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Abstract

selection.

Background: Over the last ten years, genomic selection has developed enormously. Simulations and results on real
data suggest that breeding values can be predicted with high accuracy using genetic markers alone. However, to
reach high accuracies, large reference populations are needed. In many livestock populations or even species, such
populations cannot be established when traits are difficult or expensive to record, or when the population size is
small. The value of genomic selection is then questionable.

Methods: In this study, we compare traditional breeding schemes based on own performance or progeny
information to genomic selection schemes, for which the number of phenotypic records is limiting. Deterministic
simulations were performed using selection index theory. Our focus was on the equilibrium response obtained after
a few generations of selection. Therefore, we first investigated the magnitude of the Bulmer effect with genomic

Results: Results showed that the reduction in response due to the Bulmer effect is the same for genomic selection
as for selection based on traditional BLUP estimated breeding values, and is independent of the accuracy of
selection. The reduction in response with genomic selection is greater than with selection based directly on

phenotypes without the use of pedigree information, such as mass selection. To maximize the accuracy of genomic
estimated breeding values when the number of phenotypic records is limiting, the same individuals should be
phenotyped and genotyped, rather than genotyping parents and phenotyping their progeny. When the generation
interval cannot be reduced with genomic selection, large reference populations are required to obtain a similar
response to that with selection based on BLUP estimated breeding values based on own performance or progeny
information. However, when a genomic selection scheme has a moderate decrease in generation interval, relatively
small reference population sizes are needed to obtain a similar response to that with selection on traditional BLUP
estimated breeding values.

Conclusions: When the trait of interest cannot be recorded on the selection candidate, genomic selection schemes
are very attractive even when the number of phenotypic records is limited, because traditional breeding requires

progeny testing schemes with long generation intervals in those cases.

Background

Genomic selection (GS) is a variant of marker-assisted
selection in which genetic markers covering the whole
genome are used so that all quantitative trait loci (QTL)
are in linkage disequilibrium with at least one marker
[1]. Simulation results and practical data in dairy cattle
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suggest that breeding values can be predicted with high
accuracy using genetic markers alone [2,3]. Since the
introduction of the idea by Meuwissen et al. [4] ten years
ago, there has been a number of developments, includ-
ing the implementation of GS in dairy cattle breeding
[3]. Until recently, the major limitation to implement GS
was the large number of markers required and the cost
of genotyping these markers. Both these limitations have
now been overcome in most livestock species, following
the sequencing of the genomes and the subsequent
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availability of high-density SNP chips [1]. It is now feas-
ible to meet the requirements for the implementation of
GS in breeding programs. In fact, after deriving a predic-
tion equation from a reference population that uses mar-
kers and phenotypes as input and predicts breeding
values as output, there is in principle no need to record
phenotypes of the candidates for the selection. Thus, GS
can potentially cut costs for producing and testing po-
tential breeding animals considerably. Moreover, GS can
have a large impact on breeding programs for many live-
stock species as it can shorten generation intervals,
which is of special importance in long-lived species such
as dairy cattle and horses, or when trait values become
available late in life or on progeny only. This is import-
ant, as genotyping can be applied to new-born animals
or even embryos [5], and because of the reduced need
for progeny testing.

A limitation of GS, however, is that large reference
populations are needed to obtain high accuracies of esti-
mated breeding values (EBV). When the size of the refer-
ence population increases, the accuracy of EBV can reach
high values, approaching 0.8 to 1.0 [4,6,7]. Reference
population sizes used in simulations sometimes even ex-
ceed 100 000 animals [8] but in practise, reference popula-
tions are in some cases limited to less than 1000 animals
[9]. In many livestock populations and some livestock spe-
cies, creation of large reference populations is not very
feasible for many traits, especially when phenotypes are
difficult or expensive to record, such as methane emission
in cattle or traits related to disease resistance. If large
reference populations cannot be obtained, GS will reach
relatively low accuracies, and may yield no or relatively
little additional response compared to traditional selection
on EBV based on phenotypic information. This applies
particularly to populations with a large historical effective
size, and to traits that are determined by many genes,
which is common in livestock [10,11]. The more genes
involved, the smaller the effect of individual genes, and
the larger the reference population needed to reach a cer-
tain accuracy [12]. For those reasons, it is important to in-
vestigate when GS offers advantages over traditional
selection in cases in which the size of the reference popu-
lation is limited.

In this study, we compared response to GS with re-
sponse to selection on BLUP-EBV based on own per-
formance (OP) or progeny testing (PT) information, in
cases with a limited number of phenotypic records avail-
able to develop a reference population. We focussed on
the equilibrium response obtained after a few genera-
tions of selection [13]. Thus, we first investigated the re-
duction of accuracy and response to selection due to the
effect of selection on the genetic variance, the so-called
Bulmer effect [13]. Second, we investigated the optimal
construction of the reference population when the
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number of phenotypic records is limited. In dairy cattle,
construction of a reference population started with
genotyping progeny tested bulls, merely because accur-
ate EBV based on progeny testing were available for
these bulls [3]. When the number of phenotypic records
is limiting, e.g., when records still need to be collected, it
may however be suboptimal to use progeny tested indi-
viduals to construct the reference population. Finally, we
investigated the minimal size of the reference population
necessary for GS to become advantageous over trad-
itional BLUP EBV selection, and the dependency of this
break-even point on heritability and generation interval.

Methods

Predicting response to selection

Response to selection is predicted with deterministic
simulations based on selection index theory, using the
SelAction software. SelAction predicts the response to se-
lection and accuracy of selection for breeding programs.
The software accounts for reduction in variance due to se-
lection, known as the “Bulmer-effect” [13], and for the use
of pedigree information, as with selection on BLUP-EBV.
Features of SelAction and the theoretical background are
described in [14]. Genomic selection schemes can be
simulated in SelAction by including an additional trait
representing the marker information [2,15]. The marker
information was modelled as a trait with a heritability of
0.999, which was genetically correlated to the trait of
interest. The genetic correlation between the marker in-
formation and the trait of interest was equal to the accur-
acy of genomic EBV, rg;0, which depends on the reference
population. The rgo represents the accuracy of genomic
EBV in an unselected population and is calculated using
Equation 2a-d given below [6]. Because it is assumed that
genotypes can be observed without error, the marker in-
formation is fully heritable and has no residual variance.
Thus, the environmental correlation between the marker
information and the trait of interest is meaningless and
was set to zero in SelAction. Further details of this ap-
proach are given in [15].

Because the accuracy of genomic EBV established in
the reference population, ro refers to the accuracy in a
population that is not under selection, there is a distinc-
tion between 7,59 and the Bulmer equilibrium accuracy
of a breeding scheme based on genomic selection,
denoted g, in this paper. The Bulmer effect reduces
the proportion of genetic variance explained by the mar-
kers, so that Te&., will be smaller than rgo in an on-

going breeding scheme. The results of the deterministic
simulations presented in the Results and Discussion sec-
tion refer to the Bulmer-equilibrium accuracy and re-
sponse that are reached after a few (> 3) generations of
selection.
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The Bulmer effect
The deterministic simulations accounted for the Bulmer
effect. Numerical results may, however, give less insight
into the magnitude of the Bulmer effect than a simple
mathematical expression. In this section, therefore, a
mathematical expression is derived for the Bulmer-
equilibrium response, accuracy and additive genetic vari-
ance with genomic selection.

In generation ¢, the variance of the genomic EBV of
the selected parents can be expressed as

Uﬁ.t = 0'12\/11(1 - k)7

where the * denotes values after selection, oﬁ/Lt is the
variance of the genomic EBV before selection, i.e. among
the candidates for selection in generation ¢, and k is the
proportional reduction in the variance of the selection
criterion due to selection of the parents. Because k refers
to the variance of the selection criterion, rather than the
variance of true breeding values, it is independent of the
accuracy of selection. With truncation selection on a
normally distributed selection criterion, k is determined
entirely by the intensity of selection, k = i (i-x), where i
is the intensity of selection and x the standardized trun-
cation point [13,16-19]. Values of k are usually in the
range of 0.7 to 0.9. To illustrate the impact of the Bul-
mer effect as simple as possible, equal selection intensity
is assumed here for both sexes.

The variance of the genomic EBV in the next gener-
ation is the sum of the between-family variance of gen-
omic EBV and the Mendelian sampling variance of the
genomic EBV, which originates from segregation of the
markers,

ar, (L= k) + 1 ahy,

where the %012\40 is the Mendelian-sampling variance of
the genomic EBV, which is half the variance of the esti-
mated marker effects in an unselected population. This
equation assumes that the effective number of marker
loci with effects is large, so that changes in marker allele
frequency can be ignored in the short term. The equilib-
rium variance of genomic EBV follows from substituting
Ol = o?w . and solving for 0%4 » which yields

2
o = My
Mo 14k

(1a)

For example, for a phenotypic variance of o3 = 1, and
a heritability of the unselected base-generation of /g =
0.3, an initial accuracy of genomic EBV of rg = 0.8, and
a selected proportion of 5%, so that k=0.86, the initial
variance of genomic EBV equals 0.8 x 0.3 x 1 = 0.192
and the equilibrium variance of genomic EBV equals
0.192/1.86 = 0.103.
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Since response (R) to GS equals io,;, which is propor-
tional to o, rather than o3, the equilibrium response to
GS, expressed relative to initial response, equals

Ry 1

Ry VIitk

This results shows that the relative reduction in re-
sponse due to the Bulmer effect is independent of the
accuracy of selection, which agrees with results from the
deterministic simulations (See Results and Discussion).
For example, for a selected proportion of 5%, the Bulmer
effect reduces response to GS by 1 — 1/1/1.86 = 27%, ir-
respective of the initial accuracy of genomic EBV.

The Bulmer-equilibrium accuracy and additive gen-
etic variance with GS can also be derived from the
unselected base-generation parameters. The equilib-

(1b)

rium additive genetic variance follows from ‘71246,, =

204, (1 - krgzgeq_) +30%,, where the first term repre-

sents the between-family variance in true breeding
values, rg ~ is the Bulmer-equilibrium accuracy of
genomic EBV, and the second term is the Mendelian
sampling variance of the true breeding values. Solving

for o7, yields

2
[
o = (1c)
Aeq. 2
(1 + krgégq.)
2

The Bulmer-equilibrium accuracy follows from rp, =
o

0%, /o4 and substitution of Equations la and ¢, which
e/ O A

yields an expression for equilibrium accuracy in terms of

base generation parameters,

,,.2A

&80
Tog = 4| ——————. 1d
S N1+ k(1—rg,) 1d)

Continuing the above example yields an equilibrium

accuracy of 1/0.8%/[1 + 0.86(1 — 0.82)] = 0.70.

An expression for the Bulmer-equilibrium additive
genetic variance, expressed in terms of base-generation
parameters, follows from substitution of Equation 1d
into 1c,

l—krgé
Ta —0i0< 15k )

Continuing the above example yields an equilibrium
additive genetic variance of 0.3[1-(0.86x0.8%)/(1+0.86)] =
0.21. Equations la through 1d show that Bulmer-
equilibrium parameters can be calculated from base-
generation parameters using simple equations.

(le)
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The equilibrium additive genetic variance can be
understood as the sum of the equilibrium variance of
the genomic EBV, which is given by Equation 1la, and
the variance of the prediction error, which is unaffected
by selection,

re o>
2 2 _ Tg2,94, 2\ 2
Odey = M, +PEV = + (1 rggo)UAo

1+k
2
—2 (= Krgg,
Ao 1-+k

Construction of the reference population to maximise
accuracy

Accuracies of genomic EBV depend on the size of the
reference population (np), the effective number of loci
for which effects have to be estimated (#s), and the cor-
relation of the true breeding value of a genotyped indi-
vidual with its phenotypic record (r). In a random
sample of the population, the accuracy of genomic EBV,
T, being the correlation between the genomic EBV and
the true breeding value, can be calculated using

Ar?
@ T\ 121
where \ = np/ng, np being the number of individuals in
the reference population with both phenotypic records
and genotypes [6]. Parameter ng depends on the histor-
ical effective size of the unselected population (Ng) and

on the size of the genome, L in Morgan, and can be esti-
mated as [20],

(2a)

When genotyping and phenotyping the same indivi-
duals in the reference population, r is equal to the
square root of heritability of the trait,

r* = h (2¢)

When the reference population is based on progeny-
tested individuals, i.e., when parents are genotyped while
their offspring are phenotyped, r equals the accuracy of
EBV obtained from progeny testing [21],

INK
1+3(N—-1)h?’

P =

(2d)

where N is the number of half-sib progeny on which the
EBV is based. To investigate the optimal construction of
the reference population, values for r,; were compared
for different numbers of progeny per sire and reference
population sizes, for a fixed heritability of 0.3.
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Response of traditional versus GS breeding schemes

For the comparison of GS with selection based on trad-
itional BLUP-EBV estimated from phenotypic informa-
tion, deterministic simulations were performed with
SelAction, using the approach described above. Alterna-
tive breeding schemes were compared based on the
Bulmer-equilibrium response to selection. Several selec-
tion schemes were evaluated, to illustrate the general
characteristics of selection on traditional BLUP-EBV ver-
sus GS. For GS, the reference population size (np), and
heritability (4*) were varied, to investigate the effect of
these parameters on response to selection. All other
parameters were kept constant across scenarios. Selec-
tion was for a single trait and in males only. To mimic
the absence of selection in females, the selected propor-
tion in females was set to 0.99.

Three scenarios were investigated:

(1) Selection on BLUP-EBV estimated from own
performance information (OP).

(2) Selection on BLUP-EBV estimated from progeny
information (PT).

(3) Genomic selection based on marker information
on selection candidates (GS).

To investigate the benefit of genomic information on
top of phenotypic information vs. genomic information
instead of phenotypic information, the GS scheme was
applied both with and without phenotypic information
on the candidates for selection.

The following assumptions were made for all scenarios:

e The population had discrete generations and a fixed
number of sires and dams per generation.

e There was a population of 1 000 dams per
generation.

e Twenty sires were used per generation.

e Each dam produced two male and two female
offspring per generation.

e In the case of progeny testing, 10 half sib progeny
per sire were available in the progeny test.

e In scenarios (1), (2) and (3) with genomic
information in addition to phenotypic information,
full pedigree information was available for breeding
value estimation as assumed in the pseudo-BLUP
selection index used in SelAction [14].

o The historical effective population size was assumed
to be 100 (required for Equation 1b).

e One-stage selection, with a selection proportion of
0.02 in sires and 0.99 in dams. It was assumed that,
of all progeny born, 50% were not suitable as
selection candidates because of health, fertility or
veterinary reasons. Therefore, we used selected
proportions of 99% in females and 2% in males.
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In scenario (1), OP, no phenotypic information was
assumed to be available on sibs of the selection
candidate.

Results will be presented in two ways. First, we com-
pare responses to selection on traditional BLUP-EBV
based on own performance or progeny information with
GS, where GS schemes either include or exclude pheno-
typic information. Second, we identify the break-even
size of the reference population at which GS without
phenotypic information yields the same response as se-
lection on traditional BLUP-EBV. In this approach, we
model the break-even size of the reference population as
a function of the reduction in generation interval that
can be achieved when implementing GS.

Results and discussion

Results of the deterministic simulations revealed that GS
schemes show a greater reduction in response due to the
Bulmer-effect than schemes with selection directly based
on phenotypic information (i.e. without the use of pedi-
gree information), such as mass selection or selection on
the mean of a progeny group (Table 1). This occurs be-
cause GS targets a proportion of the genetic variation
with full accuracy, whereas selection based on pheno-
types targets the full genetic variation with limited ac-
curacy. As a consequence, the genetic variance used in
GS, ie. the variance of the sum of marker effects, is
strongly reduced by selection as a result of the build-up
of negative covariances between the effects of markers
(under the infinitesimal model), which in turn reduces
the accuracy. This can be illustrated by a comparison of
mass selection with an initial heritability of 25% to GS
with an initial accuracy of 0.5, for a trait with unit
phenotypic variance and 5% selected (Table 1). In an
unselected population, both schemes have the same ac-
curacy of 0.5. Results of the deterministic simulations
showed that the equilibrium accuracy and additive gen-
etic variance were 0.47 and 0.21 for mass selection but
0.39 and 0.22 for GS. Consequently, equilibrium re-
sponse was 14% lower than first-generation response for
mass selection but 27% lower for GS. Hence, at
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equilibrium, mass selection yielded 118% of the response
of GS. In fact, an accuracy of 0.59 prior to selection
would have been required for GS to be equivalent to
mass selection at equilibrium.

Results of the deterministic simulations also revealed a
second difference between GS and mass selection. With
mass selection, the reduction in response due to the Bul-
mer effect was greater at higher accuracy (i.e. #%). With
a selected proportion of 5%, for example, response to
mass selection is reduced by only 7% when 4*=0.10 but
by 21% when h?=0.50 (Table 1). With GS, in contrast,
the reduction in response due to the Bulmer effect did
not depend on the accuracy of selection. With a selected
proportion of 5%, the Bulmer effect always reduced re-
sponse by 27% in GS schemes, irrespective of the accur-
acy. Again, this occurred because the estimated genetic
effects used in GS are known with full accuracy, since
the markers are observed.

The above results show that reduction in response due
to the Bulmer effect is always larger for GS than for se-
lection based directly on phenotypic information (e.g.
mass selection), except when accuracy of selection
approaches 100%, in which case the reduction will be the
same. The theoretical results found here (Equations la-e)
are identical to the results found by Dekkers [18,19]
for selection on traditional BLUP-EBV. Hence, the
impact of the Bulmer-effect on response, accuracy and
additive genetic variance is the same for GS as for trad-
itional BLUP selection. The reduction in response to
selection, for example, is independent of the accuracy
of selection for both GS and selection on BLUP-EBV.
The above calculations of the Bulmer effect will be
approximations when marker effects are updated each
generation (known as “retraining”). Nevertheless, the
effect of updating marker effects is expected to be
small, because the additional data becoming available
for retraining each generation will usually be smaller
than the already existing reference population, and
the change in accuracy due to adding records to the
reference population shows a diminishing return
relationship. The expressions derived here for the

Table 1 Comparison of the Bulmer-effect for mass selection and genomic selection

Selection n Fez, Equilibrium Equilibrium A%

methoda genetic accuracy b
variance

Mass selection 0.25 0.5 0.21 047 —14%

Genomic selection 0.25 05 022 0.39 —27%

Mass selection 0.10 032 0.093 0.306 —7%

Mass selection 0.50 0.71 0.367 0.651 =21%

Mass selection - any value

-27%

2Comparison of the Bulmer-effect for mass selection and genomic selection with different heritabilities (h?) and accuracies of EBV (rgg,); Phenotypic variance
equals 1; selected proportion equals 5%; ®A% is the relative difference between the initial response and the Bulmer-equilibrium response.



Van Grevenhof et al. Genetics Selection Evolution 2012, 44:26
http://www.gsejournal.org/content/44/1/26

Bulmer-equilibrium response, additive genetic variance
and accuracy with GS (Equations la-e above) are identical
to those for selection on classical BLUP-EBV presented in
[22,23]. This makes sense because a model with genome-
wide estimated marker effects is equivalent to a mixed
model with a genomic relationship matrix [24]. Hence,
results for the Bulmer effect presented here are consistent
with the equivalence of GS based on estimated marker
effects vs. a mixed model with a genomic relationship
matrix. However, the derivations in [22,23] have a different
foundation; they rely on the property of BLUP that selec-
tion on EBV does not affect the prediction error variance
of the EBV [25,26]. Hence, the agreement of our results
with those in [22,23] constitutes an independent proof of
the expressions derived here.

Construction of the reference population to maximise
accuracy

When the total number of phenotypic records is fixed, a
reference population with phenotypic information on
the genotyped individuals yields a greater accuracy of
genomic EBV than a reference population with progeny
information on the genotyped individuals (Equation 2,
Figure 1). With progeny information, the number of
sires on which the reference population is constructed
will obviously decrease when the number of progeny per
sire increases, which consequently reduces the accuracy,
particularly when the number of phenotypic records is
small (Figure 1). For example, with 4 000 phenotypic
records and 20 progeny per sire, the reference popula-
tion consists of np = 200 genotyped sires with EBV
based on 20 progeny, whereas with two progeny per sire,
the reference population consists of np = 2 000 geno-
typed sires with EBV based on two progeny. Although
increasing the size of the progeny groups increases the
accuracy of the sire’s EBV, the number of sires with
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which the GS reference population is constructed has a
much larger impact on the accuracy of genomic EBV.
Thus, when the number of phenotypic records is limit-
ing, it is optimal to genotype the individuals that pro-
duce the phenotype, not their parents.

Studies using stochastic simulations have shown that
the accuracy of genomic EBV decreases as the number
of generations between the selection candidates and the
animals in the reference population increases [27]. Thus,
a reference population is ideally constructed using indi-
viduals most closely related to the candidates for selec-
tion [27]. Buch et al. [27] also showed that the number
of daughters that need to be genotyped to replace their
sires in the reference population is a function of the
number of offspring underlying the sire’s EBV but is in-
dependent of the number of sires. Our results are based
on a theoretical relationship between reference popula-
tion size and accuracy (Equation 2), which assumes that
individuals in the reference population and selection
candidates are not closely related [6]. Hence, the accur-
acies of genomic EBV used here may be conservative. In
addition, we assumed no decay of linkage disequilibrium
(LD) or change in marker frequencies.

Figure 1 shows that the increase in the accuracy of
genomic EBV with the number of phenotypic records is
strongly non-linear, showing a diminishing-return rela-
tionship. As a consequence, increasing the total number
of phenotypic records increases accuracy less than pro-
portional. Increasing the number of phenotypes in the
reference population from 5 000 to 10 000, for example,
which is 2-fold, increases accuracy of genomic EBV by
only 32% (Figure 1).

Response of traditional versus GS breeding schemes
Results presented in this section refer to the Bulmer-
equilibrium response and assume that the reference
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Figure 1 Accuracy of genomic EBV for reference populations with different progeny group sizes. Different lines indicate different progeny
group sizes; PG=genotyped individuals in the reference population have an own performance records (same individuals phenotyped and
genotyped); when the progeny group size is, e.g. 20, the number of genotyped individuals in the reference population (ns) equals the total
number of phenotypes divided by the size of the progeny group; accuracy ry; is calculated from Equations 2a-d, for Ne =100, L=30, and h?=023.
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population is optimized for a limited number of pheno-
typic records. Thus, the same individuals are both phe-
notyped and genotyped, so that np refers to both the
number of phenotypic records and the number of geno-
typed individuals in the reference population.

Figure 2a compares response to selection per gener-
ation between selection on traditional BLUP-EBV and
GS schemes when the selection candidates do not have
phenotypic information. The results show that large
reference population sizes are required for GS to outper-
form traditional breeding schemes. Even with reference
population sizes of 10 000 individuals, GS did not gener-
ate a larger response per generation than traditional
breeding.

Figure 2b compares selection on traditional BLUP-
EBV to GS schemes when the selection candidates also
have phenotypic information. Hence, in the GS schemes
in Figure 2b, genomic information is available in
addition to phenotypic information. Results show that in
these cases, GS is of little additional value, unless the
reference population is very large. Figures 2a and b show
that the response pattern does not change much with
heritability. In conclusion, Figures 2a and b show that
GS cannot compete with traditional selection when the
number of phenotypic records is limited, unless the gen-
eration interval can be decreased by GS.

Figures 3a and b show the break-even size of the refer-
ence population that is needed to reach a similar re-
sponse to that with selection on traditional BLUP-EBYV,
as a function of the decrease in the generation interval
that can be obtained when implementing GS. When the
generation interval cannot be decreased, large reference
population sizes are required, particularly when herit-
ability is high, which agrees with Figures 2a and b. How-
ever, when generation intervals can be decreased, the
break-even size of the reference population decreases
rapidly, particularly when heritability is high, because of
the non-linear relationship of accuracy with the number
of phenotypes; a reduction in reference population size
yields a less than proportional reduction in accuracy
(Figure 1). In contrast, a reduction in generation interval
yields a proportional increase in response. As a conse-
quence, small reductions in generation interval lead to
relatively large reductions in the break-even size of the
reference population. For example, for NgL =100 x 30,
compared to selection on traditional BLUP-EBV based
on own performance information, a reference population
size of ~ 6 000 individuals is needed when the generation
interval is reduced by 20%, whereas only ~2 000 indivi-
duals are needed when the generation interval is halved
(Figure 3a). Compared to selection on BLUP-EBV
based on 10 progeny per sire, a reference population size
of ~10 000 individuals is needed when the generation
interval is reduced by 20%, whereas ~3 500 individuals
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are needed when the generation interval is halved
(Figure 3b). Because traditional progeny testing schemes
require rather large numbers of phenotypic records and
have long generation intervals, GS schemes will often be
superior to progeny testing schemes when compared at
an equal number of phenotypic records. Although pre-
cise results will depend on the value of #* and NgL, the
patterns shown in Figures 3a and b are not expected to
depend on these factors.

Breeding programs usually focus on improvement of
multiple traits and, thus, the generation interval is not
determined by a single trait. This raises the question
whether the conclusions drawn above from Figures 3a
and b can be applied to breeding programs in practise.
We believe they can, for the following reasons. First, for
traits that are easy to record but that cannot be recorded
on the selection candidates of both sexes, such as milk
yield or egg number, GS is attractive since it allows a
substantial reduction in generation interval. Thus, selec-
tion for such traits will not be an obstacle for the reduc-
tion in generation interval that is required to make GS
of interest for traits with a limited number of phenotypic
records. Second, for traits that can be recorded early in
life on all candidates for selection, such as growth rate
in broilers, GS can be combined with phenotypic infor-
mation to estimate breeding values early in life [24].
Hence, in such cases, GS for the trait with a limited
number of phenotypic records will allow a reduction in
generation interval and this also increases response in
traits that can be recorded on all candidates early in life.
Thus, when considering multi-trait selection, GS is
equally or more beneficial than suggested by results in
Figures 3a and b.

In this work, the accuracy of genomic EBV was based
on the expression presented in [6] (Equation la), rather
than based on stochastic simulation. This expression is
independent of allele frequencies, in contrast to the ex-
pression derived by Goddard [12]. However, Hayes et al.
[20] found these two expressions to result in very similar
accuracies but the method in [6] yielded slightly lower
accuracies at low to moderate heritabilities. For traits
with a limited number of phenotypes, heritabilities will
be mostly in this low to moderate range [20]. Hence, this
suggests that the accuracies used here are slightly
conservative.

Conclusions

With an equivalent intensity of selection, the reduction
in response to selection due to the Bulmer-effect is the
same for GS and for selection on traditional BLUP-EBYV,
irrespective of the accuracy of EBV used for selection.
Hence, when schemes have the same selection intensity
in both sexes, accounting for the Bulmer-effect is not es-
sential to obtain the correct ranking of GS versus
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Figure 2 Comparison of Bulmer-equilibrium response to selection per generation. a - Response expressed in phenotypic standard
deviations, for different information sources and reference population sizes. Different lines refer to different heritabilities; the GS schemes do not
have phenotypic information on the selection candidate (NOP =No Own Performance), hence, genomic information replaces phenotypic
information; OP = selection on traditional BLUP-EBV based on own performance records; PT = selection on traditional BLUP-EBV based on progeny
testing; GS = genomic selection; number indicates the size of the reference population; in the reference population, the same individuals are
genotyped and phenotyped; note that the x-axis scale is non-linear; for Ne =100 and L=30. b - Response expressed in phenotypic standard
deviations, for different information sources and reference population sizes. Different lines refer to different heritabilities; in the GS schemes,
individuals also have information on their own phenotype, hence, genomic information is available in addition to phenotypic information;
OP =selection on traditional BLUP-EBV based on own performance records; PT = selection on traditional BLUP-EBV based on progeny testing;
GS =genomic selection; number indicates the size of the reference population; in the reference population, the same individuals are genotyped
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Figure 3 Reference population size needed for genomic
selection to reach a response per year equal to that with
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performance information. In the reference population, the same
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3b - Based on progeny-testing with 10 progeny per sire. In the
reference population, the same individuals are genotyped and
phenotyped; for Ne=100 and L=30.

traditional BLUP schemes. However, when selection in-
tensities differ between schemes, the Bulmer effect can
affect the ranking and a comparison based on accuracies
in an unselected population can be misleading [23].
Schemes in which selection is based directly on pheno-
typic information, such as mass selection, have a lower
reduction in response due to the Bulmer effect than GS
or traditional BLUP schemes.

To maximize the accuracy of genomic EBV when the
number of phenotypic records is limiting, the same indi-
viduals should be genotyped and phenotyped, rather
than genotyping parents and phenotyping their progeny.
When the generation interval cannot be decreased with
GS, large reference populations are required to obtain a
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similar response to that with own performance selection
or progeny testing. However, the accuracy of genomic
EBV has a diminishing-return relationship with the size
of the reference population. As a consequence, when GS
schemes have a moderate decrease in generation inter-
val, relatively small reference population sizes are needed
to obtain a response equal to that with selection on trad-
itional BLUP-EBV based on own performance or pro-
geny information. Thus, when the trait of interest
cannot be recorded on the selection candidate, GS
schemes are very attractive, even when the number of
phenotypic records is limited, because traditional breed-
ing schemes would have to rely on information from
relatives with many phenotypic records and long gener-
ation intervals in the case of progeny testing.
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