Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

Genetics
Selection
Evolution

RESEARCH Open Access

Parallel Markov chain Monte Carlo - bridging the
gap to high-performance Bayesian computation
in animal breeding and genetics

Xiao-Lin Wu'*", Chuanyu Sun', Timothy M Beissinger'?, Guilherme JM Rosa®*, Kent A Weigel',

Natalia de Leon Gatti® and Daniel Gianola'**

Abstract

animal breeding and genetics.

SNP genotypes.

Background: Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences
are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection,
which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes.
In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a
major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of

Results: Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal
breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their
applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for
parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is
based on running multiple chains, yet some variants are discussed as well. Features and strategies of the
parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K

Conclusions: Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models,
which does not only lead to a dramatic speedup in computing but can also be used to optimize model
parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo
will have a profound impact on revolutionizing the computational tools for genomic selection programs.

Background

In recent decades, Bayesian inference has been increas-
ingly used for analysis of complex statistical models, in
part because of increased availability and performance of
personal computers and workstations. However, such
models are generally not analytically tractable and,
hence, computationally demanding numerical techniques
are inevitably required. This is especially true of Bayesian
computation for genome-enabled prediction and selec-
tion, which aims at using whole-genome molecular data
to predict the genetic merit of candidate animals for
breeding purposes [1]. Typically, implementation of a

* Correspondence: nick wu@ansci.wisc.edu

'Department of Dairy Science, University of Wisconsin, Madison, Wi, USA
2Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
Full list of author information is available at the end of the article

(BioMVed Central

high-dimensional model based on Markov chain Monte
Carlo (MCMC) techniques is notoriously intensive in
computing and often requires days, weeks, or even
months of CPU (Central Processing Unit) time on per-
sonal computers and workstations [2]. Therefore, in
order to overcome such computational burden, parallel
computing becomes appealing [3,4].

Parallel computing operates on the principle that a
large problem can be split into smaller components and
solved concurrently (i.e., ”in parallel”), each on a separ-
ate processor (or CPU core) [5]. An instance of a com-
puter program and its activities that are taking place on
each processor is referred to a process. Thus, parallel
computing involves activating multiple processes that
concurrently carry out related computing jobs and com-
bining results by the main “controlling” process. Parallel

© 2012 Wu et al;; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:nick.wu@ansci.wisc.edu
http://creativecommons.org/licenses/by/2.0

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

computing can be achieved by programming with C, C++,
or Fortran, e.g., using the MPI (Message Passing Interface)
library to handle inter-process communication [6]. High-
performance computing communities have developed
parallel programs for decades but were previously limited
to programs running on expensive super-computers. In
the past twenty years, interest in parallel computing has
grown markedly due to physical constraints that prevent
frequency scaling [5] and to the need to handle datasets
of unprecedented dimensionalities that are being gener-
ated [7]. Parallel computing has now become a dominant
paradigm in current computer architectures, mainly in
the form of multi-core processors [8].

Parallel MCMC methods have recently been adopted
in statistics and informatics [4,9] and in image proces-
sing [10] but they have not received much attention in
animal breeding and genetics. There are several reasons
for this gap. First, MCMC algorithms are seemingly ser-
ial, and parallelism is not as straightforward as one
would expect. Second, many intensive computational
tasks in breeding and genetics applications have been
handled via some simple data parallelism, implemented
through the “multiple-tasking” mechanism provided by
multi-core Linux workstations. Multiple-tasking allows
each processor to switch between tasks being executed
on it, without having to wait for each task to finish, but
this type of “parallel” computing is not scalable with the
number of jobs. Recently, parallel MCMC algorithms
and strategies have become a focal point for scientific
computing in the post-genome era [4]. This is largely
due to the need to handle genomic datasets of unprece-
dented sizes, such as genome-wide dense markers or
sequences for genome-enabled selection programs [2].
With a set of whole-genome markers (say 50K SNP
markers or higher density) in a model, the computing
task is highly challenging, particularly with sophisticated
Bayesian models via MCMC implementation [1,11-13].

In this paper, we present a technical description of par-
allel MCMC methods in the context of animal breeding
and genetics. These algorithms typically fall into two cat-
egories: running multiple MCMC chains or parallelization
within a single chain; some variants of these algorithms
are discussed as well. A major purpose of this paper is to
advocate the use of parallel MCMC methods, hence in-
fusing high-performance computing technologies into
animal selection programs in the post-genome era.

Methods

Parallel Monte Carlo methods

We start with parallel Monte Carlo methods, as a prelude
to parallel MCMC. In practice, many statistical problems
involve integrating over hundreds or even thousands of
dimensions but usually these problems are not analytic-
ally tractable. Instead, Monte Carlo simulation methods

Page 2 of 18

[14] can be used to tackle high-dimensional integrals.
Standard Monte Carlo integration algorithms distribute
the evaluation points uniformly over the integration
regions.

Parallel computing for evaluating integrals
To begin, consider the following integral

E(p(6)) = / p(6) £(6) d 6, 1)

for some high-dimensional 6 with density f(6). Suppose
the integral cannot be evaluated analytically. If n realiza-
tions of 6 can be sampled independently from f(6)
then, according to the strong law of large numbers, the

sample average 17 gnl p(0<f>) provides an approximation

to E(p(0)) when n — .

Simple Monte Carlo algorithms proceed by averaging
large numbers of values that are generated independ-
ently of each other. Obviously, Monte Carlo simulation
is parallel in computing because it can be conducted
concurrently. By parallel computing, the entire set of
samples can be divided among the available CPU cores
and then each core generates a portion and summarizes
its local samples. After all processors have finished their
tasks, a master program summarizes all the partial data
and outputs the final result.

Suppose that there are K CPU cores that generate a
total of T samples, each handling an equal portion of
these samples. For simplicity, we assume that T is
divisible by K, such that the quotient (m = T/K) is an in-
teger. Then, parallel Monte Carlo simulation proceeds as
follows [3]:

=> Process 0 (master process):

(a) computes and passes m to each process.

=> Each (slave) process (say j):

(a) simulates m indegnendent realizations of 6;

(b) computes S; = X p(ﬁ(i))‘ and passes S; back to
the master progtam.

=> Process 0 (master program):

K
(a) sums S; and generates the final sum S = z Sj;
(b) computes the Monte Carlo estimate as =

E(p(6)) =+

Note that, in this example, the master process does not
involve computing the sum of a portion of the data but it
actually can. Also, note that each process is given the same
number of samples. This works well if all CPU cores

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

process the data at the same speed or approximately so. In
practice, however, clock frequencies (i.e., computing speed)
can vary markedly among processors. Hence, it can be
more effective for each processor (or CPU core) to process
a different number of samples, roughly proportional to its
computing speed, and then let the master program
compute the weighted average of all samples obtained from
the K cores.

Parallel computing of single-parameter models

A single-parameter model can serve as a building block
for Bayesian modeling [15]. Consider a normal distribu-
tion with known mean y and unknown variance 62 to
be inferred. The data density for a vector y of » identi-
cally independently distributed (iid) observations is:

n

p(y‘ 02) o< (02)77 exp(fﬁ Sz), (2)

n
where §* =1 ii(y ; —)’ is the sufficient statistic. As-

suming an inverse- x> prior distribution with scale o7
and v, degrees of freedom,

1\7"! vy 02
p(0%) <02> eXP<— 5 020>’ (3)

it can be shown that the posterior density of o2 is a

. PETIr . . vo 02+ n §?
scaled inverse- y*distribution with scale ——— and

vo+ n
vo + n degrees of freedom [15]:

2 2

2) vo o5+ nS
ooy~ v n—————-——>. 4
(s n 2B @

. 9 . vy 0t nS?

Hence, the posterior mean of ¢~ is % for vy +

n > 2. Numerically, the posterior distribution of ¢ can
be inferred based on posterior samples generated from
(4). Computing for this single-parameter normal model
can follow exactly the same algorithm as parallel Monte
Carlo simulation. Briefly, K parallel processes are exe-
cuted, each generating a portion of the posterior samples
of 2. Then, the master process generates the final sum
and computes the estimated posterior mean of ¢ as a
weighted average of all sample averages.

To show why the algorithm of parallel Markov chain
simulation applies to parallel computing of a single-
parameter model, consider equation (1). For this
single-parameter normal model, for example, the mar-
ginal posterior expectation of ¢? can be expressed as:

E(c?|y) = / o f(ly) d o*. (5)

Clearly, (5) implies a similar Monte Carlo implementa-
tion: if 7 samples of o2 are generated from its marginal

Page 3 of 18

posterior density f(o?| y), then, as n — oo, E(d?|y)
can be approximated by the sample average:

o2=2X
=1

(2" = E(ay). (6)

Parallel computing of multiple-parameter models

Many models involve more than one unknown. Although
many parameters are involved, conclusions are often
drawn about one or only a few parameters at a time. In
Bayesian analysis, the aim is to obtain the marginal pos-
terior distribution of each parameter of interest. Often,
we can construct the joint posterior distribution of all
unknowns and then integrate this distribution over the
unknowns that are not of immediate interest, leading to
the desired marginal distribution of the parameter of
interest.

Now, consider the normal distribution (2) but with
both mean and variance unknown. Assuming prior inde-
pendence of location and scale parameters, a vague prior
density for and 62 is uniform on (y, log o) that is,

p(u, 0?) o< (%) (7)

Then, it can be shown that the marginal posterior dis-
tribution of ¢ is a scaled inverse- x* density with n —
1 degrees of freedom and scaling parameter s2:

p(az\y) z/N(y‘ﬂ, 02)0_211 U =)(_2(n -1, 52), (8)

n

L Zl(yi —%)? and y=1 gnlyi. The mar-

where s2 =

ginal posterior distribution of 4 can be obtained by inte-
grating the joint posterior density over o? leading to a
student-t density:

ol) =fplyic = 1,(3). o)

Therefore, posterior samples for ¢ and y can be gen-
erated independently from the following marginal pos-
terior distributions, for ¢t =1,..., T iterations:

= Sampling ¢** from (8),
= Sampling () from (9).

Parallel Markov Chain Monte Carlo

Analytical solutions are not always available for most
multiple-parameter models. Instead, MCMC simulation
can be used to draw samples from the joint posterior dis-
tribution and then evaluate sampled values for the par-
ameter(s) of interest while ignoring the values of other
unknowns. MCMC methods are a variant of Monte
Carlo schemes in which a Markov chain {X i j=1, 2}

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

is constructed with equilibrium distribution 7 equal to
some distribution of interest, such as a posterior distribu-
tion in a Bayesian analysis [16]. Typically, the initial value
is not a draw from the distribution 7z but if the chain is
constructed properly, then X; % 7 (here, d means con-
vergence in distribution) and, under certain conditions,
an estimator s converges to /i, as t — oo. However, a
Markov chain is sequential by nature because the distri-
bution of X,; depends on the value of X;, where ¢t in-
dexes the order of MCMC iterations. This introduces a
difficulty to parallelization of a Markov chain.

Parallel MCMC by running multiple chains

A naive yet natural approach to parallel MCMC is simply
to generate several independent Markov chains on differ-
ent processors and then combine results appropriately
[17,18]. Given that running multiple chains is simple and
that they scale well with the number of available proces-
sors (or CPU cores), this type of “multiple-chain” parallel-
ism is usually the strategy to strive for in the first instance.

Assume that we want to estimate some target distribu-
tion p(X) but samples of X cannot be drawn directly
from p(X). Instead, a Markov chain Xy, Xi,... can be
generated, which, through some transition density
u(Xi1] X¢), converges to p(X) at equilibrium. Let
there be i=1,2,..., K parallel chains, each initialized
and burned-in independently for B; updating steps be-
fore more samples are drawn at intervals. As K — oo
and all B; — oo, it can be shown that the ensemble is
ergodic (tending in the limit) to p(X)[19].

An appealing advantage of running multiple chains is
that these processes can be conducted concurrently with
minimal coordination among tasks, as in the case of par-
allel Monte Carlo simulation. However, unlike parallel
Monte Carlo simulation, a major concern with running
multiple MCMC is that the overall reduction in runtime
from parallelism can be limited by the portion of each
chain to be discarded in the beginning of MCMC sam-
pling for convergence purposes (i.e., burn-in). If every
chain has to spend a significant proportion of its time in
burn-in, this would place serious limitations on the per-
formance of the algorithm, because it would not scale
well with an increasing number of processors [4].
According to Amdahl’s (1967) law [20], if some portion
p of steps, for 0 < p<1 must be removed as burn-in
from each chain, then the maximum speedup in com-
puting through parallelization is (assuming that each
step takes an equal amount of time):

S(p) = (10)

where 7 is the number of iterations after burn-in. Thus,
parallel MCMC computing by virtue of running multiple

Page 4 of 18

chains is rewarding only when p is small. However, if p
is large, the gain in computation through running mul-
tiple chains instead of a single long chain can be very
disappointing.

Although running multiple Markov chains is theoretic-
ally straightforward, chains are not necessarily ergodic.
Hence, some variant multiple MCMC methods have
been proposed. For example, samples from multiple
Markov chains may be confined to isolated modes if the
target distribution is multi-modal, or the chains may
mix poorly when there are strong correlations between
variables. Unfortunately, the latter is a common problem
of Gibbs samplers [21]. Hence, pooling samples from
multiple short chains may not necessarily give a better
representation of p(X) than using a single long chain. If
several chains are drifting to disparate modes, they will
tend to be strongly influenced by the chains that they
confine, because the weights will not necessarily be pro-
portional to their relative masses.

Several strategies have been proposed for handling the
aforementioned issues for single chains, such as adaptive
MCMC algorithms [16,22] and tempering [23,24].
Metropolis-coupled MCMC is an algorithm that is
related to simulated tempering and tempered transitions
[23,24]. It proceeds by simultaneously running a number
of different Markov chains that are governed by different
(but related) Markov chain transition probabilities. Oc-
casionally, the algorithm “swaps” values between two dif-
ferent chains, with probability governed by the
Metropolis algorithm to preserve the stationarity of the
target distribution. These swaps can speed up conver-
gence of the algorithm substantially [4]. Craiu et al. [25]
targeted the posterior with an ensemble of chains, using
the covariance of samples across all chains to adapt the
proposal covariance for a set of Metropolis-Hastings
chains. While these multiple-chain methods use syn-
chronous exchange of samples to expedite convergence,
Murray [26] proposed mixing in an additional independ-
ent proposal, representing some hitherto best estimate
or summary of the posterior, and cooperatively adapting
across chains. The idea is to construct a global best
estimate of the posterior at any given step and then
mix this estimate as a remote component with what-
ever local proposal that a chain has adopted. This does
not preclude adaptive treatment or tempering of that
local proposal. It also permits a heterogeneous blend
of remote proposals, so that the ensemble of chains
can mix well.

Parallelization within a single chain

By running multiple Markov chains, we often observe
that samplers mix poorly and each chain may require a
very long burn-in time. Hence, it would be preferable to
develop parallelism within a single chain, instead of

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

running multiple chains. As mentioned in the previous
section, Markov chain simulation is an iterative proced-
ure, in the sense that simulation of the next value of the
chain depends on the current value. This creates diffi-
culty for delivering parallelism for a single Markov
chain. Nevertheless, we will show that a single chain can
be parallelized, subject to assumptions of conditional
independence in the model. The key is to identify such
steps that can be implemented in parallel.

Consider a Bayesian model with p scale parameters
o= (01, 09, ap), where p can be equal to 1 in some
cases, and ¢ location parameters 0 2(91, 0, Qq). In
MCMC sampling, each element is updated once per iter-
ation using a kernel density that preserves the desired
target posterior distribution p(o, 6] y).Assume that up-
dating o is very fast (given some sufficient statistics
regarding the current state of 0) but updating 0 is highly
time-consuming. This is typical of a multivariate normal
distribution with a common scale parameter (or different
groups of scale parameters) and a large number (say a
few hundreds or thousands) of location parameters. In
these cases, it would be preferable to parallelize the up-
date steps for 0 in order to gain speed up in computing.
In theory, parallelization of the update of 6 depends cru-
cially on the conditional independence structure of the
model. First, assume the simplest possible case, where
0L 0, 0,y, i# j, meaning that the update of any
particular 6 ; will not depend on the state of any other
0; (j# i). Thus, all &'s can be updated in parallel by
delivering subsets, say g, of the elements in 0 to the K
CPU cores. For illustrative purpose, let there be only one
o but many 6's. Then, after all parameters are given ini-
tial values, the parallel MCMC algorithm proceeds by
repeatedly conducting the following steps:

=> Master program:

(a) samples a new o, given realization of 0 and the data
y, and
(b) distributes the new o to each process.

=> Each process (k):

(a) updates a subset of 8s that have been assigned to it,
conditional on ¢ and y,

(b) computes summary statistics for the updated 6s,
and

(c) passes the summary statistics back to the master
program.

Often, the above algorithm works quite well when the
0 are all independent of one another, given ¢ and y. In

Page 5 of 18

practice, however, such independence may not necessar-
ily hold and strategies must be developed to deliver effi-
cient parallel MCMC algorithms given specific
dependence between elements [3].

Applications

Parallel simulation for a single-parameter normal model
Consider a normal distribution model with unknown y
and known ¢2. For a vector y of n iid observations, the
likelihood is:

n

MYM—LKV%ﬁﬁmpG

(y-1p'(y—1 ﬂ)))'

2 o2
(11)
If a normal prior is assumed, that is,
1 2
p(w) oc exp(=5 (41—) (12)
To

where 4, and 72 are hyperparameters, it can be shown

that the posterior density of 4 is also normal [15]:

1 n o5
Tty (1 o\
= N*+—— | S5+— . 13
plu (— (pts)) o

Intuitively, the posterior mean of 6 is expressed as a
weighted average of the prior mean (y,) and of the sam-
ple mean (y), with weights equal to the corresponding
precisions, %(2) and -%, respectively. Because this is a

single-parameter model, posterior samples of y can be
simulated in parallel by following the same algorithm as
for Monte Carlo simulation.

The example data are average body weight daily gains
(ADG) measured on 7670 Angus cattle. The kernel
density of ADG is shown in Figure 1, which approxi-
mately suggests a normal distribution. Assume that we
know, from previous studies, that the population vari-
ance of ADG is 0.58. In this example, the prior distribu-
tion is assumed to be normal with mean equal to 4.0
and variance equal to 1.0 (these are just guesses of the
parameter values in the distribution of ADG). A parallel
C program was used in this analysis (Appendix). To
compile the parallel program, say using MPICH2, type:
mpicc singNormMod_Parallel.c —o singNormP -Im
[enter]. To conduct computing in parallel, type: mpirun
—np xx ./singNormP [enter], where xx is the number of
processors involved (or CPU cores). To estimate y, we
simulated a total of 1 000 000 values for y, which were
handled by K = 10 processes, each generating 100 000
values and computing the partial sum. Then, the K par-
tial sums were transferred back to process 0, where the
Monte Carlo estimate was computed. The illustrative
program only outputs the posterior mean and the

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

Page 6 of 18

0.4 0.5
1

Density
0.3
|

0.2

0.1

T T T
4 6 8

N=7668 Bandwidth=0.1099

Figure 1 Kernel density of average body weight daily gain measured in 7668 Angus cattle.

standard deviation. The original program used in the
demonstration also outputs minimum and maximum
values, and quartiles. This part of the code is omitted in
the Appendix for simplicity of demonstration. The com-
puting was conducted on a DELL Precision workstation
equipped with Intel® Xeon® CPU (3.20GHz), 16G mem-
ory, and cache size 6144KB.

The posterior mean was estimated to be 3.394, which
corresponded very well to the sample mean of ADG of
the 7670 Angus cattle (Table 1) because the impact of
the prior on the posterior could be ignored given the
very large sample size. The median and mean agreed
well with each other and the first and third quartiles
were also very similar (Table 1). These are indications
that the posterior distribution of the mean of ADG is
symmetric.

The purpose of this example was to show parallel
computing using the MPI (Message Passing Interface) li-
brary. The change in computing time for this example
was, however, almost insignificant because sampling
from a normal distribution is very quick. In addition,
with parallel simulation, inter-process communication
requires some extra time as overhead, which offset gains
from parallel computing.

MPI is a language-independent communication
protocol used to program parallel computers that is
extensively used for high-performance computing.
More specifically, MPI is a library of routines for cre-
ating parallel programs e.g., in C or Fortran 77, that
allow users to create programs that can run on most
parallel computer architectures. (Note that there

is a language extension to Fortran90 called High Per-
formance Fortran - HPE, which supports high-
performance computing.) In the example code, the
MPI library was used to handle inter-process commu-
nications in the C program. With MPI, each task can
have its own local memory during computation (but
multiple tasks can reside in the same physical machine
and/or an arbitrary number of machines). Typically, tasks
exchange data by sending and receiving messages but
data transfer usually requires cooperation among

Table 1 Posterior summary statistics of average body
weight daily gain based on a single-parameter normal
model

Sample set Min Q1 Median Mean Q3 Max
1 3357 3388 3.394 3394 3400 @ 3431
2 3.356 3.388 3.394 3.394 3400 3429
3 3.352 3.388 3.394 3.394 3400 343
4 3.357 3.388 3.39%4 3.394 3400 3436
5 3353 3388 3.394 3394 3400 3432
6 3.355 3.388 3.394 3.394 3400 343
7 3355 3388 3.394 3394 3400 @ 3431
8 3354 3388 3.394 3394 3400 3428
9 3.356 3.388 3.394 3.394 3400 3431
10 3358 3388 3.394 3394 3400 3433
Pooled 3352 3.388 3.394 3394 3.400 3.436

Min =minimum value; Q1 =first quartile; Q3 = third quartile; max =maximum

value.

The above results were obtained from parallel computing on ten CPU cores.

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

processors, that is, a “send” operation must have a
matching “receive” operation.

A few details about this program in the Appendix are
described in the following. MPI_Comm_rand() is used
to find out the ID of all participating processors and
MPI_Comm_size() is used to get the number of partici-
pating processors. A common pattern of interaction
among parallel processors is to use MPI_Send() and
MPI_Receive() to allocate work among them. In the
present example, however, this was done in a slightly dif-
ferent manner. MPI_Bcast() is used to send common
parameter values (e.g., number of simulation steps) to all
participating processors. Then, after each processor has
finished its work, the subroutine MPI_Reduction() is
used to sum up the posterior values from all processors.
Subroutine MPI_Reduction() collects data from all pro-
cessors, reduces the data to a single value (e.g., by sum-
mation), and then stores the results on the master
process (and on all processes as well). There are several
predefined operations that MPI_Reduction() can pro-
vide. In addition to summation, it can also conduct
multiplication, and find minimum or maximum values.
Finally, the master processor computes the means and
standard deviation (and other posterior statistics, when
relevant) for the mean of the normal model. Note that,
in this illustration, we used sequential functions to gen-
erate random numbers (http://apps.nrbook.com/c/index.
html), with process ID used as the random number seed.
Preferably, one can use a paralle] random number gener-
ator, such as the Scalable Parallel Random Number Gen-
erators (SPRNG) Library (http://sprng.cs.fsu.edu/).

Running multiple chains for Bayesian LASSO modeling
In this example, we show how to parallelize multiple
chains for the Bayesian LASSO (Least Absolute Shrink-
age and Selection Operator) regression model [12,27]. In
the whole-genome prediction context, consider the fol-
lowing linear model:
Yy=1u+ XB+ e, (14)
where y is a vector of phenotypes, 4 is an effect common
to all observations, B is a vector of unknown marker
effects, X is an incidence matrix, and e is a vector of
residuals. The prior specification follows de los Campos
et al. [12] but without the terms for additive genetic
effects. An R package, BLR, was used to implement the
Bayesian LASSO model [28].

The dataset used here consisted of 147 Angus cattle,
each genotyped for 37 892 polymorphic SNP (Single
Nucleotide Polymorphisms) markers and with esti-
mated breeding values (EBV) for marbling score as re-
sponse variable. In addition to running a single long
chain of 100 000 iterations (after a burn-in of 1000

Page 7 of 18

iterations), we also ran 10 chains, each consisting of
10 000 iterations (after a burn-in of 1000 iterations).
All jobs were submitted and run on a Condor cluster
at the University of Wisconsin — Madison [29]. This
cluster provides 1860 cores for distributed parallel
computing. Among them, 1847 run a Linux operation
system and the remaining a Windows operation sys-
tem. Memory size ranges from 256M to 214G: 7.04%
(<1G), 67.58% (1-3G), 22.69% (4-8G), and 2.67% (>10G).
A Perl script was used, that installs the R system and
required libraries (such as the SuppDists package) onto re-
mote nodes prior to the computing and then executes the
Bayesian LASSO program. This Perl script served as the
executable in the Condor job batch file.

For the multiple chains approach, each started with
over-dispersed initial values (and with different seeds for
the random number generator), and the chains con-
verged after a certain number of iterations. Markov
chain Monte Carlo convergence was examined using
posterior samples of the residual variance collected from
the first 4500 iterations of each chain. Trace plots of
posterior samples of the residual variance showed that
most chains tended to stabilize after 1000 iterations, and
all approached 0.0034 (Figure 2a), which corresponds
well to estimated residual variance in this example. The

trace plot of the shrink factor v R?> from the Gelman
and Rubin method [17] suggested that a burn-in of 3000

iterations would be more appropriate, because /' R?
approached 1.00 after the first 3000 iterations
(Figure 2b). With v/ R? — 1, within-sequence variance
dominates between-sequence variance, and all sequences
escape the influence of starting points and traverse all
target distributions. The same convergence diagnosis
can be done for all model parameters.

The parallel computing took between 141 and 178 min
to complete each of the 10 processes. The differences
were due to varying CPU speeds and workloads on these
computer nodes. In contrast, running a single chain with
100 000 iterations (after a burn-in of 1000 iterations) on
a Linux workstation with similar specifications took 1386
min (Figure 3a). Thus, the reduction in runtime from
parallel computing was approximately 7.78 fold. Poster-
ior estimates of the model parameters were similar be-
tween the two computing approaches (data not
presented).

When running multiple chains, the reduction in run-
time is limited by the time required for burn-in. Let b
denote the number of burn-in iterations that is required,
and #n be the number of iterations after the burn-in.
Then, in a serial implementation, the chain will consist
of b+ n iterations in total. Let there be K processes run-
ning chains in parallel, each taking on an equal length of
Markov chain (i.e., b+n/K iterations). Assuming each

http://apps.nrbook.com/c/index.html
http://apps.nrbook.com/c/index.html
http://sprng.cs.fsu.edu/

Wau et al. Genetics Selection Evolution 2012, 44:29 Page 8 of 18
http://www.gsejournal.org/content/44/1/29

N
(a)
o) o) o] «© «©
(3] (3] (3] (3] (3]
o | o | o | o | o |
o o o o o
-~ o ~ O ® O <+ O o S
F < < < <
@ © © © ©
S < S < S < S < S <
28 28 28 28 a8
L o 2 o 2 o 2 o 2 o
g o g © s © T © 5 S
> > > > >
o o o o o
(3] (3] (3] (5] (2]
o | (=3 (=3 o | o |
o o o o o
S T T T T T S T T T T T = T T T T S T T T T T = T T T T
0 1000 3000 0 1000 3000 0 1000 3000 0 1000 3000 0 1000 3000
[+0] © o «© «©
(5] [50) [52) (5] (5]
o o o o o
S S S A S A S
© O ~ O o © o © o o
< = < < c
. . £ £ s
5 3 5 3 S 3 S 3 5 3
—~ O —~ O —~ O —~ O | o
2 o 2T o L o 2 o+ T 9
> > > > g
o o o o o
(s (5] (3] (5] (5]
o o o o o
S S S A S S
o T T T T T o T T T T T o T T T T T o T T T T T o T T T T T
0 1000 3000 0 1000 3000 0 1000 3000 0 1000 3000 0 1000 3000
o)
o
= <
<
i
t“
o
L«
2 =+
o
o
- T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Time
Figure 2 Markov chain Monte Carlo convergence diagnosis. (a) Trace plots of posterior samples of residual variance obtained within 4500
iterations from each of the 10 chains; (b) trace plot of shrink factor V'R according to the Gelman-Rubin method y.

iteration takes the same amount of processing time, the “perfectly parallel computing”, in which the potential re-
reduction in runtime is given by: duction in runtime is K-fold. However, when b is a sig-
nificant proportion of #, the actual speedup falls well
short of its potential.

Practically, burn-in time is related to the mixing rate
of the chain, which is related to the total length of the

The above is an alternative form of (10) with b= pn Markov chain. Let n=10b, which is a useful rule-of-
and K treated as unknown. Ideally, if b = 0, this means thumb in most practical situations. Then, equation (15)

b+ n 1

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

Page 9 of 18

~
o
N

1600

1400

1200

1000

800

600

Computing time (min)

400

I m A mmmBBREBR

PO P1 P2 P3 P4

P5 P6 P7 P8 P9 S
Computers

—&— Speedup(5)
—A— Speedup(25)

—— Speedup(10)
—*— Speedup(50)

Q0 +——T—
1 4

chain.

7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Number of available CPU cores

Figure 3 Parallel vs. sequential computing of a Bayesian LASSO model for genome-enabled prediction of genetic merit. (a) Comparison
of computing time; (b) expected speedup by parallel computing with the chain length equal to ten times the burn-in length for the Markov

depends only on parameter K. Hence, we have
S(K =8) = g~ 5 and S(K = 16) = 1375 < 7, re-
spectively, for K=8 and K=16. As K — oo, the

speedup is upper-bounded at:

b+100b K— 0o
S =3 0sx k7~

(16)

Thus, when running multiple chains, each with a signifi-
cant length of burn-in, the speedup does not scale well
with the number of available CPU cores. Let n= ¢ x b.
Then, the speedup S is a function of ¢ and K, as depicted
in Figure 3b. Clearly, given the fixed relationship between
n and b, the speedup will reach a plateau after the number
of CPU cores reaches a certain level.

Parallel BayesCpC for whole-genome prediction

Finally, we show a real application of parallel computing
on genome-enabled prediction in beef cattle. The com-
puting was implemented with a high-throughput com-
puting pipeline called parallel-BayesCpC [30]. This is a

high-throughput computing package and a member of
the WGSE (Whole-Genome-enabled Selection and
Evaluation) family [31] of distributed high-throughput
computing pipelines. In computing, a pipeline is a set of
data processing elements connected in series (ie., the
output of one element is the input of the next one) and
the elements of a pipeline can be executed in parallel or
sequentially. Typically, pipelining increases the comput-
ing throughput. In the context of whole-genome predic-
tion, the pipeline that we have developed can automate
all steps involved in the computing and decision making
for whole-genome prediction, which includes and is not
limited to data input and quality control, model feature
selection (FS) if applicable, post-FS statistical inference
and cross-validation (CV), and output and documenta-
tions (Figure 4a). The parallel-BayesCpC package is so
named because it uses the BayesCm model for FS and
the BayesC (7 = 0) model for post-FS statistical infer-
ence and CV (Figure 4b). This package can reside on
both Condor and OSG (Open Science Grid) and is pro-
vided with a Condor SOAR web interface for automatic

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

scheduling of jobs and storage of output files (Figure 4c).
In Condor, for example, job dependency can be
conveniently handled as so-called “DAGMan jobs”
(Appendix — b). Note that the user does not need to
know how to write Condor job batch files as all these
files will be automatically produced by scripts of
BayesCpC based on the user’s input.
For simplicity of illustration, consider a linear model
with only the overall mean and marker effects:
)2
in//l+j§1 zZja;+ e (17)
where y ; is the phenotype (or estimated genetic value)
of the i™ animal; 4 is the overall mean; a; is the substitu-
tion effect associated with the /™ SNP (j=1,..., p);
z jj is a variable corresponding to the genotype of the j
SNP (0, 1, 2) for the i individual, and e; ~ N (0, 0 2)
is a residual term, where o Z is the residual variance. A
priori, the BayesCrt model assumes that the effect of an
SNP is null with probability s, or that it follows a nor-
mal distribution, N (0, o 2), with probability 1- 7. That
is,

-~ 2 . .1s _

ailmo? N(0, 02) w1.th probabl‘h.ty (1-m) . (18)
“1=0 with probability

Here, ¢ 2 is a variance common to all non-zero SNP

a
effects, which is assigned a scaled inverse chi-square distri-

bution, y~2 (v @S i) Furthermore, the value of 7 is un-
known and needs to be inferred, given the prior
distribution of 7 that is taken as uniform between 0 and 1,
7~ Uniform(0,1). A Bernoulli indicator variable, ¢ ;, is
introduced to facilitate sampling from the mixtures of
the SNP effects, p(8;| m) = 7' %(1 —m)°. Hence,
unconditionally, the variable «; follows a multivariate-t
distribution, t(O, SZ va), if §; =1, or equals zero
otherwise [32]. Posterior inference of unknown parameters
in the Bayesian model via Markov chain Monte Carlo im-
plementation is described by Habier et al. [11].

With a subset of, say k< p markers selected in a cer-
tain iteration of the MCMC for the BayesC 7 model,
then the next iteration assumes that all the k selected
SNP have non-null effects on the quantitative trait. The
above defines BayesC model with 7 =0, which takes
the same form as (15) but with 7 = 0 and p replaced by
k. Posterior inference in BayesC (7 = 0) is the same as
for BayesC 7z, except that 7 is fixed at zero and sampling
indicator variables is no longer relevant.

Typically, K-fold CV is often used to evaluate predict-
ive models, in which the whole dataset is divided into K
portions of approximately equal size. The model is then
trained in the set of K-I portions of the data and pre-
dicted in the remaining one portion. Portioning of

Page 10 of 18

training and testing sets is then rotated K times in each
CV experiment. Furthermore, each CV experiment can
be randomly replicated a number of times in order to in-
crease the stability of model evaluation (but we did not
do that in the present study).

As an example, we used the parallel BayesCpC pack-
age to select the optimal number of SNP to predict rib
eye area in a beef cattle population. The data consisted
of 2919 animals each with estimated breeding values for
rib eye area and genotypes obtained from the Illumina
50K SNP Beadchip. After data editing and data quality
control, 46 723 polymorphic SNP markers were used.
The optimal panel search started with the top 50 SNP
markers according to the posterior model probability for
having a non-zero effect for this marker, and then
increased from the top 100 to the top 3000 markers at
an increment of 100 markers each time. We did not ex-
haust all possible panels beyond 3K because the predic-
tion accuracy showed a constant trend of decrease after
the panel reached 1000 SNP.

In the parallel-BayesCpC package, MPI is used for data
quality control and parallel MCMC is employed by both
FS and CV. In our example, distributed jobs were sub-
mitted to a local Condor pool with 128 cores. These are
Linux workstations, with Intel® Xeon® CPU (2.67 GHz),
> 8G memory per slot and a cache size of 12 288 KB.
The submit machine is also a Linux workstation with
Intel® Xeon® CPU (3.00 GHz), 16G memory and 6144
KB cache size. Each parallel MCMC chain for feature se-
lection consisted of 10 000 iterations after a burn-in of
2000 iterations, thinned every one-tenth. Each parallel
MCMC for CV consisted of 25 000 iterations, after a
burn-in of 5000 iterations, thinned every one-tenth.

We examined three computing strategies to search for
an optimal panel size for predicting genetic merit using
SNP markers. The first strategy executed 30 meta-jobs
in parallel, each consisting of one round of parallel FS
jobs using all SNP markers and one round of parallel
post-FS inference and CV for a specific panel (X=50,
100, 200, ..., 3000, respectively). In the second strategy,
one round of parallel FS jobs was executed, followed by
30 rounds of parallel post-FS inference and CV jobs con-
ducted sequentially for all panel sizes. Parallel CV jobs
for the 500-SNP panel started only when parallel CV
jobs for the 400-SNP jobs had finished. The third strat-
egy consisted of 30 meta-jobs executed in series, with
each meta-job consisting of one round of parallel FS jobs
using all SNP markers and one round of parallel post-FS
inference and CV for a specific panel. The difference be-
tween the second and the third strategy is that different
optimal panel sizes were selected based on the same set
of FS results with the second computing strategy but
each panel was selected based on a different set of FS
results with the third computing strategy.

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

Page 11 of 18

(a)

Instruction Pool
Data Qutput
Pool :> S1 S2 S3 S4 Documentation
(b) | DataInput and Processing |
Feature Selection
] [] L.] []
L
Cross-validation
levl | cv2 | | | [evit1) | CVi(t

| Genome-enabled predicion of genetic merit for future animals |

a8 http:/fchtesubmit. ansci.wisc.edu/SOAR/projects. php?project=bayesCpC - Windows Intef

@@v (] wisc. edu
B W Fls Tk D Fle Edt View Favortes Tooks Help
et | 5 E stnipehaunesit B G Bl « Cmoel i Favortes | 55 2 Submiting a Java universe job] CS368, Fal2011 @ - g
Bt B 0cem @ 805, ASC.E0U{SORRDrOJSCts. phe?...
Rundir 61 - Profile - Report - Results - new - v2 - 9/13/2011-1530:7
Rundir 60 - Profile - Report - Results - new - v2 - 9/13/2011-1430:7
Rundir 39 - Profile - Report - Results - reset - v2 - 8/29/2011-18:17:13
i - Report - Results - reset - v2 - 8/29/2011-18:11:31
; kT - Report - Results - reset - v2 - 82912011-12:22:41
- Report - Results - reset - v2 - 82912011-12:15:32
Condor's SOAR (SOAR Manual) * Reoot - Resiks - reset - 2 - S9Y2011- 118942
Rundir 34 - Profile - Report - Results - reset - v2 - 8/29/2011-11:27:34
Sistem of Automated Runs ir 33 - Profile - Report - Results - reset - v2 - 829/2011-11:19:50
¢ 43 - Profile - Report - Resuls - ful dataset_run - v2 - 8/12/2011-17:8:43
Current Runs 42 - Profile - Report - Results - full_dataset_run - v2 - 8/122011-17339
41 - Profle - Repott - Resuts - new - v1 - /11201116308
leads Ok 38 Dk Reout doile
r 37 - Profile - Report - Results - 011-1330:7
36 - Profile - Report - Results - reset - v1 - 7/27/2011-11:15:34

Figure 4 Whole genome-enabled selection and evaluation (WGSE) pipelines and parallel BayesCpC. (a) Graphic illustration of the WGSE
pipelining; (b) workflow; (c) Condor SOAR webpage of the parallel BayesCpC pipeline.
.

There were very significant differences in computing
time between the three computing strategies (Figure 5a).
The first strategy consumed the least time (mostly com-
pleted within 12 h), because it used more features of
parallel computing, but it also required far more slots
for computing (in total 90 slots were needed). The sec-
ond strategy avoided the use of many slots because it
ran only one round of parallel FS jobs and then executed
30 rounds of parallel post-FS inference and CV jobs

sequentially based on the same set of FS results. We ran
three parallel chains for FS and also used 3-fold CV to
evaluate prediction accuracy and, hence, only three slots
were needed for this strategy. Because CV jobs on a sub-
set of markers typically ran much faster than a FS job on
all markers, it was computationally efficient to run these
CV jobs sequentially. The computing time necessary for
the second strategy was approximately two times greater
than for the first strategy. However, the third strategy

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

Page 12 of 18

inference and CV for a specific panel (Pn_A).

0000000000 HdNMTWOMNOUWOGNOCHMNMSTLWWMNOWONO & g
N O 00000000 = A== 6866 68 58660)
=S-SR I I B DA T B B T T A B A T T T T o B T B B
a | I 11 1 1 11l laaaacaacacaaccncacacoacncanonnonaan o
[« W = WY = TR - W WY WA = TR = WY = Y
T - e

09 -
0.8 -
= = ==Training
0.7 TFesting
0.6'\'[!1 T L 1 T T T T T T 1T T T 1 T T T T T 1
R888888888222.88883¢8¢82¢888888¢828888
AN S AR RSN RE RSB HRREA8RER S
aaaaa aa e a T e e T o et Yy
= S = T = T = T T = T = = = = T = T = T = = T = T = T - T - T - T - T -

Figure 5 Computing time by three parallel computing strategies (a) and prediction correlations by the first strategy (b). Three parallel
computing strategies were used in search of optimal SNP panel sizes for predicting genetic merit. The first strategy executed 30 meta-jobs in
parallel, each consisting of one round of parallel feature selection (FS) jobs using all SNP markers and one round of parallel post-FS inference and
CV for a specific panel (X=50, 100, 200, . .., 3000, respectively); In the second strategy, one round of parallel FS jobs was executed, followed by
30 rounds of parallel post-FS inference and CV jobs conducted sequentially for all panel sizes (P1_A); The third strategy consisted of 30 meta-jobs
executed in series, with each meta-job consisting of one round of parallel FS jobs using all SNP markers and one round of parallel post-FS

consumed the greatest amount of time (over two weeks).
With this strategy, jobs for different panel sizes were
executed in series but FS jobs and post-FS inference and
CV jobs for each panel size were executed in parallel. If
all these jobs were executed sequentially, the computing
time necessary would exceed one month and half, and
this is definitely not optimal. Comparatively, the first
computing strategy was twice as fast as the second strat-
egy and 29 times faster than the third strategy.

Despite the differences in computing times, predic-
tions obtained with the three computing scenarios were
highly comparable. The correlation between estimated
breeding values for rib eye area and their fitted values in
the training set (referred to as fitting accuracy hereafter)
increased almost monotonically with panel size, until it
plateaued with a panel size of around 2000 SNP
(Figure 5b). However, the correlation between the esti-
mated breeding values and their predicted values in the
testing set (referred to as predictive accuracy hereafter)

reached its peak (0.8886) with a panel size of 1000 SNP,
and then went down slightly. The highest predictive
accuracy was observed with 500 to 1500 selected markers.
The decrease in predictive accuracy with > 1000 SNP pos-
sibly reflected over-fitting, which, in this case, occurred
much before the panel size exceeded the training popula-
tion size (i.e., around 2000 animals). Hence, with Bayesian
regression models, prediction using more SNP may not
necessarily give better results than prediction using a
smaller panel. A model that describes the training set well
does not necessarily yield the best predictions when gen-
eralized to the population. This is referred to as poor
generalization in machine learning [33]. The fitting and
prediction accuracies are illustrated in Figure 6 for vari-
ous panel sizes.

In the Bayes CpC procedure, the BayesC 7 model postu-
lates that a portion 7z of all SNP have zero effect. In a
high-density SNP panel, 7 is typically expected to be large,
meaning that the portion of “signal” SNP, 1- 7, is small

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

Page 13 of 18

—_—
Q
—

Training set: Corr = 0,8002

18

Predicted values
14

10

Input values

Testing set: Corr = 0.7655

Predicted values

Input values

—_—
(@]
—

Training set: Corr = 0.9902

Predicted values

Input values

Testing set: Corr = 0.8786

~ rreaictea values

Input values

Figure 6 Prediction accuracies obtained from different panel sizes. (a) 100 SNP; (b) 1000 SNP; (c) 2000 SNP; (d) 3000 SNP.

(b)

Training set: Corr = 0.9615

w
o
3
T
>
o
7]
kel
o
4
[N
Input values
Testing set: Corr = 0.8886
o
o
0
Q
=
©
>
°
Q
5
T
jd
a
I
22

Input values

(d)

Training set: Corr = 0.9975

§ 8
3 -
©
> w
z °
g i
° o
5 -
o -

® -

8 10 12 14 16 18 20 22
Input values
Testing set: Corr = 0.8809

w
[
2
g
°
]
B
o
8
a

Input values

(Figure 7), so the chance of over-fitting is diminished.
Using the Illumina Bovine50K SNP genotypes, the poster-
ior mean (standard deviation) of 1— 7 was 0.0148
(0.0027). In prediction, the best predictions were obtained
with 500 to 1500 selected SNP, supporting an optimal pre-
dictive ability with 1.07% to 3.21% selected markers. Inter-
estingly, this optimal range covered the posterior mean of
1 — 7, which is the portion of markers estimated to have

non-zero effects on the trait. This result differs somewhat
from what we obtained using 3K SNP panels (data no
published yet). For the 3K genotypes, the estimated num-
ber of SNP having non-zero effects based on BayesC 7 in
the training set did not correspond to the number of SNP
in the optimal SNP panel for prediction. Hence, we postu-
late that parameter 77 in a BayesC 7 model may not pro-
vide information on the size of an optimal SNP panel for

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

(a)

Density
150 200
| |

100
1

50

0.00 0.05 0.10 0.15
N=46722 Bandwidth = 0.000434
.
0
o
<
o -
@
3
R
=]
o
o
w
o
o —

[T 1
0.010 0.015 0.020

Figure 7 Histogram of posterior estimates of 1-m in the
BayesCm model for feature selection. The results were obtained
from feature selection using computing strategy II, that is, one
round of parallel FS jobs was then executed, followed by 30 rounds
of parallel post-FS inference and CV jobs conducted sequentially for
all panel sizes.

prediction for small panels but could be informative for a
higher density of markers.

With the Bayesian regression models explored here,
feature selection may be important since a model with
all SNP does not necessarily give the best predictions.
This situation is unlike ridge regression best linear un-
biased prediction [34] or prediction using the G-BLUP
method [35], for which a model with all markers would
typically be favored. While selecting models of varying
dimensions may be an issue to explore, it brings tremen-
dous challenges to computing, particularly when the
dataset is large. In this regard, high-performance com-
puting offers a markedly competitive edge, not only in

Page 14 of 18

reducing computing time but also in tuning optimal
models for whole-genome prediction.

Discussion
To date, almost all statistical software packages for animal
breeding and genetics have been developed for serial com-
putation. In such programs, only one instruction is exe-
cuted at a time and after that instruction is finished, the
next instruction begins. Hence, serial computing perform-
ance depends heavily on the speed (clock frequency) of
CPU, and the runtime of a program is approximately
equal to the number of instructions multiplied by the
average time per instruction. Keeping everything else con-
stant, higher clock frequency leads to faster computing
speed and thus decreased runtime for all computation-
bounded programs [36]. This was the situation with the
performance enhancement of microprocessors based on a
single CPU from the 1980s to the early 2000s. However,
rate of improvement has slowed down since 2003 due to
hardware limitations incurred by energy consumption and
heat dissipation. On the other hand, parallel computing
has gained impetus as a result of increasingly available
multiple-core computers, computer clusters, and network-
ing and has been referred to as the concurrency revolution
[37]. In theory, multiple threads of execution can cooper-
ate to complete the work faster than a serial setting.

Parallel computing uses multiple processing elements
concurrently to solve a problem. To implement parallel
computing, one first needs to break the problem into
discrete “chunks” of work, so that they can be distributed
to run on multiple processors. This is known as task de-
composition or partitioning. The next fundamental step
in designing the parallel algorithm involves identifying
independencies that are assumed explicitly in the model.
Without loss of generality, let P; and P; be two program
jobs, where i<j indexes the order of execution. Bern-
stein’s conditions [38] can be used to identify whether or
not the two jobs are independent and can be executed in
parallel [39]. Let I; and O; be the input variables and out-
put variables, respectively, of P;. Likewise, the same defi-
nitions hold for I; and O; of P; . Then, P; and P; are
independent if they satisfy (1)1, N O; = @, (2)1; N O; =
@, and (3) O;N O; =@. Violation of condition (1)
introduces a flow dependency because the results from
the first job (P;) are used by the second job (P)). Violation
of condition (2) introduces an anti-dependency, because
P; would overwrite a variable needed by P; . The third
condition represents an output dependency: when two
statements write to the same location, the final result is
determined by the last executed statement.

MCMC algorithms have revolutionized the application
of Bayesian inference, because it tackles a large range of
complex inferential problems that were previously not

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

considered possible, tractable. In the meantime, statisti-
cians are becoming ever more ambitious in the range
(complexity) of models they consider and MCMC algo-
rithms for large complex models often require enormous
amounts of computing power. Consequently, effective ex-
ploitation of parallel algorithms is of high relevance to
Bayesian computation. A difficulty, however, is that
MCMC algorithms are serial by nature and do not easily
migrate onto a parallel system. Nevertheless, various strat-
egies can be used to design parallel MCMC methods. The
key is to identify steps with data independence or condi-
tional independence on which parallelism can reside. Sev-
eral algorithms or strategies exist for running parallel
MCMC, which is straightforward and it requires minimal
inter-process communication. However, poorly mixing
MCMC algorithms with long burn-in periods are not
ideally suited to this situation, because a long period of
burn-in must be repeated on every available CPU core.
Thus, it is often desirable to explore strategies for parallel-
ism within single chains.

The actual performance of parallel MCMC depends
on several issues. Among them, inter-process communi-
cation is a primary factor. Many parallel applications re-
quire processes to share data with each other, which is
known as inter-task communication and implies over-
head. Inter-task communication can offset the gain in
computing speed from parallel computing, because it
frequently requires some type of synchronization be-
tween tasks, causing processes to spend time “waiting”.
In the worst case, competing communication traffic can
saturate the available network bandwidth, leading to
poor parallel computing performance. Thus, there is al-
ways a need to balance the distribution of work among
tasks. There is no simple rule for this type of load balan-
cing. Ideally, all tasks are to be kept busy all of the time,
so that task idle time is minimized [9,10].

The ratio of computation to communication is qua-
litatively measured by the concept of granularity
(https://computing llnl.gov/tutorials/parallel_comp/). On
one hand, a low computation to communication ratio
(fine-grain parallelism) facilitates load balancing, as rela-
tively small amounts of computational work are done be-
tween communication events but this can imply high
communication overhead and less opportunity for per-
formance enhancement, because communication and
synchronization between tasks may take longer than the
computation. On the other hand, a high computation to
communication ratio (coarse-grain parallelism) allows
more opportunity for performance enhancement; because
relatively large amounts of computational work are done
between communication and synchronization events.
However, it is difficult to balance loads efficiently with
coarse-grain parallelism and computing time may differ
dramatically between computer cores. Therefore, there is

Page 15 of 18

a tradeoff between computing and communication and
the optimal granularity depends on the problem at hand.
In most parallel MCMC problems, it is advantageous to
have coarse granularity because the overhead associated
with communication and synchronization is high relative
to execution speed, but fine-grain parallelism can some-
times help reduce overhead due to load imbalance.

Conclusions

In this paper, we have shown the principles and exam-
ples of parallel MCMC, with applications to whole-
genome prediction of breeding values. Parallel comput-
ing operates on the principle that a large problem can
be split into smaller components and solved concur-
rently (i.e., “in parallel”), each on a separate processor
(or CPU core). In the context of parallel MCMC, two
basic algorithms exist: running multiple chains and
parallelism within a single chain, yet some variants can
be useful as well. In principle, all Bayesian models can
be parallelized in computing but the associated algo-
rithms and strategies may differ, leading to varied
computing efficiencies. Although many technical details
have yet to be explored, we expect that the use of par-
allel MCMC methods will revolutionize computational
tools for research and breeding programs for animals
in the post-genome era.

Appendix
(a) Example C code using MPI for parallel simulation of
a single-parameter normal model with unknown mean
and known variance

/* This is an example C program using MPI for paral-
lel computing of *

* a single-parameter normal model with unkown mean
and known *

* variance. For illustration purpose, the step for data
input is omitted. *

* Instead, the sample mean and standard deviation, as
well as the prior *

* mean and standard are used. *

* Contact: X-L Wu, nick.wu@ansci.wisc.edu; UW-
Madison, 09-12-2011 */

#include < stdio.h>

#include < math.h>

#include < mpi.h>

#include “ranNum.h”

main(int argc, char **argv)

{int proc_id, root_process, nprocs, ierr, niters, i;

double xi, xi2, sum, psum, sum_xi2, psum_xi2;

double tar0, tarl, sdn, tarn, varn, mun, mumu, sdmu;

MPI_Status status;

/* Prior mean and standard deviation */

double mu0 = 4.000;

double sd0 = 1.000;

https://computing.llnl.gov/tutorials/parallel_comp/

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

/* sample size, mean and variance */

int nind = 7670;

double mul = 3.394;

double sd1 = 0.580;

/* compute posterior statistics */

tar0 = 1.0/(sd0*sd0);

tarl = (1.0*nind)/(sd1*sd1);

varn = 1.0/(tar0 + tarl);

sdn = sqrt(varn);

mun = varn * (tar0*mu0 + tar1*mul);

/* Parallel simulation begins, starting from here */

/* process 0 as the root process. */

root_process = 0;

/* Replicate this process to create parallel processes. */

ierr = MPI_Init(&argc, &argv);

/* Allocate memory for random seed variable*/

long* idum;

MPI_Alloc_mem(sizeof(long), MPI_INFO_NULL,
&idum);

/* Find out process ID and number of participating
processes. */

ierr = MPI_Comm_rank(MPI_COMM_WORLD,
&proc_id);

ierr = MPI_Comm_size(MPI_COMM_WORLD,
&nprocs);

/* Root process gets the number of simulation steps */

if(proc_id == root_process) {

printf(“Please enter the number of simulation steps: ”);

scanf(“%i”, &niters);}

/* Broadcast the number of simulation steps to all par-
ticipating processes */

ierr = MPI_Bcast(&niters, 1, MPI_INT, root_process,
MPI_COMM_WORLD);

/*process id as the random number seed */

*idum = proc_id;

/* Each process computes a partial sum of simulated
values */

psum = 0;

psum_xi2 = 0;

for(i = proc_id + 1; i < niters + 1; i + = nprocs) {

xi = mun + sdn * randomnormal(idum);

xi2 =xi * xi;

psum = psum + Xi;

psum_xi2 = psum_xi2 + xi2;}

printf(“proc %i computes: %f\n”, proc_id, (float)psum);

/* Do a reduction in which all partial sums are com-
bined into the grand sum */

ierr = MPI_Reduce(&psum, &sum, 1, MPI_DOUBLE,

MPI_SUM, root_process, MPI_COMM_WORLD);

ierr = MPI_Reduce(&psum_xi2, &sum_xi2,
1, MPI_DOUBLE,

MPI_SUM, root_process, MPI_COMM_WORLD);

/* Finally, the root process prints posterior mean and
standard error of mu. */

Page 16 of 18

if(proc_id == root_process) {

mumu = sum / niters;

sdmu = sqrt((sum_xi2 - niters*mumu*mumu)/(niters-1));

printf(“The posterior mean and variance of mu is %f
and %f\n”, (float)mumu,(float)sdmu);}

/* Close down this processes. */

ierr = MPI_Finalize();}

(b) Condor job batch files (Note: these Condor scripts
were written automatically be a R scripts based on a input
parameter file. Using the BayesCpC package, a user does
not need to write this type of Condor job batch files.)

Condor DAGMan job

JOB input job_InputData

JOB selection job_Selection

SCRIPT POST selection /usr/local/wgse_beta/V2/
cmd_postscript_SelectionSummary

JOB validation job_Validation

SCRIPT POST validation /usr/local/wgse_beta/V2/
cmd_postscript_OutputResults

PARENT input CHILD selection

PARENT selection CHILD validation

Data input and quality control

Universe = vanilla

Executable = /usr/local/wgse_beta/V2/rungeneric.pl

Arguments = --new --type=R --tarball = built-sl5-R-
2.10.1.tar.gz --installfrom = R-2.10.1 --cmdtorun = p1_da-
ta_input_n_processing.R --unique = input

Log = step_input.log

Output = step_input.out

Error = step_input.error

notification = NEVER

should_transfer files = YES

when_to_transfer_output = ON_EXIT

transfer_input_files =(data path and files are omitted),
/home/nickwu/BayesCpC/V2_UW/data/datafile.csv,
/usr/local/wgse_beta/V2/rungeneric.pl, /usr/local/wgse_-
beta/V2/SLIBS.tar.gz, /usr/local/wgse_beta/V2/cmd_da-
ta_input_n_processing, /usr/local/wgse_beta/V2/
pl_data_input_n_processing.R,

Queue

Feature selection

Universe = vanilla

Executable = /usr/local/wgse_beta/V2/rungeneric.pl

Arguments =--new --type=R --tarball = built-sl5-R-
2.10.1.tar.gz --installfrom = R-2.10.1 --cmdtorun =
p4_BayesCpC_validation.R --unique = validation_1 1

Log = step_validation.$(process).log

Output = step_validation.$(process).out

Error = step_validation.$(process).error

notification = NEVER

should_transfer_files=YES

when_to_transfer_output = ON_EXIT

transfer_input_files = linkPar,
/usr/local/wgse_beta/V2/rungeneric.pl, /usr/local/wgse_

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

beta/V2/SLIBS tar.gz, /usr/local/wgse_beta/V2/
cmd_cross_validation, /usr/local/wgse_beta/V2/
p4_BayesCpC_validation.R,

Queue

Arguments = --new --type=R --tarball = built-s]5-R-
2.10.1.tar.gz --installfrom = R-2.10.1 --cmdtorun =
p4_BayesCpC_validation.R --unique = validation_2 2

Queue

Arguments = --new --type=R --tarball = built-sI5-R-
2.10.1.tar.gz --installfrom = R-2.10.1 --cmdtorun =
p4_BayesCpC_validation.R --unique = validation_3 3

Queue

Post-FS inference and cross-validation

Universe = vanilla

Executable = /usr/local/wgse_beta/V2/rungeneric.pl

Arguments = --new --type=R --tarball = built-s]5-R-
2.10.1.tar.gz --installfrom = R-2.10.1 --cmdtorun =
p4_BayesCpC_validation.R --unique = validation_1 1

Log = step_validation.$(process).log

Output = step_validation.$(process).out

Error = step_validation.$(process).error

notification = NEVER

should_transfer_ files = YES

when_to_transfer_output = ON_EXIT

transfer_input_files = linkPar, /usr/local/wgse_beta/V2/
rungeneric.pl, /usr/local/wgse_beta/V2/SLIBS.tar.gz,
/usr/local/wgse_beta/V2/cmd_cross_validation, /usr/
local/wgse_beta/V2/p4_BayesCpC_validation.R,

Queue

Arguments = --new --type=R --tarball = built-s15-R-
2.10.1.tar.gz --installfrom = R-2.10.1 --cmdtorun =
p4_BayesCpC_validation.R --unique = validation_2 2

Queue

Arguments = --new --type = R --tarball = built-sI5-R-
2.10.1.tar.gz --installfrom = R-2.10.1 --cmdtorun =
p4_BayesCpC_validation.R --unique = validation_3 3

Queue

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

XLW worked out the conception and design of this study, developed the
pipeline, analyzed the results and wrote the article. CS and TMB helped with
programming, data analysis and proof-read the article. KAW, GJIMR, NDLG,
and DG were involved in the design of this study, discussion of the results,
and proof-reading of this article. All authors read and approved the final
manuscript.

Acknowledgements

This research was supported by the University of Wisconsin (UW)
Foundation, a genomic selection grant by Merial Ltd., and National Research
Initiative competitive grant no. 2009-35205-05099 from the USDA National
Institute for Food and Agriculture Animal Genome Program (Washington,
DC, USA). Drs. Stewart Bauck and Brent Woodwart were partially involved in
this study. Dr. Jeremy F. Taylor is acknowledged for kindly providing the beef
cattle data used in this study. William Taylor at the UW Center for High-
Throughput Computing (CHTC) is thanked for his excellent technical
assistance in running multiple chains for Bayesian LASSO on the CHTC

Page 17 of 18

Condor pool and for helping design the SOAR interface for the BayesCPC.
Special thanks go to the two anonymous reviewers and the editors (Drs.
Helene Hayes and Jack Dekkers) whose edits and suggestions have
improved this paper a lot. In particular, Dr. Jack Dekkers is acknowledged
who has thoroughly and critically revised the whole manuscript; his inputs
are not only editorial but highly technical as well. KW acknowledges financial
support from the National Association of Animal Breeders (Columbia, MO).

Author details

'Department of Dairy Science, University of Wisconsin, Madison, WI, USA.
’Department of Animal Sciences, University of Wisconsin, Madison, WI, USA.
3Department of Agronomy, University of Wisconsin, Madison, WI, USA.
“Department of Biostatistics and Medical Informatics, University of Wisconsin,
Madison, WI, USA.

Received: 7 February 2012 Accepted: 28 August 2012
Published: 25 September 2012

References

1. Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value
using genome-wide dense marker maps. Genetics 2001, 157:1819-1829.

2. Wu X-L, Beissinger TM, Bauck S, Woodward B, Rosa GJM, Weigel KA, de
Leon Gatti N, Gianola D: A primer on high-throughput computing for
genomic selection. Front Genet 2011, 2:4.

3. Wilkinson DJ: Parallel Bayesian computation. In Handbook of Parallel
Computing and Statistics. Edited by Kontoghiorghes EJ. Boca Raton, FL, USA:
Chapman and Hall/CRC; 2005:477-508.

4. Rosenthal JS: Parallel computing and Monte Carlo algorithms. Far East J
Theor Stat 2000, 4:207-236.

5. Almasi GS, Gottlieb A: Highly Parallel Computing. Redwood City: Benjamin-
Cummings publishers; 1989.

6. Gropp W, Lusk E, Skjellum A: Using MPI: Portable Parallel Programming with
the Message Passing Interface. 2nd edition. Cambridge: The MIT Press; 1999.

7. Benson DA, Karsch-Mizrachi |, Lipman DJ, Ostell J, Sayers EW: GenBank.
Nucleic Acids Res 2011, 39:D32-D37. Database issue.

8. Asanovic K, Bodik R, Catanzaro BC, Gebis JJ, Husbands P, Keutzer K,
Patterson DA, Plishker WL, Shalf J, Williams SW, Yelick KA, University of
California at Berkeley: The landscape of parallel computing research: A
view from Berkeley. Technical Report No. UCB/EECS-- 2006-183 2006, http://
www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf.

9. Brockwell AE: Parallel Markov chain Monte Carlo simulation by pre-
fetching. J Comput Graph Stat 2006, 15:246-261.

10. Ye J, Wallace A, Thompson J: Parallel Markov chain Monte Carlo computation
for varying dimension signal analysis, Proceedings of the 17" European Signal
Processing Conference: 24-28 August 2009; Glasgow. 2009:2673-2677.

11. Habier D, Fernando RL, Dekkers JCM: Genomic selection using low-density
marker panels. Genetics 2009, 182:343-353.

12. de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel
K, Cotes JM: Predicting quantitative traits with regression models for
dense molecular markers and pedigree. Genetics 2009, 182:375-385.

13. Zhong S, Dekkers JCM, Fernando RL, Jannink JL: Factors affecting accuracy
from genomic selection in populations derived from multiple inbred
lines: a barley case study. Genetics 2009, 182:355-364.

14. Fishman GS: Monte Carlo: Concepts, Algorithms, and Applications. New York:
Springer; 1995.

15. Gelman A, Carlin JB, Stern HS, Rubin DB: Bayesian Data Analysis. New York:
Chapman and Hall; 2004.

16. Gilks WR, Roberts GO, Sahu SK: Adaptive Markov chain Monte Carlo
through regeneration. J Am Stat Assoc 1998, 93:1045-1054.

17. Gelman A, Rubin DB: Inference from iterative simulation using multiple
simulations. Stat Sci 1992, 7:457-511.

18. Bradford R, Thomas A: Markov chain Monte Carlo methods for family
trees using parallel processor. Stat Comput 1996, 6:67-75.

19. Geyer CJ: Markov chain Monte Carlo maximum likelihood. In Proceedings
of the 23rd Symposium on the Interface: Computing Science and Statistics: 21-
24 April 1991, Seattle. Edited by Keramidas E. 1991:156-163.

20. Amdahl GM: Validity of the single processor approach to achieving
large-scale computing capabilities. In Proceedings of the American
Federation of Information Processing Societies: 14-16 November; Anaheim
1967, 30:483-485.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

Wu et al. Genetics Selection Evolution 2012, 44:29
http://www.gsejournal.org/content/44/1/29

21. Geman S, Geman D: Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984,
6:721-741.

22, Andrieu C, Thoms J: A tutorial on adaptive MCMC. Stat Comput 2008,
18:343-373.

23, Marinari E, Parisi G: Simulated tempering: a new Monte Carlo scheme.
Europhys Lett 1992, 19:451-458.

24. Neal RM: Sampling from multimodal distributions using tempered
transitions. Stat Comput 1996, 6:353-366.

25. Craiu RV, Rosenthal JS, Yang C: Learn from thy neighbor: Parallel-chain
and regional adaptive MCMC. J Am Stat Assoc 2009, 104:1454-1466.

26. Murray L: Distributed Markov chain Monte Carlo, Proceedings of Neural
Information Processing Systems Workshop on Learning on Cores, Clusters
and Clouds: 11 December 2010; Mt. Currie South; http://Iccceecs.berkeley.
edu/papers.html.

27. Park T, Casella G: The Bayesian Lasso. / Am Stat Assoc 2008, 103:681-686.

28. Perez P, Delos Campos G, Crossa J, Gianola D: Genomic-enabled prediction
based on molecular markers and pedigree using the Bayesian linear
regression package in R. Plant Genome 2010, 3:106-116.

29. Thain D, Tannenbaum T, Livny M: Distributed computing in practice: the
Condor experience. Concurrency Computat: Pract Exper 2005, 17:323-356.

30. Wu X-L, Yao C, Long N, Stewart B, Woodward B, Muijibi DFN, Rosa GJ,
Weigel KA, Gianola D: High-throughput computing for genome-enabled
selection — Preliminary deployment of a HTC pipeline for post-genome-era
breeding programs, Proceedings of the Plant and Animal Genome XIX
Conference: 15-19 January 2011; San Diego; http://www.intlpag.org/2013/
index.php/abstracts/abstracts-archive.

31. Wu X-L, Hayrettin O, Duan H, Beissinger T, Bauck S, Woodward B, Rosa GJM,
Weigel KA, de Leon Gatti N, Taylor J, Gianola D: Parallel-BayesCpC on OSG:
Grid-enabled High-throughput computing for genomic selection in practice,
Proceedings of the Plant and Animal Genome XX Conference: 14-18
January 2012; San Diego; https://pag.confex.com/pag/xx/webprogram/
Paper4104.html.

32. Gianola D, Sorensen D: Quantitative genetic models for describing
simultaneous and recursive relationships between phenotypes. Genetics
2004, 167:1407-1424.

33. Bishop CM: Pattern Recognition and Machine Learning. New York: Springer;
2006.

34. Piepho HP: Ridge regression and extensions for genome-wide selection
in maize. Crop Sci 2009, 49:1165-1176.

35. Luan T, Woolliams JA, Lien S, Kent M, Svendsen M, Meewissen THE: The
accuracy of genomic selection in Norwegian red cattle assessed by
cross-validation. Genetics 2009, 183:1119-1126.

36. Hennessy JL, Patterson DA: Computer Architecture: A Quantitative Approach.
3rd edition. San Francisco: Morgan Kaufmann Publishers; 2002.

37. Sutter H, Larus J: Software and the concurrency revolution. Association for
Computing Machinery Queue 2005, 3:54-62.

38. Bernstein AJ: Analysis of programs for parallel processing. IEEE Trans
Computers 1966, EC-15:757-762.

39. Roosta SH: Parallel Processing and Parallel Algorithms: Theory and
Computation. New York: Springer; 2000.

doi:10.1186/1297-9686-44-29

Cite this article as: Wu et al.: Parallel Markov chain Monte Carlo -
bridging the gap to high-performance Bayesian computation in animal
breeding and genetics. Genetics Selection Evolution 2012 44:29.

Page 18 of 18

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BiolVied Central

http://lccc.eecs.berkeley.edu/papers.html
http://lccc.eecs.berkeley.edu/papers.html
http://www.intlpag.org/2013/index.php/abstracts/abstracts-archive
http://www.intlpag.org/2013/index.php/abstracts/abstracts-archive
https://pag.confex.com/pag/xx/webprogram/Paper4104.html
https://pag.confex.com/pag/xx/webprogram/Paper4104.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Parallel Monte Carlo methods
	Parallel computing for evaluating integrals
	Parallel computing of &b_k;single-&e_k;&b_k;parameter&e_k; models
	Parallel computing of &b_k;multiple-&e_k;&b_k;parameter&e_k; models

	Parallel Markov Chain Monte Carlo
	Parallel MCMC by running multiple chains
	Parallelization within a single chain

	Applications
	Parallel simulation for a &b_k;single-&e_k;&b_k;parameter&e_k; normal model

	Running multiple chains for Bayesian LASSO modeling
	Parallel BayesCpC for &b_k;whole-&e_k;&b_k;genome&e_k; prediction

	Discussion
	Conclusions
	Appendix
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

