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Abstract

Background: Milkability, primarily evaluated by measurements of milking speed and time, has an economic impact
in milk production of dairy cattle. Recently the Italian Brown Swiss Breeders Association has included milking speed
in genetic evaluations. The main objective of this study was to investigate the possibility of implementing genomic
selection for milk flow traits in the Italian Brown Swiss population and thereby evaluate the potential of genomic
selection for novel traits in medium-sized populations. Predicted breeding values and reliabilities based on genomic
information were compared with those obtained from traditional breeding values.

Methods: Milk flow measures for total milking time, ascending time, time of plateau, descending time, average milk

current breeding evaluations.

flow and maximum milk flow were collected on 37 213 Italian Brown Swiss cows. Breeding values for genotyped
sires (n=1351) were obtained from standard BLUP and genome-enhanced breeding value techniques utilizing
two-stage and single-step methods. Reliabilities from a validation dataset were estimated and used to compare
accuracies obtained from parental averages with genome-enhanced predictions.

Results: Genome-enhanced breeding values evaluated using two-stage methods had similar reliabilities with values
ranging from 0.34 to 049 for the different traits. Across two-stage methods, the average increase in reliability from
parental average was approximately 0.17 for all traits, with the exception of descending time, for which reliability
increased to 0.11. Combining genomic and pedigree information in a single-step produced the largest increases

in reliability over parent averages: 0.20, 0.24, 0.21, 0.14, 0.20 and 0.21 for total milking time, ascending time, time of
plateau, descending time, average milk flow and maximum milk flow, respectively.

Conclusions: Using genomic models increased the accuracy of prediction compared to traditional BLUP methods.
Our results show that, among the methods used to predict genome-enhanced breeding values, the single-step
method was the most successful at increasing the reliability for most traits. The single-step method takes advantage
of all the data available, including phenotypes from non-genotyped animals, and can easily be incorporated into

Background

The inclusion of genomic information in models for pre-
diction of genetic merit is expected to result in increased
accuracies of prediction. In 2001, Meuwissen et al. [1]
described how breeding values can be predicted from
marker data alone in order to obtain what are now com-
monly known as direct genomic values (DGV). These
values are calculated as the sum of the effects of dense
genetic markers across the genome, capturing all quanti-
tative trait loci (QTL) that contribute to variation in
the trait. Implementation of DGV in genetic evaluations
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and selection indices is commonly referred to as gen-
omic selection.

Today, genomic selection programs are routinely
implemented in the United States, Canada, New Zealand,
France, Netherlands, Denmark, Norway and Sweden.
Wiggans et al. [2] reported an increase in reliabilities of
US genomic predictions using an Illumina 50 k panel [3]
as compared to predictions of genetic merit based on
traditional parental averages.

Milkability belongs to the group of traits termed func-
tional traits, which also include health, feed efficiency,
fertility, and calving ease. Milkability is defined as the
ease of milking of dairy cows and is usually measured as
milking speed, either recorded objectively or through
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subjective measures [4,5]. Milking speed or flows mea-
sured using electronic measuring devices are not col-
lected on a frequent basis and can be considered novel
traits. Other indicators of milkability include flow mea-
sures such as Average Milk Flow (AVGF) and Maximum
Milk Flow (MMF) [6].

Milkability measures, either as milking flow or speed,
have long been recognized as relevant criteria in animal
selection [7,8], due to their impact on management costs
of milking cows [9]. An increase in MMF or AVGEF, or a
reduction in total milking time (TMT), results in a
reduction of milking labor requirements and in an
increase in the efficiency of automatic milking systems
[10]. Considering that labor accounts for a large fraction
of the total costs of milk production, it is not a surprise
that Prins et al. [11] estimated economic values for milk-
ing time to range from 1.63 to 25.97€ /minute/cow/year,
depending on the size of the milking parlor.

Milking speed and milking time significantly influence
the farmer’s economic bottom line and can be improved
through selection [7,8]. Indeed, in the past 50 years, milk
flow has been actively selected for in some dairy popula-
tions [12]. However, due to the cost and labor associated
with collecting milk flow data, it has been difficult to
make substantial progress compared to other traits.

To our knowledge, the use of molecular information
to select for milkability based on milk flow and milking
time data has not been investigated. Thus, the main
objective of our study was to evaluate the potential of
genomic selection (GS) for this relatively novel trait in a
medium-sized population, i.e. milk flow collected in
Italian Brown Swiss cattle. First, breeding values for
milkability traits were predicted using single nucleotide
polymorphism (SNP) marker genotypes; second, the reli-
ability of these breeding values was evaluated for sires
with a relatively small number of daughters with pheno-
typic information; third, the reliabilities of alternative
methods to predict breeding values were compared to
EBV obtained from traditional BLUP (Best Linear
Unbiased Prediction) methods and finally, differences
between methods were evaluated based on the reliabil-
ities of predictions obtained.

Methods

Data

Data for this study were provided by the Italian Brown
Swiss Breeders Association and included information
spanning 13 years between 1997 and 2009. The dataset
included 37 213 cows, daughters of 2361 sires and 30
231 dams with pedigree information spanning seven
generations. Milk flow was measured once for each cow
using a portable milk flow recorder (LactoCorder, WMB
AG, Balgach, Switzerland). Milk flow characteristics
were detected every 0.7 s and saved at intervals of 2.8 s.

Page 2 of 6

To describe the overall pattern of milk removal, milk
flow was divided into six phases(Figure 1): 1) ascending
time (AT), period of time from when milk flow reaches a
value greater than 0.5 kg/min until it plateaus; 2) time of
plateau (TP), period of time with a steady milk flow;
3) descending time (DT), period of time for the milk
flow at the end of TP to reach a value below 0.2 kg/min;
4) over-milking time (OT), period of time necessary for
the milking machine to be detached from the udder,
once the milk flow is below 0.2 kg/min; 5) stripping
time, period at end of milking, with milk flow greater
than 0.2 kg/min and lasting for at least 4.2 s; and
6) over-milking time after stripping, period after strip-
ping during which the milk flow decreases to below
0.2 kg/min and the milking machine is removed. In
addition, maximum milk flow (MMF) was recorded as
the maximum flow preceding TP. Thus the six traits
investigated in this study were: TMT, AT, TP, DT, MMF
and average milk flow (AVGF). A complete description
of data collection and data editing for these traits is
reported in Gray et al. [5].

A total of 1351 bulls that were genotyped in the Italian
Brown Swiss population had direct relationship ties with
cows that had milk flow data. Bulls with daughters in
the dataset had an average of 28 +2.6 daughters with
milk flow data available for analysis. Bulls were geno-
typed using the Illumina Bovine SNP50BeadChip [13].
After quality checking, 34 052 SNP spanning 29 bovine
autosomes remained for the analysis. Markers with a call
rate <0.90, markers with a minor allele frequency
(MAF) <0.05, and markers violating Hardy Weinberg
equilibrium test (Chi-square >300 with 1 d.f) were dis-
carded from the analysis. The average number of SNP
per chromosome was 1175.
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Figure 1 Description of milk flow parameters. TMT: Total Milking
Time; AT: Ascending Time; TP: Time of Plateau; DT: Descending Time;
MMEF: Maximum Milk Flow; AVGF: Average Milk Flow.
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Statistical analyses

Two-stage genomic selection

Genomic predictions were first computed using a multi-
step approach [14]. First, a traditional evaluation of
milking traits was performed. Using a six-trait animal
model similar to the model described in Gray et al. [5],
traditional breeding values and parent averages for the
genotyped bulls were predicted for TMT, AT, TP, DT,
MMF and AVGF applying the BLUP methodology with
ASREML [15]. Genotyped animals were then split into a
training and a validation dataset depending on the reli-
ability of their BLUP EBV. Genotyped sires with a reli-
ability higher than 0.50 for TP and 0.60 for the
remaining traits were included in the training dataset,
which amounted to separate older sires from young sires
with less progeny, i.e. older sires were assigned to the
training dataset and the remaining younger animals to
the validation dataset.

Pseudo-phenotypes (dEBV) were obtained as dereg-
ressed EBV free of the effects of parent average and
adjusted for the number of daughters contributing
to the EBV for the data vector used in genomic predic-
tions [16].

In the second step, the dEBV were then analyzed for
prediction of genomic EBV including a genomic rela-
tionship matrix in place of the traditional numerator
relationship matrix in the mixed model equations [14],
which will be referred to as GBLUP.

The genomic relationship matrix G was constructed

using the formula G = E where p; is the fre-

quency of marker i, estimated from all genotyped sires,
and Z is the matrix of marker codes (0/1/2) adjusted by
setting the mean for each SNP across genotypes to 0 by
subtracting P defined as a matrix with allele frequencies
expressed as a difference from 0.5 and multiplied by 2,
such that column i of P is 2(p; — 0.5) [16]. With GBLUP,
predicted breeding values were obtained for animals in
the validation dataset through G™. Using ASREML soft-
ware [15], records from the training population entered
the mixed model equations as the y vector, solving for
the predicted breeding values.

Two different non-linear prediction approaches,
Bayes-A, and Bayesian LASSO (Least Absolute Shrink-
age and Selection Operator), were used to estimate a
genetic variance component for each marker, accounting
for a non-normal prior distribution. A comparison of
these two methods is in Cleveland et al. [17].

The general structure of the models in matrix form
was:

y=1u+Xp+e

y vector of de-regressed breeding values for TMT, AT,
TP, DT, MMF and AVGF
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u overall mean

S vector of additive effects for each marker

X matrix of genotypes coded as number of copies of an
arbitrary allele (0, 1, and 2) for each SNP

e vector of residuals assumed normal with variance
weighted as outlined by Garrick et al. [16] with a ¢ con-
stant for the genetic variance unaccounted for by the
markers set at 0.4 after an exploratory analysis (data
not shown).

A flat (1) prior was assigned to g, while the prior dis-
tribution for ¢ was assumed inverted chi-square with
4 degrees of freedom and an expectation equal to the
value used in the traditional BLUP evaluation with indi-
vidual cow records.

The remaining prior structure was:

B.: N(o, a;)
for the i™ SNP,
a§t~inv —x? (a;, |v/32)
for the BayesA approach and
a§t~Exp (a;, |2//1,»2)

for the LASSO approach.

In the current analysis, a straightforward generali-
zation of the BayesA method was applied, in which scale
parameter s> and degrees of freedom v were treated as
unknown and were estimated from the data [18]. They
were assigned a uniform prior in the interval (0,1] for v
and a uniform prior for s for the range of (0,Q], with Q
being 100. At each round of the Gibbs sampler that was
implemented, samples of s° where obtained from
Gamma(s2|0§i, v). Since the v parameter does not have a
closed form, parameter samples were obtained at each
round of the sampler with a Metropolis step

(Vly, p, 8,0, 02).

The pseudo-code and a summary of posterior results
for scale and degrees of freedom for this step are pro-
vided as additional data [see Additional file 1].

The A\ parameter in the LASSO approach was assigned
a gamma prior distribution Gamma (0.05,1.0), so the
prior of A was essentially uniform over a wide range
of values [19]. A Gibbs sampling algorithm was imple-
mented in R to obtain samples from the joint posterior
distribution [20].

Marker effect estimates were obtained using the above
models within the training population and were then
applied to the validation dataset to predict genomic
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breeding values. Assuming a completely additive model,
marker effects were summed across the entire genome
for each animal to obtain the DGV. Genome-enhanced
breeding values (GEBV) were obtained by combining
DGV and parental averages, as outlined by Saatchi
et al. [21].

Single-step approach

As an alternative to the two-step approach, Misztal et al.
[22] proposed a unified single-step approach, which
automatically combines genomic and phenotypic infor-
mation into a single set of equations. This approach is
basically a modification of current animal model genetic
evaluation methodology, in which the inverse of the rela-
tionship matrix Al is modified. The resulting matrix,
referred to as H'', is obtained by simply adding the dif-
ference between the inverse of the genomic relationship
matrix and the inverse of the pedigree-based relationship
matrix for genotyped animals to the corresponding block
in the inverse of pedigree-based relationship among all
animals [23]:

Lo 0
H =A +|:0 Gil—Azgil

where A, is the inverse of the pedigree-based relation-
ship matrix of genotyped animals. Using ASREML soft-
ware [15], EBV were obtained by substituting the inverse
numerator relationship matrix (A™) with a user defined
matrix (H') in a 6-trait multivariate model. In this
study, G was used to compute H and breeding values
predicted from this method will be referred to as
HBLUP. Scaling factors have been used to control po-
tential bias in the H™' [23,24]. In our analysis, scaling
factors equal to 0.5, 0.7 and 0.9 were employed, as sug-
gested by Forni et al. [24]. Scaling did not result in any
overall change and only the results from using a scaling
factor equal to 0.9 will be presented.

Reliabilities (r*) for dEBV predicted from BLUP, were

computed as 1 —% where SEP =standard error of

the prediction, f; = inbreeding coefficient for animal i and
oﬁ = genetic variance [15]. Reliabilities for the genomic
predictions were measured from accuracies calculated

2
according to Saatchi et al. [21] as: r?pg = (M)

V 02,0 2G,EBV
where o2, is the genetic variance as obtained with the
complete data, 0 4epv ey is the covariance between GEBV

and deregressed EBV and 62(;531/ is the GEBV variance.

Comparison of dEBV models with genome-enhanced models
Pearson correlations were estimated between dEBV from
validation individuals with GEBV obtained from the
other models to measure the relationship between EBV
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obtained from different models. Differences in model
performance for the dEBV calculated with GBLUP,
Bayesian LASSO, BayesA and HBLUP were evaluated by
regressing dEBV of validation individuals on GEBV
obtained from the other models.

Results and discussion

Estimates of heritability and genetic correlations from
the six-trait pedigree-based animal model are reported
in Table 1. Estimates were low for the milking time
traits, except for TP and milk flow traits, which had
moderate heritabilities. Estimated heritabilities were in
agreement with other studies [6,25].

Comparison of reliabilities

All comparisons were based on reliabilities of EBV and
parental averages estimated from the validation set.
Parental averages in the data employed here include
information corresponding to genotyped bulls. In order
to eliminate it from the cumulative information on the
parents, adjusted parent averages (aPA) were obtained
following what proposed by Garrick et al. [16].

Breeding values predicted from marker data had a
better predictive ability than estimates of aPA from
pedigree-based relationships. The average increase of
GEBV reliabilities ranged from 0.11 to 0.18 over aPA
when using GBLUP and from 0.12 to 0.2 when using
BayesA and Bayesian LASSO (Table 2).

Among the six traits analyzed, the increase in reliabil-
ity was largest for MMF and AVGF when GEBV were
calculated with GBLUP. MMF and AVGF also had the
largest heritabilities compared to AT, TP, DT and TMT.

BayesA and Bayesian LASSO methods produced near
identical mean reliabilities for all milk flow traits, i.e.
with Bayesian LASSO: 0.44 for AT, 0.49 for TP, 0.35 for
DT, 0.48 for MME, 0.49 for AVGF and 0.48 for TMT,
while with BayesA they decreased slightly by 0.01 for AT
and AVGF and by 0.02 for TP (Table 2).

With the single-step approach, reliabilities were either
identical or increased slightly compared to the other
prediction methods for all traits. Increases in reliability

Table 1 Heritabilities (on diagonal), genetic (above
diagonal) and phenotypic correlations (below diagonal)

MMF AVGF AT TP DT TMT
MMF 0.11 0.95 =061 0.85 0.73 -0.88
AVGF 0.83 0.27 -0.58 -0.84 -0.58 -0.90
AT -0.01 -0.03 0.02 -0.76 -0.26 0.82
TP 0.40 -0.27 -0.26 0.32 0.31 -093
DT 0.39 -0.36 -0.04 -0.15 0.05 -044
T™T -0.34 -032 0.17 -0.59 -0.10 0.42

MMF: Maximum Milk Flow; AVGF: Average Milk Flow; AT: Ascending Time;
TP: Time at Plateau; DT: Descending Time; TMT: Total Milking Time.
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Table 2 Reliability of estimated breeding values for sires
in the validation set

Trait aPA dEBV® GBLUP BayesA Bayesian LASSO HBLUP
T™MT 029 043 044 047 048 049
AT 0.26 044 040 043 044 0.50
T 030 047 043 047 049 051
DT 023 034 0.34 035 035 037
MMF  0.30 042 048 047 048 0.50
AVGF 029 043 046 048 049 0.50

TMT: Total Milking Time; AT: Ascending Time; TP: Time of Plateau; DT:
Descending Time; MMF: Maximum Milk Flow; AVGF: Average Milk Flow; dEBV:
de-regressed breeding values; GBLUP: Genomic Breeding Value; Bayesian
LASSO: Bayesian Least Absolute Shrinkage and Selection Operator; HBLUP:
single-step combined phenotypic and genotypic information.

ranged from 0.14 to 0.24 over aPA reliabilities and from
0.01 to 0.07 over reliabilities from non-linear methods
(Table 2). It should be noted that all two-step
approaches were univariate models, while the one-step
approach was a multi-trait model. Most implementa-
tions of two-step genomic selection methods are cur-
rently based on single-trait analyses but multivariate
approaches are emerging. In this work, we did not con-
sider a multivariate approach for the two-step methods
although it would be interesting to include this option.
Therefore, increases in reliability are probably partly due
to the modeling of covariances among traits in the
analysis. Furthermore, the slight increase in reliability
observed here could also be attributed to the fact that
measured phenotypes of cows were used instead of
pseudo-phenotypes derived from breeding values of
the sires. When pseudo-phenotypes are derived from
animals with small progeny numbers and are imple-
mented in evaluations involving the two-step method,
EBV tend to be less accurate.

Comparison of breeding values

Simple linear models were used to regress dEBV on gen-
omic breeding values obtained from GBLUP, HBLUP,
Bayesian LASSO and BayesA models (Table 3). Correla-
tions of breeding values obtained from PBLUP and
GBLUP predictions ranged across traits from 0.70 to
0.86, from 0.70 to 0.86 between PBLUP and both
Bayesian LASSO and BayesA and from 0.87 to 0.93
between PBLUP and HBLUP (Table 3).

It is likely that an increase in the number of progeny
per sire within the validation set would reduce the differ-
ence between PBLUP and the two-step methods. It
should be noted that in this study, the size of the train-
ing dataset was limited compared to studies performed
on Holstein cattle. However, even with the limited size
of the Italian Brown Swiss population, the breeding
values obtained with the HBLUP method showed stron-
ger correlations than other models indicating that its

Page 5 of 6

Table 3 Comparison of estimated breeding values
obtained using PBLUP with estimates from GBLUP,
HBLUP, Bayesian LASSO and BayesA

Two-stage methods

GBLUP

T™T AT TP DT MMF AVGF
Slope 0.88 0.879 0.850 0.850 0.865 0812
Correlation 0.780 0.861 0.800 0.720 0.770 0.702
Bayesian LASSO
Slope 0.870 0.922 0.800 0.810 0.860 0.862
Correlation 0.780 0814 0.830 0.770 0.730 0.717
BayesA
Slope 0.870 0.892 0.840 0.824 0.881 0.901
Correlation 0.770 0.863 0.780 0.740 0.780 0.703
Single-step method
HBLUP
Slope 0.842 0.869 0.757 0.873 0.775 0814
Correlation 0.907 0.929 0.867 0.925 0.880 0.897

Regression of dEBV on predicted genomic breeding values obtained with
GBLUP, Bayesian LASSO, BayesA and HBLUP; GBLUP: similar to traditional BLUP
predictions with the exception that genomic relationships are utilized instead
of pedigree relationships; HBLUP: similar to traditional with the exception that
a combined relationship matrix is computed using both pedigree and
genomic information; TMT: Total Milking Time; AT: Ascending Time; TP:

Time of Plateau; DT: Descending Time; MMF: Maximum Milk Flow; AVGF:
Average Flow.

features are very robust and that it can be applied in the
case of small populations.

Conclusions

Breeding values for milk flow traits estimated from
genomic markers show an increase in reliability in most
cases compared to traditional pedigree-based evalua-
tions. Most of the increase in reliability can be attributed
to the improved estimation of Mendelian sampling.

The choice of priors in the analysis of non-linear
methods evaluated here, did not significantly affect reli-
abilities. In most cases 2-step non-linear models slightly
outperformed GBLUP. Some advantages associated with
using two-step non-linear procedures include flexibility
in the incorporation of genomic information by main-
taining a separation from traditional breeding value
estimation. Although traditional breeding value estima-
tion has been used in numerous populations and diverse
situations, it was not the best method in our study.
Two-step methods can be useful to continue work in
genome-wide association studies and are easily scalable
as the number of animals and markers increases. How-
ever, these methods tend to be slow due to the necessity
to sample often more than 100 k rounds in an MCMC
procedure. They are also heavily dependent on para-
meters specified by assumptions given by the user that
could be incorrect and are not easy to implement in
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more complicated models, which could include maternal
effects or random regression.

Our results suggest that, among all the methods evalu-
ated, the single-step method was the most successful at
increasing the reliability for all traits. This method takes
advantage of all the data available and is easily incorpo-
rated into current breeding evaluations. Although milk
flow is a fairly novel trait and the measurements used
in this study were obtained on a relatively small popula-
tion compared to other dairy breeds, selection based
on single-step methods is expected to provide the best
response with the greatest flexibility.
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