0.5 -114 -6.2 16.1 11.0 -0.7 -3.1
8 -85.6 -164 1394 117 80.8 778 104.4 87.5 1101 86.5 822
9 -97.9 -35.0 270.1 2175 133.2 134.0 190.5 184.1 217.0 1334 1317
av. 399 16.6 684 573 488 45.1 56.9 54.0 619 400 39.1
Heritabilities
5 1 -1.0 -9.1 -4.4 -7.8 -6.9 -83 -79 -0.7 -29 -19 -3.7
2 0.6 -34 0.0 -1.7 -1.1 -2.0 -1.7 2.2 14 -0.2 -14
4 0.9 0.2 32 2.2 25 20 2.1 4.1 43 1.0 0.5
5 1.1 12 46 36 3.7 3.2 34 5.1 54 1.6 1.3
av. 038 3.1 27 3.1 30 3.1 3.1 30 34 1.0 14
9 1 -0.5 -15.5 -6.8 -11.3 -76 -12.3 -10.0 09 -36 -20 -54
2 -0.1 -117 -4.8 -7.8 -4.5 -85 -6.6 19 -13 -1.8 -4.9
8 2.2 2.5 7.5 6.0 7.5 5.7 6.8 8.2 8.6 29 2.2
9 2.5 35 8.6 7.2 84 6.9 79 9.1 96 35 29
av. 13 54 4.8 4.8 49 50 49 54 5.1 1.9 2.5

Data for s = 100 sire families; using different penalties (see text for notation) and population values to determine the tuning factor (strategy Veo)

'Number of traits
Average of all g absolute values

corresponding covariance components or genetic para-
meters. Eigenvalues of sample covariance matrices are
systematically over-dispersed and biased, but the sample
covariance matrix is an unbiased estimator e.g. [3].
REML estimates are biased, however, because estimates
are constrained to the parameter space. This implies
that for scenarios for which no constraints are needed,
no bias is notable. Table 3 gives the mean bias in esti-
mates of selected heritabilities (4%). Without penalty, a
slight bias in estimates that corresponded to the highest
and lowest population values was evident, arising from
constrained estimation. Penalized estimation biased esti-
mates of /%, with the pattern of biases and differences
between penalties similar to those observed for ;. For
instance, for Psx the smallest h? were substantially
biased upwards, while estimates for the largest values
were similar to those from unpenalized analyses. Penal-
ties on the canonical eigenvalues resulted in marked
underestimates of the highest /4. Taking the average of
absolute deviations across traits yielded the lowest

values for P, and ’Pg, only slightly higher than for

unpenalized estimates, whilst mean absolute differences
for the other penalties were about twice as high (Table 3).

The effects of penalized estimation on estimates of
genetic correlations are illustrated in Figure 4 for case T-
VI (with population /4% of 2 x 0.5, 0.2, 2 x 0.15, 2 x 0.1
and 2 x 0.05) and s = 100. Shown is a box-and-whisker
plot of individual estimates across replicates, with corre-
lations in ascending order of their population values,
depicted by horizontal bars. Not surprisingly for such
small samples, unpenalized estimates were subject to
substantial sampling variation and were most variable for
pairs of traits with lowest /#°. Again, unpenalized esti-
mates were clearly biased due to constraints on the para-
meter space, with mean deviations from the population
values ranging from -0.504 (8-9) to 0.035 (3-8) and a
mean, absolute bias across replicates of 0.064. Penaliza-
tion dramatically reduced the spread of estimates, but
increased bias to a range of -0.734 (8-9) to 0.103 (4-8),
with a mean absolute value of 0.142. In all cases, genetic
correlations were shrunk towards the corresponding phe-
notypic correlations (population values shown as dashed
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Figure 3 Mean estimates of canonical eigenvalues for individual cases and different penalties. Data for g = 5 traits and s = 100 sires,
using population values (strategy Veo) to determine the tuning factor; e first, ® second, v third, ¢ fourth and 4 fifth eigenvalue

horizontal lines). In spite of the increase in bias, pena-
lized estimation reduced the loss in the estimate of Rg by
77.3%. The corresponding value for X5 was less, 58.1%
for Veo, i.e. this was a scenario for which penalization
was less effective (Figure 1). Across all cases, the mean
absolute bias in estimates of genetic correlations for
unpenalized estimates for s = 100 was 0.046 for g = 9 and
0.033 for g = 5. Penalized estimation increased this value
by a factor of 2 to 3. Again, there was a tendency for the
bias to be most pronounced for penalties that were
imposed directly on the canonical eigenvalues.

Discussion

An extension of current, standard methodology to esti-
mate genetic parameters in a mixed model framework
has been outlined that has the scope to yield ‘better’
estimates, especially for multivariate analyses that com-
prised more than just a few traits. This is achieved by
penalizing the likelihood, the penalty being a function of
the parameters that is aimed at reducing sampling varia-
tion. A number of suitable penalties were investigated,
with emphasis on those that ‘borrow strength’ from

estimates of phenotypic covariance components, which
are typically estimated much more accurately than their
genetic counterparts. All penalties presented have a
Bayesian motivation, i.e. they can be derived assuming
certain prior distributions for covariance matrices or
their eigenvalues.

Simulation results demonstrate that substantial loss
reductions, i.e. the (average) difference between true and
estimated covariance matrices, can be achieved through
penalized estimation. As expected, this reduction in loss
is at the cost of increasing bias, over and above that
introduced by constraining estimates to the parameter
space in standard REML analyses. The magnitude and
direction of the additional bias depend on the popula-
tion parameters and penalty applied but in general,
penalization leads to reduced estimates of the highest
heritabilities and increases estimates of the smallest her-
itabilities while estimates of genetic correlations are
reduced in absolute value. With comparable (or better)
reductions in loss to other penalties, those which shrink
the genetic towards the phenotypic correlation matrix

(P, and 'sz) appeared to result in least bias.
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Figure 4 Distribution of estimates of genetic correlations between traits i and j (i-j) across replicates for case T-VI. Data for s = 100 sires
and using strategy Ve to determine tuning factors; horizontal bars show population values for genetic (solid lines) and phenotypic (dashed lines)

correlations.

Penalized REML estimation for penalties on canonical
eigenvalues is best implemented by parameterising to
the elements of the canonical decomposition, A and T
[15]. In contrast to implementations for standard REML
algorithms (which usually parameterize to the elements
of the Cholesky factors of the covariance matrices to be
estimated), this yields non-zero derivatives of all covar-
iance matrices with respect to all parameters. Further-
more, initial experience with this parameterization has
shown that it resulted in slower convergence rates than
estimation of covariance matrices or their Cholesky fac-
tors, similar to results by [30]. Moreover, extension to
models with additional random effects and penalties on
their covariance matrices is not straightforward. How-
ever, estimation with penalties on matrix divergence is
readily carried out using standard parameterizations, for
which calculation of derivatives of the penalty is the
only modification to existing REML algorithms required.
Furthermore, with this approach penalties on additional
covariance matrices can easily be imposed, provided
appropriate tuning factors are available.

CV is a widely used technique to estimate the tuning
factor in regularization problems from the data at hand.

For our application, however, it was found to be only
moderately successful, with errors in estimating w limit-
ing achieved PRIAL and increasing the proportion of
replicates for which penalization was detrimental. These
errors appeared especially important for larger samples,
i.e. in small samples any degree of penalization is likely
to have a substantial effect, while over-penalization
becomes more harmful as sample size increases. An
added problem with CV for data with a genetic family
structure is that of representative sampling of data sub-
sets. In our setting, assigning whole sire families to indi-
vidual folds was a natural choice and yielded higher
PRIAL values than splitting families evenly across folds.
In practical data sets with arbitrary relationships and
fixed effects, choices are less obvious and guidelines to
good sampling strategies in a mixed model setting are
scarce.

Moreover, CV is laborious and increases the number
of analyses required by orders of magnitude. A sequen-
tial search for the optimal tuning factor was used in our
simulation study. A more efficient strategy would be to
use one of the many structured optimization methods
available, e.g. a quadratic approximation of the average
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likelihood from the validation sets. However, this relies
on the ‘validation’ curves to be smooth, increasing
monotonically to a maximum and then decreasing
again. This was not always the case in the simulations
presented - some jagged curves were encountered, in
particular for the smallest sample sizes. Presumably this
was due to likelihood surfaces being very flat around
their maxima, resulting in inaccurate location of these
points. Use of such techniques was thus disregarded
here.

Fortunately, choice of y based on the decrease in the
unpenalized likelihood from its maximum at y = 0 can
result in penalized estimates that are closely related to
those which would be obtained if population values
were known. As demonstrated, such strategies yielded
average loss reductions for estimates of the genetic cov-
ariance matrix that were substantially higher than loss
reductions obtained when estimating y by CV, and loss
reductions comparable to those achieved when using
knowledge of the population parameters for some penal-
ties. Choosing the limit to the change in likelihood so
that it was just not statistically significant appeared to
be a sensible choice to select a mild degree of penaliza-
tion. Although this choice did not perform quite as well
for individual cases where all population canonical
eigenvalues were very similar, this is a scenario which is
unlikely to be of practical relevance in quantitative
genetic applications.

Work so far has considered a balanced scenario, in
which all traits in a multivariate analysis were measured
for all individuals. However, we often have a substantial
discrepancy between the number of observations avail-
able for different traits. For instance, we may have a
number of traits recorded on a substantial number of
individuals whilst records for difficult to measure traits
are available for a small subset only. It is then necessary
to penalize parts of the genetic covariance matrix corre-
sponding to such groups of traits differently. An exten-
sion of the penalties on the divergence between genetic
and phenotypic matrices allowing this can be derived
assuming a generalized inverse Wishart prior distribu-
tion, and will be considered in future work.

Even with today’s computational resources, there are
problems for which analyses that consider all traits of
interest are not feasible, so that elements of the com-
plete covariance matrix have to be obtained through a
series of analyses of subsets of traits. This yields multi-
ple estimates of variance and some covariance compo-
nents, which need to be pooled whilst ensuring the
resulting matrix is positive definite. Typically, this is
done by considering one matrix at a time, using meth-
ods such as ‘iterative summation of expanded part
matrices’ [31], or by combining simple averaging of
components with a regression of the eigenvalues of the

Page 14 of 15

resulting matrix towards their mean so that they are
positive. Results from this study suggest that considering
all matrices of interest simultaneously when pooling
estimates from analyses of subsets, together with some
shrinkage towards their sum, may be advantageous.

Conclusions

Penalized maximum likelihood estimation provides the
means to ‘make the most’ of limited and precious data
and facilitates more stable estimation for multi-dimen-
sional analyses, even when samples sizes are larger. We
anticipate that penalized maximum likelihood estimation
will become part of our everyday toolkit, as truly multi-
variate estimation for quantitative genetic problems
becomes routine. At the present state of knowledge, a
mild penalty on the divergence of the genetic from the
phenotypic correlation matrix, chosen on the basis of
the change in likelihood from an unpenalized analysis,
appears the most suitable option for practical
applications.
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