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Abstract

Phenotypic traits may exert causal effects between them. For example, on the one hand, high yield in dairy cows
may increase the liability to certain diseases and, on the other hand, the incidence of a disease may affect yield
negatively. Likewise, the transcriptome may be a function of the reproductive status in mammals and the latter
may depend on other physiological variables. Knowledge of phenotype networks describing such interrelationships
can be used to predict the behavior of complex systems, e.g. biological pathways underlying complex traits such
as diseases, growth and reproduction. Structural Equation Models (SEM) can be used to study recursive and
simultaneous relationships among phenotypes in multivariate systems such as genetical genomics, system biology,
and multiple trait models in quantitative genetics. Hence, SEM can produce an interpretation of relationships
among traits which differs from that obtained with traditional multiple trait models, in which all relationships are
represented by symmetric linear associations among random variables, such as covariances and correlations. In this
review, we discuss the application of SEM and related techniques for the study of multiple phenotypes. Two basic
scenarios are considered, one pertaining to genetical genomics studies, in which QTL or molecular marker
information is used to facilitate causal inference, and another related to quantitative genetic analysis in livestock, in
which only phenotypic and pedigree information is available. Advantages and limitations of SEM compared to
traditional approaches commonly used for the analysis of multiple traits, as well as some indication of future
research in this area are presented in a concluding section.

Background
In animal breeding and quantitative genetics, relation-
ships among phenotypic traits are traditionally studied
via probabilistic relationships between them, using stan-
dard Multiple Trait Models (MTM) - see, for example,
[1,2]. Although such models can be used satisfactorily to
infer how probable events are, they are not stable
enough to predict how probabilities would change as a
result of external interventions [3,4]. In biological sys-
tems, phenotypic traits may exert causal effects between
them. For example, on the one hand, high yield in dairy
cows may increase the liability to certain diseases and,
on the other hand, the incidence of a disease may affect
yield negatively. Likewise, the transcriptome may be a
function of the reproductive status in mammals and the
latter may depend on other physiological variables. Such

phenotypic relationships can be studied using statistical
models that account for recursiveness and feedback
between traits.
Information regarding phenotype networks describing

such interrelationships can be used to predict the beha-
vior of complex systems, e.g. biological pathways under-
lying complex traits such as diseases, growth and
reproduction, and ultimately it can be used to optimize
management practices and multi-trait selection strate-
gies in livestock. For instance, a correlation between
traits y1 and y2 can be due to a direct effect of y1 on y2
(or y2 on y1) or to extraneous variables that jointly affect
y1 and y2. Knowledge about the causal structure under-
lying phenotypic relationships is necessary to predict the
effect of interventions (e.g., management practices)
applied to trait y1 or y2. For example, if trait y1 affects
y2, and y2 has no effect on y1, an intervention on y1 will
cause changes on y2, but the reverse would not hold
true.
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Similar situations can be considered from a genetic
improvement standpoint. Conventionally, genetic corre-
lation is defined as the proportion of variance that two
traits share due to genetic causes, and it indicates how
much of the genetic influence on two traits is common
to both, e.g., due to pleiotropism. However, different
scenarios can cause a pleiotropic effect of a specific
gene (g) on two traits (y1 and y2), as illustrated in
Figure 1: (a) the expression of the gene changes trait y1,
and the phenotypic change on trait y1 affects trait y2; (b)
the expression of the gene acts on trait y2, and the phe-
notypic changes on trait y2 modify trait y1; or (c) the
expression of the gene changes both traits directly,
which may or may not have a phenotypic causal effect
between them. Knowledge about these different sources
of genetic correlation between traits could be used to
further improve selection decisions and increase the
genetic progress of breeding programs.
As an alternative to the traditional MTM used in ani-

mal breeding and genetics, Structural Equation Models
(SEM; [5,6]) can be applied to study recursive and
simultaneous relationships among phenotypes in multi-
variate systems. Therefore, SEM can produce an inter-
pretation of relationships among traits which differs
from that obtained with standard MTM, where all rela-
tionships are represented by symmetric linear associa-
tions among random variables, i.e., as measured by
covariances and correlations. Unlike MTM, in SEM one
trait can be treated as a predictor of another trait, pro-
viding a functional (causal) link between them.
In the last few years, genetics has been used as a

means to infer phenotype networks, including causal
relationships among them [7], and SEM or related
methodologies have been employed for such tasks (e.g.,
[8-12]). These applications of SEM to reconstruct phe-
notype networks considered genetical genomics studies
with model species, using quantitative trait loci (QTL),
molecular marker, and or DNA sequence information to
facilitate causal inference. However, even with livestock,
in which genetical genomics studies are not common

due to its cost, and reliable information regarding QTL
or even sequence information may not be available,
SEM have also been satisfactorily used to study phenoty-
pic networks. SEM within a quantitative genetics mixed
models context have been described by [13]. Many
authors have used such an approach (e.g., [14,15]), but
typically the causal structures are pre-selected using
some sort of prior knowledge. More recently, Valente
et al. [16] have proposed a methodology that allows
searching for recursive causal structures in the context
of mixed models for the genetic analysis of multiple
traits, showing that under certain conditions it may be
possible to infer phenotype networks and causal effects
even without QTL or marker information. In this paper,
we briefly review SEM and present some of their appli-
cations for phenotype network reconstruction in geneti-
cal genomics studies, in which both phenotypic and
molecular information is available, as well as in the con-
text of classical quantitative genetic analysis of multiple
phenotypic traits, using pedigree information.

1. Structural equation models
Structural Equation Models [3,4] provide a general sta-
tistical modeling technique to estimate and test func-
tional relationships among traits, which are often not
revealed by standard linear models. When fitting a SEM
to a set of variables, it is necessary to define a priori, for
each variable, the subset of the remaining variables that
have a (direct) causal effect on it. This information is
called ‘causal structure’, and can be represented as a
directed graph in which variables (measured or unmea-
sured) constitute nodes and causal relationships are
represented as directed edges between nodes. For exam-
ple, consider the graph depicted in Figure 2, in which
explanatory variables x and some additional (residual)
variables e directly affect variables y, which have also
some causal relationships among them.

Figure 1 Some possible gene-phenotype networks involving a
single gene (g) and two phenotypic traits (y1 and y2). Standard
multi-trait statistical models could potentially detect a correlation
between the two phenotypic traits and a pleiotropic effect of gene
g; however, only gene-phenotype network and causal models
would be able to distinguish the paths connecting them.

Figure 2 Example of a causal structure, in which y’s represent
measurements on three phenotypic traits, x’s and e’s represent
known explanatory variables and residual factors affecting y’s,
respectively.
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The graph in Figure 2 can be represented by a set of
structural equations, given by:
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where b’s are model parameters representing the “fixed
effects” of the x covariates on y’s, and l’s are structural
coefficients representing the magnitude of the casual
effects among y’s. Hence, in matrix notation, a SEM can
be represented as y = Λy + Xb + e, where Λ is a quadratic
matrix with zeroes in the diagonal and with structural
coefficients l or zeroes in the off-diagonal, and y, X, b and
e are appropriate vectors or matrices with the observations
y’s, exogenous variables x’s, model parameters b’s and resi-
duals e’s, respectively. Competing networks representing
different causal structures among y’s may be compared
using some model selection criteria, such as likelihood
ratio tests (LRT), Akaike information criterion (AIC; [17]),
Bayesian information criterion (BIC; [18]), or Bayesian
model selection approaches (see, for example, [19]).
Structural equation models have been intensively used

in many fields, such as economics, psychometrics, social
statistics, and biological sciences. In genetics, they have
been used, for example, to study the relationships
between phenotypic traits in humans, especially in the
context of twin designs (e.g. [20,21]). More recently, it
has been also employed in quantitative genetics mixed
model analysis, and on gene-phenotype network recon-
struction, as discussed below.

2. QTL information and the randomization of alleles
Thomas and Conti [22] have pointed out that genetically
randomized experimental populations that segregate
naturally occurring allelic variants can provide a basis
for the inference of networks of causal associations
among genetic loci, physiological phenotypes, and dis-
ease states. In particular, the randomization of alleles
that occurs during meiosis provides a setting that is ana-
logous to a randomized experimental design, such that
causality can be inferred within the classical Fisherian
statistical framework.
In this context, Schadt et al. [7] have proposed a

multi-step procedure to infer causal relationships
between two phenotypic traits and a common QTL.
More specifically, they have tried to disentangle the cau-
sal path involving the expression of a particular gene, a
cis-acting expression QTL (eQTL), and a complex trait
(e.g. a disease trait), to determine if they are related to
each other following a causal, reactive or independent
model. Such models (denoted here as Models C, R and
I, respectively) can be represented as in Figure 1, in

which the variables g, y1 and y2 denote the cis-acting
eQTL, the transcriptional activity of the gene, and the
complex trait, respectively. Model C depicted in Figure
1a refers to the simplest causal relationship with respect
to y1, in which allelic variations in g change y2 by chan-
ging the transcriptional activity y1. Model R (Figure 1b)
represents the simplest reactive model with respect to
y1, in which the expression y1 is modulated by the trait
y2. Lastly, Model I (Figure 1c) represents a situation in
which the QTL g controls y1 and y2 independently.
Schadt et al. [7] have proposed a likelihood-based

causality model selection (LCMS) test that uses condi-
tional correlation measures to determine which relation-
ship among a trio of traits (a transcriptional trait, a
complex phenotype, and a common QTL affecting both)
is best supported by the data. Likelihoods associated
with each of the models (causal, reactive and indepen-
dent models) have been constructed and maximized
with respect to the model parameters, and the AIC cri-
terion has been used to select the model best supported
by the data. More specifically, the joint probability dis-
tributions of the three models depicted in Figure 1 have
been described as:
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where y1 and y2 were assumed normally distributed
about each genotypic mean at the common locus g.
With those settings, model-specific likelihoods were
obtained and standard maximum likelihood estimation
methods have been employed.
Schadt et al. [7] have applied their methodology to a

mouse genetical genomics study comprised of large-
scale genotypic, gene-expression and complex-trait data
to identify genes related to obesity, and have been able
to identify known and new susceptibility genes for fat
mass, and to successfully predict transcriptional
response to perturbation in such genes. Their proce-
dure, however, is restricted to simple gene-phenotypes
networks, focusing on the identification of genes in the
causal-reactive interval considering a trio of nodes com-
prising a common QTL affecting the expression of a
specific gene and a complex trait. Evidently, gene and
phenotype networks can be much more complex, as the
causal-reactive genes may be also interacting in a
broader network through an intricate cascade of genes
and phenotypic traits.
More specifically with SEM, Li et al. [8] have pre-

sented a methodology to analyze multilocus, multitrait
genetic data. Their method extends that of [7], not only
by the number of loci and phenotypic traits studied, but
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also by different possible causal relationships among
them, such that it provides a better characterization of
the genetic architecture underlying complex traits. For
instance, even if only a single locus and two correlated
traits are considered, it allows for alternative recursive
effects between phenotypes (Figure 3), outside the cau-
sal-reactive interval explored by [7].
The method of [8] comprises a series of five steps.

First, single locus genome scans are run for each indivi-
dual phenotype using a LOD-based test. Next, condi-
tional genome scans are performed using one trait as a
covariate in the analysis of another trait. As the authors
mention, the choice of which trait(s) to use as covariates
can be performed extensively or, alternatively, it may be
guided by known biological relationships among the
traits. In this setting, traits that are known to be
upstream in the causal pathways should be employed as
conditioning variables. The comparison between results
from unconditioned and conditioned scans can give a
first insight into the causal relationships among the phe-
notypes. For example, in model (8) of Figure 3, g and y1

are unconditionally independent; however, conditioning
on y2 will result in a nonzero partial correlation between
them. By contrast, in model (9), g and y1 are uncondi-
tionally correlated, and by conditioning on y2 their
dependence vanishes. When the QTL g and both traits
y1 and y2 are causally connected, as in model (1)-(3), the
raw and partial correlations between them will all be
nonzero, but they will change in magnitude depending
on the signs of the path coefficients [8]. A third step on
Li et al.’s [8] procedure refers to the construction of an
initial path model and its respective SEM representation.
In the graphical SEM, each measured trait is represented
as a node, including the QTL identified in steps 1 and 2.
Edges should be directed from the QTL to the corre-
sponding traits, and edges should be added also from
conditioning traits to the responses whenever a signifi-
cant difference in LOD scores (ΔLOD) is observed.
After the path models are constructed, they are assessed
in terms of goodness-of-fit by comparing the predicted
and observed covariance matrices and by significance
tests for individual path coefficients. Finally, an

Figure 3 Causal relationships among a QTL (g) and two correlated phenotypes (y1 and y2). Arrows indicate the direction of causal effects
and dotted lines represent unresolved associations between the two phenotypes (adapted from [8]).
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additional step is performed to refine the model, by pro-
posing and assessing alternative models, which are gen-
erated by adding or removing edges in the initial model,
or by reversing the causal direction of an edge. The
authors use a LRT approach to compare such models,
but they also suggest that alternative model criteria
could be used, such as the AIC or variations thereof, or
predictive ability assessed through some cross-validation
strategy. Steps 4 and 5 of model refinement and assess-
ment may be also carried iteratively.
Li et al. [8] have carried out the genome scans with

tests on every 2 cM using a permutation approach,
followed by the SEM component of the analysis.
They have applied the methodology proposed to the
analysis of body weight and weights of the inguinal,
gonadal, peritoneal, and mesenteric fat pads of a SM ×
NZB intercross population with 260 females and 253
male mice raised on an atherogenic diet, and concluded
that SEM provide an insightful descriptive approach to
the genetic analysis of multiple traits, allowing the char-
acterization of pleiotropic and heterogeneous genetic
effects of multiple loci on multiple traits, as well as the
physiological interactions among traits.
Another application of SEM for phenotype causal net-

work inference has been presented by [9], who propose
a methodology to search for a set of sparser structures
within a putative directed network of causal regulatory
relationships among gene expression levels and eQTL in
genetical genomics studies. Their method encompasses
three steps. First, eQTL mapping techniques are used to
identify chromosomal regions modulating the expression
of genes. Secondly, regulator-target pairs are identified,
such that a directed network can be obtained. Finally,
sparser optimal networks are sought within the initial
directed network using a SEM approach. Liu et al. [9]
have applied their methodology to a genetical genomics
data on yeast containing information on expression
levels of 4589 genes and genotypes for 2956 markers on
112 haploid offspring originating from a cross between a
laboratory and a wild strain. They have detected a num-
ber of cis- and trans-acting eQTL and regulator-target
pairs, from which a directed network comprising 28K+
regulator-target pairs was constructed. Based on a parti-
tion of this initial network, which comprises 168 genes
involved in a cycle genes and all genes connected to the
cycle genes by up to three edges and all the eQTL
associated with these genes, a SEM analysis has been
performed for its sparsification. The preliminary sub-
network had 265 genes, 241 QTL, 832 edges connecting
genes, and 640 edges connecting eQTL to genes. The
resulting SEM network contained 475 edges connecting
genes, and 468 edges connecting eQTL to genes. Some
additional analyses have been performed to check for
lists of genes with specific biological functions that were

enriched on this network, revealing for example that
41.6% of the genes are involved in catalytic activity, and
other 18% are involved in hydrolase activity.
Also using QTL information to orient edges connect-

ing phenotypes, Chaibub Neto et al. [11] have proposed
a methodology comprised of two main steps. First, an
association network is constructed using either an
undirected dependency graph (UDG; [4]) or a skeleton
derived from the PC algorithm of Spirtes et al. [23]. Sec-
ond, LOD score tests are used to determine causal
direction for every edge that connects a pair of pheno-
types, conditional on QTL affecting the phenotypes.
They have assessed the performance of their methodol-
ogy in simulations studies, showing that it can recover
network edges and infer their causal direction correctly
at a high rate. However, although their method can be
applied to human studies and outbred populations, it
depends heavily on the availability of reliable informa-
tion regarding QTL affecting the phenotypic traits of
interest. Nonetheless, as discussed by [12], traditional
QTL mapping approaches are based on single-trait ana-
lyses, in which the network structure among phenotypes
is not taken into account. Such single-trait analyses may
detect QTL that directly affect each phenotype, as well
as QTL with indirect effects, which directly affect phe-
notypes upstream to the specific phenotype being ana-
lyzed. For example, consider the causal graph depicted
in Figure 4a, consisting of five phenotypes (y1-y5) and
three QTL (q1-q5). The outputs of single-trait analyses
under this scenario are given in Figure 4b. Now, when a
multi-trait QTL analysis is performed according to the
actual phenotype causal network, detecting indirect-
effect QTL is avoided by simply performing mapping
analysis of each phenotype conditional on their parents
(i.e., upstream phenotypes). For example, in Figure 4a, if
a QTL analysis for phenotype y3 is performed condition-
ally on trait y2, only QTL q3 will be detected because y3
is conditionally orthogonal to q1 and q2, the two QTL
with indirect effects (through y1 and y2) on y3.
Hence, traditional QTL mapping approaches that

ignore the phenotype network result in poorly estimated
genetic architecture of phenotypes, which may hamper
correct inferences regarding causal relationships among
phenotypes. In view of this drawback of traditional QTL
analyses and phenotype network reconstruction meth-
ods, Chaibub et al. [12] have suggested a methodology
that simultaneously infers a causal phenotype network
and its associated genetic architecture. Their approach
is based on jointly modeling phenotypes and QTL using
homogeneous conditional Gaussian regression models
and a graphical criterion for model equivalence. The
concept of randomization of alleles during meiosis and
the unidirectional relationship from genotype to pheno-
type are used to infer causal effects of QTL on
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phenotypes. Subsequently, causal relationships among
phenotypes are inferred using the QTL nodes, which
might make it possible to distinguish among phenotype
networks that would otherwise be distribution
equivalent.

3. Inferring causal phenotype networks with no genomic
information
All phenotype network reconstruction approaches dis-
cussed so far rely on information regarding QTL affect-
ing the phenotypes, or on the availability of genetic
marker information for the joint inference regarding
phenotype network and genetic architecture. Such QTL
are used as parent nodes on putative networks, facilitat-
ing inferences on the remainder of the network, either
on the construction of preliminary undirected graphs or
on the establishment of causal relationships.
However, SEM have also been used to study relation-

ships among phenotypic traits in the context of classical
quantitative genetics and animal breeding, even if mole-
cular marker or QTL information is not available.
A methodology to insert SEM within a mixed effects

model applied to quantitative genetics has been
described by [13], and since then applied by many
researchers working with different species and phenoty-
pic traits. Some details regarding this methodology and
examples of application are described below.
SEM embedded within a quantitative genetics mixed model
A SEM with a specific causal structure and random
additive genetic effects can be written as [13,24]:

y y X u ei i i i i= + + +  ,

where yi is a (t × 1) vector of phenotypic records on
subject i; Λ is a (t × t) matrix of structural coefficients
describing the chosen causal structure; Xib represents
the effects of exogenous covariates as linear regressions,
in which the matrix Xi contains the covariates and b is
a vector of ‘fixed’ regression coefficients; ui and ei are
(t × 1) vectors of random additive genetic effects and
model residuals, respectively, which are both associated
with the ith subject. Furthermore, ui and ei are assumed

to be distributed as
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Figure 4 Example of network with five phenotypes and three QTL (Panel a), and the expected output of single-trait QTL analyses for
such phenotypes (Panel b). On Panel b, dashed and pointed arrows represent direct and indirect effects of QTLs on phenotypes, respectively.
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where G0 and Ψ0 are the additive genetic and residual
covariance matrices, respectively.
The model for n animals can be described as y =

(Λ⊗In)y + Xb + Zu + e, with:
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where y, u and e are, respectively, vectors of phenoty-
pic records, additive genetic effects and model residuals
sorted by trait and subject within trait, and X and Z are
incidence matrices relating effects in b and u and y.
This model may be rewritten as [Itn-(Λ⊗In)] y = Xb +
Zu + e, so that an equivalent reduced model can be
obtained as [13]:
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The resulting sampling distribution of y given the
location parameters and the residual covariance matrix
is:
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where Ψ = Ψ0⊗In.
By reducing the SEM, the location and dispersion

parameters are transformed into parameters of a stan-
dard MTM [24,25], as indicated below:
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vectors of fixed effects, additive genetic effects, model
residuals, and the genetic and residual covariance

matrices of an MTM. Hence, it is seen that SEM and
MTM are equivalent models, i.e.:
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However, an MTM is just-identified [24], such that

changes in parametric values necessarily result in some
change in the joint distribution of y. Conversely, SEM
carries extra parameters in Λ, resulting in an unidentifi-
able likelihood function. Nevertheless, it is possible to
introduce constraints in SEM to achieve parameter iden-
tifiability [24]. A constraint which is typically sufficient
is coercing the residual covariance matrix Ψ0 to be diag-
onal, as in the examples discussed below. After defining
the causal structure and achieving parameter identifia-
bility, one may apply standard statistical methodologies
(e.g., [26]) to make inferences about model parameters.
SEM models have been used to study simultaneous

and recursive relationships between phenotypes in var-
ious species and breeds, such as dairy goats [27], Land-
race and Yorkshire pigs [25], Holstein (e.g., [15,28-30])
and Norwegian Red (e.g., [14,31,32]) cattle. The pheno-
typic traits studied span from production (e.g. milk yield
in dairy cattle and body weight in pigs) to reproductive
(e.g. gestation length and calving ease in dairy cattle,
and litter size in pigs) and health-related traits (somatic
cell score and mastitis incidence in dairy cattle). In addi-
tion, some extensions of the methodology proposed by
[13] have been suggested, such as threshold models with
structural coefficients functioning at the level of liabil-
ities ([15,28,33]), and models with heterogeneous struc-
tural coefficients, such as time- and yield-dependent
coefficients (e.g., [15,29,31]). Some details on these
applications of SEM in animal breeding and quantitative
genetics are provided below.
De los Campos et al. [14,27] have presented the first

applications of SEM to study recursive or simultaneous
effects between traits within a quantitative genetics mixed
effects models. De los Campos et al. [14] have compared
four SEM specifications to study relationships between
somatic cell score (SCS) and milk yield (MY) in first-
lactation Norwegian Red cows using a sire model. Model
parameters are estimated using maximum likelihood and
the models are compared via BIC. Results indicated a
recursive effect from SCS on MY, providing evidence that
the negative association between MY and SCS is more
likely to be due to an effect of infection (measured indir-
ectly by the SCS) on production than to the opposite
direction (i.e., a dilution effect). These results are corrobo-
rated by de los Campos et al. [27], who have studied the
relationship between MY and SCS in dairy goats. The data
consist of repeated measurements in each half of the

Rosa et al. Genetics Selection Evolution 2011, 43:6
http://www.gsejournal.org/content/43/1/6

Page 7 of 13



udder of the animals. Again, a negative effect of SCS on
MY has been observed and the evidence in favor of a dilu-
tion effect is not strong. In addition, the authors have
found simultaneity of effects between SCS from the left
and right halves of the udder.
Also working with MY and SCS data in dairy cattle,

Wu et al. [31] have extended the simultaneous and
recursive model of [13] to accommodate possible popu-
lation heterogeneity. A Bayesian analysis via Markov
chain Monte Carlo (MCMC) methods has been
employed on test-day data of first-lactation Norwegian
Red cows. Once more results suggest large negative
direct effects from SCS to MY and small reciprocal
effects in the opposite direction. In addition, estimated
effects between MY and SCS are larger in the first 60 d
of lactation than in the subsequent period, and also
appear to be yield-dependent, larger in higher producing
cows than in lower producing cows.
Another study concerning the relationships between

MY and SCS has been conducted by Jamrozik et al.
[30] with Canadian Holstein data. The authors have
considered multiple-trait random regression animal
models with heterogeneous (across lactations and days
in milk intervals) simultaneous and recursive links
between phenotypes, which are implemented using
Bayesian methods via Gibbs sampling. However, in this
case, model comparisons based on Bayes factors indi-
cated superiority of simultaneous models over recursive
parameterizations.
To infer simultaneous and recursive relationships

between binary and Gaussian characters, Wu et al. [33]
have proposed a Gaussian-threshold model within the
general framework of SEM, and used such a methodol-
ogy to study the relationships between clinical mastitis
(CM) and MY in Norwegian Red cows. The first 180 d
of lactation were arbitrarily divided into three periods of
60 days each, in order to investigate how these relation-
ships evolve in the course of lactation. The recursive
model shows negative within-period effects from (liabi-
lity to) CM to MY in all three lactation periods, and
positive between-period effects from MY to (liability to)
CM in the following period. The results suggest unfa-
vorable effects of production on liability to mastitis, and
dynamic relationships between mastitis and test-day MY
in the course of lactation.
A related application of Bayesian linear-threshold SEM

has been presented by König et al. [28], who have
studied the relationships between claw disorders and
test-day MY in Holstein cows in eastern Germany. Four
different claw disorders (digital dermatitis, sole ulcer,
wall disorder, and interdigital hyperplasia) have been
scored as binary traits and analyzed separately. Recursive
models at the phenotypic level consider a progressive
path of lagged relationships describing the influence of

test-day milk yield (MY1) on claw disorders and the
effect of the disorder on milk production level at the
following test day (MY2). As expected, positive struc-
tural coefficients have been estimated for the gradient of
disease with respect to MY1, and negative coefficients
have been obtained for the rate of change in MY2 with
respect to the previous claw disorder.
Other applications of Gaussian-threshold SEM with

heterogeneous structural coefficients have been pre-
sented by de Maturana et al. [15,29] to explore biologi-
cal relationships between gestation length (GL), calving
difficulty (CD), and perinatal mortality (or stillbirth; SB)
in dairy cattle. An acyclic model has been assumed,
where recursive effects exist from the GL phenotype to
the liabilities (latent variables) to CD and SB and from
the liability to CD to that of SB considering four periods
regarding GL. The results indicate that gestations ~274
days long (three days shorter than the average) lead to
the lowest CD and SB levels, and confirm the existence
of an intermediate optimum of GL with respect to these
traits.
Working with health and fertility traits in dairy cows,

Heringstad et al. [32] have employed trivariate recursive
Gaussian-threshold models to analyze two fertility traits
(calving to first insemination - CFI, and nonreturn rate
within 56 d after first insemination - NR56) together
with a disease trait, either clinical mastitis (CM), ketosis
(KET) or retained placenta. The estimated structural
coefficients of the recursive models indicated that pre-
sence of KET or retained placenta lengthens CFI,
whereas causal effects from CM to fertility are negligi-
ble. Recursive effects of disease on NR56, and of CFI on
NR56, are all close to zero. The authors conclude that
selection against disease is expected to slightly improve
fertility (shorter CFI and higher NR56) as a correlated
response and vice versa.
Finally, Varona et al. [25] have presented an analysis

of litter size and average piglet weight at birth in Land-
race and Yorkshire using a standard two-trait mixed
model (SMM) and a recursive mixed model (RMM). On
the one hand, in Landrace, results in terms of posterior
predictive model checking support a model without any
form of recursion or, alternatively, a SMM with diagonal
covariance matrices for all random effects considered,
i.e. additive genetic, permanent and temporary environ-
mental effects. On the other hand, in Yorkshire, the
same criterion favors a model with recursion at the level
of temporary environmental effects only, or, in terms of
the SMM, the association between traits is shown to be
exclusively due to an environmental (negative) correla-
tion. In concluding remarks the authors suggest that the
choice between a SMM or a RMM should be guided by
the availability of software, by ease of interpretation, or
by the need to test a particular theory or hypothesis that
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may be better formulated under one parameterization
and not the other.
Recovering recursive causal structures
To fit a SEM, the matrix Λ of coefficients defining the
causal structure must be specified. In all applications of
SEM in quantitative genetics so far, the causal structure
was assumed known a priori (e.g., [15,32]), or just a few
putative structures selected using some prior knowledge
were compared (e.g., [14,27,25,33]). However, it may be
argued that even without information on QTL it may be
possible to infer (at least partially) the causal relation-
ships among phenotypic traits using data-driven algo-
rithms that search for a causal structure.
For example, there are algorithms that use the notion

of d-separation [3] to explore the space of causal
hypotheses so as to arrive to a causal structure (or a
class of observationally equivalent causal structures) that
is capable of generating the observed pattern of condi-
tional probabilistic independencies between variables. As
an example, here we describe how such search can be
performed for the model yi = Λyi + ei.
A recursive causal structure can be represented by a

Directed Acyclic Graph (DAG), which is a set of vari-
ables (or nodes) connected by directed edges (arrows).
Pairs of connected nodes represent direct causal rela-
tionships. A path in the causal structure is a sequence
of connected variables. Unconditionally, flows of depen-
dence between variables in the extremes of paths may
take place, unless there is a collider (variable with
arrows converging at it, like c in a ® c ¬ b) in the
path. Colliders block the flow of dependency in a path,
which makes a and b independent in the structure
above. Conditioning on a variable that is not in the
extremes of the path switches its status regarding the
flow of dependence through it, i.e. if the variable is a
collider it allows the flow, whereas if it is a non-collider
it blocks the flow. Two variables a and b in a DAG are
said to be d-separated conditionally on a subset S of
remaining variables if there are no path between a and
b such that all its nodes allow the flow of dependence
(i.e., no path between a and b in a DAG such that all
the colliders or its descendants are in S and no non-col-
liders are in S). Under some assumptions, d-separations
in the causal structure of a SEM result in conditional
independencies in the joint probability distribution of y.
This is used to guide the selection of a causal structure
or a class of equivalent causal structures (different cau-
sal structures that result in joint distributions presenting
the same set of conditional independences) that is com-
patible with the joint distribution of the data [3,23].
Methodologies such as the IC algorithm [3,34] have

been developed to explore the connection between
recursive causal structures and joint distributions and
recover underlying DAG structures (or a class of

observationally equivalent structures). Based on a given
correlation matrix, this algorithm performs a list of
queries about conditional independencies between vari-
ables. Assuming that such independencies reflect d-
separations in the underlying DAG, the algorithm
returns a partially oriented graph as output, which gen-
erally results on an important constraint on the initial
causal hypothesis space that could be used to fit the
SEM. Partially oriented graphs are graphs with directed
and undirected edges representing a class of equivalent
causal structures.
Considering a set V of random variables, the IC algo-

rithm can be described by the following steps:

1. For each pair of variables a and b in V, search for
a set of variables Sab such that a is independent of b
given Sab. If a and b are dependent for every possi-
ble conditioning set, connect a and b with an undir-
ected edge. This step results in an undirected graph
U. Connected variables in U are called adjacent.
2. For each pair of non-adjacent variables a and b
with a common adjacent variable c in U (i.e., a - c -
b), search for a set Sab that contains c such that a is
independent of b given Sab. If this set does not exist,
then add arrowheads pointing at c (a ® c¬ b). If
this set exists, then continue.
3. In the resulting partially-oriented graph, orient as
many undirected edges as possible in such a way
that it does not result in new colliders or in cycles.

The goal of the first step of the algorithm is to obtain
a graph that specifies pairs of traits that are directly
connected by an edge, because variables that are adja-
cent in the underlying causal structure are not d-sepa-
rated (hence they are not probabilistically independent)
given any possible set of variables. The second step aims
to orient edges by searching for unshielded colliders
(structures where a collider is directly caused by two
non-adjacent variables). Non-adjacent parents of a colli-
der variable are d-separated given at least one set of
variables, but not if conditioned to any set of variables
that contains the collider. The observational conse-
quence of this is the probabilistic dependence between
the non-adjacent parents conditionally on every possible
set of variables that contains the common child. The
third step performs every further edge orienting that
does not result in a new collider or in a cycle. Addi-
tional constraining of the output may be achieved by
incorporating background knowledge like time prece-
dence or other prior beliefs [4,23].
The decisions about declaring pairs of variables as

conditionally dependent or not are based on partial cor-
relations inferred from a sample, which involves some
degree of uncertainty. To account for that, decisions
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may be made by testing null hypotheses of vanishing
partial correlations or, in a Bayesian approach, using
highest posterior density (HPD) intervals for the partial
correlations.
The IC algorithm was developed based on the connec-

tion between causal structure and joint distribution,
which requires some assumptions [23]. Maybe the
strongest assumption refers to causal sufficiency: it is
assumed that every variable that influences two or more
variables within the set of studied variables is already
within this set. In other words, it is assumed that there
are no hidden causes of two or more variables. Consid-
ering that residuals in a SEM account for the sum of
the effects of the parents of each trait that are not
included in the model predictor, the consequence of the
causal sufficiency assumption is the absence of sources
of residual covariance among traits, i.e. residual covar-
iance matrices must be diagonal [3]. However, as men-
tioned earlier, this model constraint (i.e., Ψ0 to be
diagonal) is already adopted in recent applications of
SEM in animal breeding in order to achieve model iden-
tifiability. Therefore, the assumptions of the IC algo-
rithms are not stronger than the assumptions
considered in recent application of SEM in quantitative
genetics. In those applications, not only covariance
matrices of random variables are assumed to be struc-
tured (usually diagonal), but the causal structure itself is
assumed to be known.
Causal structure search within a quantitative genetics
mixed models context
Valente et al. [16] have adopted a SEM setting with a
diagonal residual covariance matrix, as in [14,15,32].
Within this construction, a recursive causal structure
that is compatible with the joint probability distribution
of the data may be searched using the IC algorithm. In
the formulation described in the section above, model
residuals are regarded as independent, and recursive
effects are used to model (interpret) patterns of co-
variability between observable variables. However, in a
mixed SEM (as presented by [13]) with independent
residuals, associations between observed traits are
explained not only by causal links between them, but
also by genetic reasons. Therefore, the unobserved cor-
related genetic effects considered in this context may
confound the causal structure search if one tries to per-
form it based on the joint distribution of the
phenotypes.
Take as an example the causal structure depicted in

Figure 5, where there are recursive relationships among
phenotypes y1 through y5, with uncorrelated residuals
(e1,...,e5) and correlated additive genetic effects (u1,...,u5).
The connection between the causal structure among phe-
notypes and their joint probability distribution does not
hold in a model where genetic effects are uncontrolled

hidden variables. For example, given such causal struc-
ture y1 would be expected to be independent of y3 given
y2, but this may not hold because of the correlation
between u1 and u3.
Nonetheless, as indicated by [16], genetic relation-

ship information between individuals gives a means of
“controlling” for this confounder. Within this context,
Valente et al. [16] have proposed an approach to
search for acyclic causal structures in which d-separa-
tions are reflected as conditional independencies on
the distribution of phenotypes after taking into
account the additive genetic effects (i.e., the distribu-
tion of the phenotypes conditionally on the genetic
effects). Given the model settings presented above, i.e.,
a SEM that accounts for additive genetic effects, the
covariance matrix of the phenotypic vector yi can be
expressed as:

Var i t t

t t

( ) ( ) ( )

( ) ( ) .

’

’

y I G I

I I

= − −

+ − −

− −

− −

 

  

1
0

1

1
0

1

Note that (It - Λ)
-1 G0 (It - Λ)

-1 and (It - Λ)
-1 Ψ0 (It - Λ)

-1

are the covariance matrices of additive genetic effects

(G0
* ) and of residuals (R 0

* ) obtained from a standard

multiple trait mixed model that accounts for covar-
iance between genetic effects and residuals from differ-
ent traits, but not for causal relationships between
phenotypes [13,25]. The covariance matrix of yi can be

Figure 5 Example of network involving five phenotypic
(observable) traits, and their corresponding additive genetic
(u’s) and residual (e’s) effects. The arcs connecting u’s represents
genetic correlations (adapted from [16]).
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then rewritten as Var i( ) * *y G R= +0 0 , and the covar-

iance matrix between traits conditionally on the addi-
tive genetic effects can be represented as

Var i i t t( | ) ( ) ( )’ *y u I I R= − − =− −  1
0

1
0 . Therefore,

estimates of R 0
* can be used to select a causal struc-

ture among phenotypes.

In Valente et al. [16], the (co)variance matrix R 0
* is

inferred using Bayesian MCMC methods, in which sam-

ples are drawn from the posterior distribution of R 0
* .

These samples are used then to obtain measures of
uncertainty about this matrix, while accounting for
uncertainty of all other parameters included in the
reduced MTM. In summary, the overall statistical
approach proposed by [16] consists of three stages:

1. A Bayesian MTM is fitted, and posterior samples

of R 0
* are obtained.

2. The IC algorithm is applied to the posterior sam-

ples of R 0
* to make the statistical decisions required.

Specifically, for each query about the statistical inde-
pendence between variables a and b given a set of
variables S and, implicitly, the genetic effects:

a) Obtain the posterior distribution of residual
partial correlation ra,b|S. These partial correla-

tions are functions of R 0
* . Therefore their pos-

terior distribution can be obtained by computing
the correlation at each sample drawn from the

posterior distribution of R 0
* .

b) Compute the 95% HPD interval for the pos-
terior distribution of ra,b|S.
c) If the HPD interval contains 0, declare ra,b|S
as null. Otherwise, declare a and b as condition-
ally dependent.

3. Lastly, a SEM using the selected causal structure
(or one member within the class of observationally
equivalent structures retrieved by the IC algorithm)
is fitted, as in [13], such that causal relationships
(i.e., recursive effects) can be estimated.

Valente et al. [16] have validated their methodology
using simulated data with different causal structures and
sample sizes, showing that it can indeed recover the
underlying causal structure among phenotypic traits.
A first application of such methodology with real data
has been presented by Valente et al. [35], who have stu-
died relationships among five traits (birth weight, weight
at 35 days of age, age at sexual maturity, average egg
weight, and rate of lay) in meat-type quail. The data

include 854 females phenotyped for all five traits, and a
pedigree file with a total of 10,680 birds. The posterior
distributions of the partial correlations obtained are not
very sharp, such that different HPD interval contents
have been used for the statistical decisions, namely 0.7,
0.75, 0.8, 0.85, 0.9, 0.95 probabilities. Some null partial
correlations have been detected; however the structures
returned are completely undirected (Figure 6). In this
application the edges were oriented based on time
sequence information regarding the expression of each
trait.

Conclusions
Structural equation models are able to express causality
among traits. However, one may fit a SEM with causal
structures that do not express the actual causal relation-
ship among traits. The inference of the causal structure
is a much harder task than just describing data by a sto-
chastic model. As discussed in this review, using the IC
algorithm and related techniques involves accepting spe-
cific assumptions, from which the causal sufficiency
seems to be the strongest one. In this regard, applying
the IC algorithm may be regarded as a causal structure
inference only if one is willing to accept the causal
assumptions. Otherwise, the application of such algo-
rithms can be viewed simply as a causal structure selec-
tion for SEM constructed with diagonal residual
covariance matrices.

Figure 6 Phenotype relationships structure recovered by the IC
algorithm within a mixed model approach as described by [16],
applied to data on meat-type quail. Edges connecting two traits
represent non-null partial correlations, as determined by Highest
Posterior Density (HPD) intervals with different contents: Panel (a):
0.7, Panel (b): 0.75, 0.8, 0.85, Panel (c): 0.9, and Panel (d): 0.95; the
five traits considered are BW: Birth weight, W35: Weight at 35d, SM:
Age at sexual maturity (1st egg), EW: Average egg weight, and NE:
Rate of lay (number of eggs).
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Nonetheless, the latter applications may still produce
interesting and useful results such as the generation of
causality hypotheses for further research and investiga-
tion. Such hypotheses can then be supported or dis-
missed by additional data collected from other studies,
or they might be tested experimentally through con-
trolled interventions. In genetics, for example, a putative
causal mutation could be ultimately tested using gene
knockout or knockdown methodologies. However, quite
often, randomized experiments are not an alternative
due to logistic or ethical constrains, and one is restricted
to the analysis of observational studies. In this context,
SEM and causal search tools like the IC algorithm are
handy. Moreover, in genetics and genomics studies, cau-
sal inference is aided by the concept of Mendelian ran-
domization [22], in which allelic variants are
randomized to zygotes during meiosis and eventually
passed on from parents to offspring, analogously to a
randomized experimental design. Applying SEM-related
methodologies to QTL analysis and gene mapping with
multiple traits not only allows inference regarding causal
relationships among phenotypes, but it also enhances
detection power and precision of estimates, with the
additional advantage of a distinction between direct and
indirect genetic effects of QTL on each trait [12].
In addition to DNA polymorphism information and

knowledge about genes or QTL that can be used as parent
nodes in phenotype network reconstruction, the joint ana-
lysis of multilayer large-scale “omics” data such as tran-
scriptome, metabolome and proteome can certainly
provide added information and enhance the ability to infer
causal phenotype relationships, although it also brings
another level of statistical, computational and data mining
challenge [36]. Moreover, structural and functional data
such as gene sequence, gene localization, transcription
binding sites, gene ontology, and metabolic pathway
among others can also be used post hoc to verify and test
putative gene and phenotype networks [36]. Such data can
be used also as a priori information to aid network infer-
ence, the same way it has already been used in other
“omics” applications such as microarray data [37].
SEM have also been used in the context of quantita-

tive genetics analysis of multiple phenotypic traits when
QTL or genomic information is not available [13],
allowing a different interpretation of relationships
among traits relative to standard multiple trait models
traditionally used in animal breeding, where all relation-
ships are represented by symmetric linear associations
among traits. As discussed previously, in all applications
of SEM in animal breeding so far, the causal structure
was assumed known or just a few putative structures
were compared. More recently, Valente et al. [16] have
proposed a methodology that allows searching for recur-
sive causal structures in the context of mixed models

and quantitative genetics. Their approach involves a first
step of data adjustment for genetic effects, which other-
wise act as confounders of causal effects between phe-
notypic traits. In Valente et al. [16,35], a classical
infinitesimal additive genetic model involving a relation-
ship matrix A constructed from pedigree information
has been considered for such task. As an alternative, if
high density molecular marker data is available (e.g.,
SNP genotypes), more efficient genetic merit prediction
approaches can be employed such as Bayesian regression
techniques [38] or kernel methods [39]. This is a topic
which deserves further investigation to assess the impact
of better estimation of genetic effects on the ability to
uncover causal links between phenotypes.
Some other areas related to phenotype network infer-

ence that would also warrant additional research refers
to the development of (parametric or non-parametric)
methods to deal with non-Gaussian traits, as well as
search algorithms and software suitable to handle huge
number (on the level of thousands) of variables. Lastly,
and specifically in the context of animal and plant
breeding, extra research is required to study how knowl-
edge regarding causal effects between traits could be
explored for the development of more efficient breeding
programs and agricultural production enterprises.
In summary, SEM provide a flexible and insightful

approach for the genetic analysis of multiple traits,
allowing the characterization of pleiotropic and hetero-
geneous genetic effects of multiple loci on multiple
traits, as well as causal relationships among phenotypes,
which can be used to predict behavior of complex sys-
tems, e.g. biological pathways underlying disease traits.
More specifically with livestock, SEM can be used to
infer phenotype networks in the genetic analysis of
quantitative traits, such that the effect of external inter-
ventions can be better predicted. This may foster the
development of more efficient breeding programs and
optimal decision-making strategies regarding farm man-
agement practices.
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