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the prediction of genomic breeding values and
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Abstract

Background: The theory of genomic selection is based on the prediction of the effects of genetic markers in
linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between
individuals to accurately predict genetic value. This study aimed to examine the importance of information on
relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding
values.

Methods: Simulated and real data were used to examine the effects of various degrees of relationship on the
accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree
based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation
pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying
degrees of relationships to a reference data set of 1750 animals was investigated.

Results: The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding
values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were
also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict
unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no
pedigree relationship with animals in the reference data set, allowed substantial accuracy.

Conclusions: An animal’s relationship to the reference data set is an important factor for the accuracy of genomic
predictions. Animals that share a close relationship to the reference data set had the highest accuracy from
genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall
population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a
population (breed), using information previously ignored by pedigree based BLUP methods.

Introduction
Genomic selection (GS) is a method that uses genomic
information to estimate breeding values and rank selec-
tion candidates in livestock breeding programs. It has
become widely used in some livestock industries e.g.
dairy cattle and pig improvement programs. Initial stu-
dies on genomic evaluation have suggested that GS pre-
dicts the effects of markers in linkage disequilibrium

(LD) with quantitative trait loci (QTL). This implies that
accurate predictions of breeding value may persist for
several generations, allowing for: 1) a reduced number
of phenotypic measurements in each generation [1] and;
2) the possibility of accurate predictions across different
breeds provided sufficient marker density [2]. Habier
et al. [3] proposed that genomic predictions also rely on
the genetic relationships between individuals with phe-
notypic records, usually known as the reference data set,
and those whose breeding value is to be predicted [4,5].
The following question arises: does an animal that has
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its breeding value predicted from genomic information
require relatives in a reference data set?
The reference data set is used to gain information on

important phenotypes and genotypes so that genomic
estimated breeding values (GEBV) can be highly accu-
rate for selection candidates. The makeup and size of
this data set, combined with the methods used to pre-
dict the breeding value, govern the accuracy achieved in
many breeding schemes [6]. Due to the cost of measur-
ing genotypes and phenotypes on large numbers of indi-
viduals, it has been suggested that using a specially
selected reference data set may be a cost effective way
of gaining the economic advantage presented by geno-
mic selection, especially for species such as beef cattle
and sheep that do not have the nucleus structure of the
dairy cattle, pig and poultry industries [7,8].
Various methods are used to predict breeding values

from genomic data. These range from variable selection
methods such as BayesB, which allows only a small
number of loci to have an effect, some of them poten-
tially large, to gBLUP, which assumes equal variance
across all loci [9]. Empirical evidence across livestock
populations has shown that in many cases these meth-
ods obtain very similar accuracies of the estimated
breeding value [10]. This suggests that additive genetic
variation for many traits is controlled by many genes
with a small effect, somewhat like Fisher’s (1918) [11]
‘infinitesimal model’.
The gBLUP method to estimate genomic breeding

values has been widely described [5,10,12,13]. This
method uses genomic information in the form of a geno-
mic relationship matrix (GRM) that defines the additive
genetic covariance between animals [14]. The GRM then
replaces the pedigree-based numerator relationship
matrix (NRM) in the traditional BLUP equations. The
GRM is expected to give a more accurate estimate of the
covariance between individuals, however, it is important
to understand how much accuracy is gained from
improved measures of covariance among known relatives
and how much is gained from information on distant
‘relatives’ previously ignored via the pedigree method.
Goddard [6] and Daetwyler et al. [15] presented meth-

ods to predict the accuracy of genomic selection. These
methods predict accuracy based on the effective popula-
tion size, the number of animals in the reference data set,
the heritability and the effective number of chromosome
segments segregating within the population. Hayes et al.
[5] extended the approach by Goddard [6] to consider
information from relatives and illustrated that the GRM
uses information on true relationships, which can vary
around the expected additive genetic relationship pre-
dicted from pedigree. This study will compare the accu-
racy of an animal’s breeding value that has a strong
pedigree relationship with a reference data set with that

of an animal that is essentially unrelated to the reference
data set, and discuss the effect of these relationships on
the design of reference data sets used in genomic selec-
tion breeding schemes.

Methods
To examine the effect of relationships between animals
in the test and reference data sets, we used both compu-
ter simulation and real phenotypic data from the Aus-
tralian Sheep CRC Information Nucleus Flock (INF).
The INF animals are located at eight sites across Austra-
lia and managed by CRC partner organizations, includ-
ing The University of New England, NSW Department
of Primary Industries, Victorian Department of Primary
Industries, South Australian Research and Development
Institute and The Department of Agriculture of Western
Australia. The experimental data in this paper were
obtained according to protocols approved by the Animal
Ethics committees of these organizations.

Simulated Data
Genotype simulations were conducted using the Marko-
vian Coalescence Simulator (MaCS) [16] to simulate 2
000 base haplotypes, with an effective population size
(Ne) of 100. As described in Clark et al. [17], thirty
chromosomes each with base haplotypes of a 100 cM
region (1·108 base pairs) were simulated, with a per site
mutation rate of 2.5·10-8. The total number of SNP seg-
regating on the genome was approximately 1 670 000
(SNP sequence). Sixty thousand SNP markers and
10 000 QTL were randomly selected from the SNP
sequence in the base generation to be used in the geno-
mic analysis (9428 QTL segregating in the final genera-
tion). Therefore each SNP had a 3% chance of being
used as a marker and a 0.5% chance of being used as a
QTL. The additive effect of each QTL was drawn from
a gamma distribution with a shape and scale of 0.4 and
1.66 respectively [8] and had a 50% chance of being
positive or negative.
The base population haplotypes were randomly allo-

cated to 80 base males and 2 000 base female animals of
a simulated population structure, with 10 subsequent
generations receiving these haplotypes via mendelian
inheritance, allowing recombination to occur according
to genetic distance, i.e. 1% recombination per cM. The
population was simulated for 10 generations and each
generation contained 4000 animals, half male and half
female. Eighty males were randomly selected in each
generation and each male was randomly mated to 25
females, which each had two offspring per generation.
Only breeding animals were allocated breeding values
and phenotypes.
The true breeding value (TBV) of each animal was

determined using:
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TBVk =
nr of .QTL∑

j=1

βj · Qkj

where bj is the additive effect of QTL genotype (j) and
Qkj is the QTL genotype at locus j which is coded as 0,
1, or 2 and is the number of copies of the QTL that an
individual (k) carries. Trait phenotypes were simulated
based on a heritability (h2) of 0.3 and all other variation
in phenotype was due to a random environmental effect

drawn from a normal distribution with variance σ 2
e .

Three reference data sets of 1 750 animals were
formed for the simulation study. Reference data set 1
(closely related) consisted of animals from the 10th gen-
eration. This reference data set was constructed such
that animals in the test data set had 20 half sibs in the
reference data set. Reference data set 2 (distantly
related) also consisted of animals in the 10th generation
but there were no close relationships between animals
in the test and reference data sets. However there were
some second degree relationships (1st cousins) between
the two data sets. The final reference data set (unre-
lated) consisted of females from generation 1 and
resulted in a very low or zero relationship between the
two data sets. The accuracy of prediction was assessed
in the test data set which consisted of 250 animals from
the 10th generation and the average correlation between
TBV and estimated breeding value (genomic or pedigree
based) was calculated over 10 replicates of the simula-
tion study.

Data analysis
As in Hayes et al. [13], we assumed a model

y = 1nμ + Zg + e

where y is a vector of phenotypes, μ is the mean, 1n is
a vector of 1s, Z is a design matrix allocating records to
breeding values, g is a vector of breeding values for ani-
mals in the reference set and the test set and e is a vec-

tor of normal deviates with variance σ 2
e . Furthermore

v(g) = Gσ 2
g where G is the genomic relationship matrix

(GRM), and σ 2
g is the genetic variance for this model.

The GRM (G) was formed using the method as defined
by VanRaden [18]
Traditional best linear unbiased prediction (BLUP)

was also performed, using a deep (BLUP-D), 10 genera-
tion pedigree or a shallow, single generation pedigree
(BLUP-S). Traditional BLUP ignores genomic data and
relies on information from ancestors using a numerator
relationship matrix (A) based on pedigree information.
This method uses the same model as gBLUP (above)
however with the vector of additive genetic values g

replaced by a, with v(a) = Aσ 2
a where A is the numera-

tor relationship matrix and σ 2
a is the additive genetic

variance. Variance components for both BLUP methods
were estimated with ASREML [19] and the model solu-
tions yielded estimated breeding values.

Merino sheep phenotypic data
The reference data set consisted of phenotypic and gen-
otypic records for the Merino sheep from the Australian
Sheep Cooperative Research Centre information nucleus
flock (INF) [20]. The traits ultrasound scanned eye mus-
cle depth (EMD; 1781 animals) and live weight at ultra-
sound scanning (SC_WT; 1743 animals) were evaluated.
Scanned EMD is used to estimate the size of the rib-eye
muscle, which produces high value cuts of meat, and
SC_WT is highly correlated to an animal’s weight at
post weaning. Animals in the INF were sired by rams
from the wider Merino population; these sires were cho-
sen to maximize the connectedness with the Australian
sheep flock by sampling artificial insemination sires
from a wide range of sheep breeders.
The test data set consisted of a population of Austra-

lian Merino industry sires with highly accurate Austra-
lian sheep breeding values (ASBV). Information about
ASBV definitions can be found at the following website
maintained by Australian Wool Innovation Ltd and
Meat and Livestock Australia [21]. The industry sires
were divided into closely, distantly and unrelated
groups based on their pedigree relationship the ani-
mals in the INF flock. The maximum relationship of
an animal in the test data set with an animal in the
reference data set ranged from 0.125 to 0.5 (no pro-
geny included) for the 48 closely related test animals,
from 0 to 0.125 for the 60 distantly related test ani-
mals, and the 53 unrelated test animals shared no ped-
igree relationship to the reference data set.

Genotypic data
All animals were genotyped using the Illumina 50 K
ovine SNP chip (Illumina Inc., San Diego, CA, USA),
which includes 54 977 SNP. Following the genotyping
procedures, quality control measures were applied to all
SNP as follows: SNP were removed if they had a call
rate of less than 95%, a GC score (proportion of gua-
nine-cytosine pairs) of less than 0.6, a minor allele fre-
quency of less than 0.01, a SNP heterozygosity of
greater than 3 s.d. from the mean (mean heterozygosity,
0.374; s.d., 0.129), were not in Hardy-Weinberg equili-
brium (a P-value cut-off of 1·10-15), had no genome
location or were in greater than 0.99 LD with another
SNP on the chip [20]. After these quality control mea-
sures were applied, 48 640 SNP were used. Missing gen-
otypes were imputed using fast PHASE [22].
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Data analysis
The following fixed effects were fitted in both trait mod-
els: sex, birth type, rearing type, age of dam, contempor-
ary group (birth year • birth month • site • management
group) and age-at-trait recording, SC_WT was fitted in
the analysis of EMD.
As in Daetwyler et al. [20], the following model was

assumed

y = Xb + Zg + e

where X is a design matrix relating the fixed effects
(as described above) to each animal and b is a vector of
fixed effects. Genetic evaluation was undertaken using
BLUP-D, using a deep pedigree of 7277 animals that
ranged from one to eight generations in length (depend-
ing on the individual), and gBLUP as defined above.
Variance components for all methods were again esti-
mated using ASREML [19] and the model solutions
yielded estimated breeding values.

Validation and accuracy
The empirical accuracy (r(cor)) for the Merino data ana-
lysis was evaluated as the Pearson product-moment cor-
relation between the GEBV and a progeny test ASBV of
the animals in the test data set. The empirical accuracy
may be an underestimate of the ‘real’ accuracy because
the ASBV accuracies are below 1. The validation sires
had an ASBV accuracy greater than 0.5 and the mean
accuracy was 0.85 for EMD and 0.9 for SC_WT. The
ASBVs used were calculated such that they included no
information from animals in the reference data set. The
Merino sheep population is highly heterogeneous and
can be divided into strains defined as fine, medium and
strong wool types. Correlations between GEBV and
ASBV were calculated after accounting for the effect of
strain.
The empirical accuracy of the breeding values esti-

mated in the test set, for the simulation example was
defined as the correlation between the true and esti-
mated breeding value. The accuracy was also estimated

for each individual as: r(PEV) =
√
(1 − (PEV/Giiσ 2

a )
where; PEV is the prediction error variance estimated
using elements from the mixed model equations, Gii is
the diagonal of the GRM for animal i and is substituted

for Aii in traditional BLUP, σ 2
a is the additive genetic

variance. Furthermore, PEV = Ciiσ
2
e where; Cii is the

diagonal of inverse of the coefficient matrix for animal i

and σ 2
e is the residual variance (See Appendix 1).

To determine the effect of an individual’s relationship
to the reference data set on the accuracy of genomic
predictions, a range of comparisons were made between
varying definitions of relatedness and an individual’s

GEBV accuracy using r(PEV). Four measures of genomic
relatedness were considered: a) An animal’s mean rela-
tionship with the reference data set; b) its maximum
relationship; c) its mean top 10 relationships and d) its
mean top 100 relationships.

Results
Simulation
Breeding values that were estimated using gBLUP always
achieved a higher accuracy than both pedigree-based
BLUP methods. When animals in the test and reference
data sets were closely related (reference data set 1), all
methods gave an accurate prediction of breeding value
(Table 1). When the two data sets were distantly related
(reference data set 2), accuracies were generally lower
but the reduction in accuracy was much smaller for
gBLUP than for the pedigree-based BLUP methods.
Furthermore, when the two data sets’ were unrelated
(reference data set 3), gBLUP gave much higher accura-
cies than both BLUP methods.
There was no significant difference in accuracy

between BLUP-S and BLUP-D when the animals in the
test and reference data sets had a close relationship.
However, when a shallow pedigree was used, and ani-
mals in the test and reference data sets were distantly
related or unrelated, all breeding values estimated using
BLUP-S were zero. In contrast, BLUP-D predicted a
breeding value with a significant accuracy when the
reference and test data sets shared a distant relationship
and accuracy reduced to close to zero when animals in
the reference and test data sets were unrelated.
The estimate of accuracy, r(PEV), when averaged over

the test data set, was similar to the empirical accuracy
of the group r(cor). The largest difference between the
two accuracy estimates was observed for gBLUP, where
r(PEV) under-estimated the realized accuracy when half-
sib family information was used (Figure 1).

Merino sheep data analysis
There was no significant difference in the empirical
accuracy of the estimated breeding values between

Table 1 Empirical accuracy1 (± S.E.)2 using genomic and
pedigree based methods in simulated data

Method Relationship to reference [pedigree relationship]

Close [0.25] Distant [0.125] Unrelated[0.003]

BLUP-S 0.39 (0.021) 0.00 (0.000) 0.00 (0.000)

BLUP-D 0.42 (0.019) 0.21 (0.031) 0.03 (0.016)

gBLUP 0.57 (0.014) 0.41 (0.034) 0.34 (0.021)
1 Calculated as the correlation between estimated and true breeding values
for 250 animals with no phenotype. Breeding values estimated using genomic
(gBLUP) and pedigree (BLUP-S and BLUP-D) based methods in simulated data
for groups of animals with different relationships to the reference data set.
2 Standard error of means of 10 replicates
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pedigree and genomic methods for EMD for close rela-
tionships (Table 2). As in the simulated data, when the
relationship between the test and reference data sets
was reduced the difference in accuracy between gBLUP
and BLUP-D increased. In addition, there was still a sig-
nificant amount of accuracy achieved when using
gBLUP in unrelated animals.
Results for SC_WT are given in Table 3 showing that

gBLUP gave higher accuracies than BLUP-D. When the
relationship between the test and reference data sets
was reduced, gBLUP was again considerably more accu-
rate than BLUP-D.
For the EMD example, the estimated and empirical

accuracies were very similar when using gBLUP. How-
ever for the SC_WT scenarios, there was a large differ-
ence between the estimated accuracy and the empirical
accuracy.
To predict the accuracy of a GEBV based on an ani-

mal’s mean relationship with the reference data set gave

a poor prediction of accuracy (Figure 2a). The best pre-
dictor of accuracy was an animal’s mean top 10 relation-
ships with the reference (Figure 2b), whereas its highest
relationship to the reference was also a good predictor
of accuracy (Figure 2d).

Discussion
The relationship between the animals in the test and refer-
ence data sets has an effect on the accuracy of genomic
predictions. Close relationships between the two data sets’
result in the highest accuracy for GEBV. Similar results
were predicted by Hayes et al. [5] and observed by Habier
et al. [3,4] for populations that share a close relationship.
However, breeding values that are predicted for closely
related animals using the traditional pedigree-based BLUP
approach also achieve high accuracy. The current study
has shown that when there is a distant relationship
between the animals in the test and reference data sets,
gBLUP is still able to predict an animal’s breeding value
with some accuracy. Furthermore, when the animals are
unrelated by pedigree or when the pedigree relationships
are low, gBLUP can use information from distant relatives
to maintain a proportion of accuracy of the GEBV.
The information gathered from only distantly related

animals enabled an estimate of breeding value to be
made with some accuracy. However, when relatives
were included in the reference data set, the importance
of information on distantly related animals may be
reduced. Selection index theory shows that when infor-
mation on closely related animals is available, more
weight is placed on this information and therefore infor-
mation from distantly related animals becomes less
important. Although the importance of information
from distant relatives is reduced, this extra information,
which is not used in pedigree-based methods, enables
gBLUP to achieve a higher accuracy of the EBV. The
inclusion of information on relatives improves the accu-
racy of the predicted breeding values.
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Figure 1 Estimates of accuracy based on the PEV from the
coefficient matrix (r(PEV)) and based on the correlation between
estimated and true breeding values (r(cor)) for the close and
distantly related individuals using genomic (gBLUP) and
pedigree (BLUP-S and BLUP-D) based prediction methods.

Table 2 Empirical1 (r(cor)) and estimated accuracy2 (r(pev))
using genomic and pedigree based methods for the
Merino EMD data.

Accuracy

Method Relationship to reference [Maximum pedigree
relationship]

Close [0.5] Distant [0.125] Unrelated [0.00]

r(cor) r(pev) r(cor) r(pev) r(cor) r(pev)
BLUP-D 0.46 0.21 0.17 0.07 0 0

gBLUP 0.43 0.5 0.29 0.31 0.28 0.27
1Correlation between breeding values estimated based on genotype and
based on a progeny test. Breeding values estimated using genomic (gBLUP)
and pedigree (BLUP-S and BLUP-D) based methods in the Merino EMD data
for groups of animals with different relationships to the reference population.
2 Derived from the mixed model equations

Table 3 Empirical1 (r(cor)) and estimated accuracy2 (r(pev))
using genomic and pedigree based methods for the
Merino SC_WT data.

Accuracy

Method Relationship to reference [Maximum pedigree
relationship]

Close [0.5] Distant [0.125] Unrelated [0.00]

r(cor) r(pev) r(cor) r(pev) r(cor) r(pev)

BLUP-D 0.15 0.43 0.21 0.05 0 0

gBLUP 0.27 0.57 0.24 0.29 0.18 0.27
1 Correlation between breeding values estimated based on genotype and
based on a progeny test. Breeding values estimated using genomic (gBLUP)
and pedigree (BLUP-S and BLUP-D) based methods in the Merino SC_WT data
for groups of animals with different relationships to the reference data set.
2 Derived from the mixed model equations
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If there are no close relationships between animals in
the reference and test data sets, the accuracy of the
GEBV is driven by distant relationships, which will be
more useful when there is more LD in the population.
The accuracy obtained for these animals can be called
the ‘baseline accuracy’, which is the accuracy that may
be expected for a member of the population that does
not have any close relatives in the reference data set.
Goddard [6] and Daetwyler et al. [15] proposed

predictive formulae for the accuracy of genomic pre-
dictions. These methods depend on the size of the
reference data set, the effective population size of the
breed, the heritability of the trait and the length of the
genome [6]. The overall Ne will govern the effective
number and size of chromosome segments (Me) that
are segregating in the population. If the effective popu-
lation size is small, it is expected that animals will
share larger chromosome segments and the genomic

R² = 0.0555 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

-0.0036 -0.0027 -0.0018 -0.0009 0 

A
cc

ur
ac

y 

a) 

R² = 0.962 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0 0.1 0.2 0.3 0.4 0.5 0.6 

b) 

R² = 0.7369 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.00 0.07 0.14 0.21 

A
cc

ur
ac

y 

Relationship 

c) 

R² = 0.886 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0 0.1 0.2 0.3 0.4 0.5 0.6 

Relationship 

d) 

Figure 2 Estimates of accuracy predicted using gBLUP and plotted against different measures of relationship between an animal in
the test data set with animals in the reference data set. These measures include: a) The mean relationship, b) The average of the top ten
relationships, c) The average of the top 100 relationships and d) The maximum relationship to the reference population.
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predictions will be more accurate [5,6]. The accuracy
(r) for an individual with no phenotype, as described
by Goddard [6], is then predicted as:

r =
√
1 − λ/(2N

√
a) · log(ρ/ρ)

Where r = (1 + a+ 2√a), with a = 1+2*l/N and N is
the number of animals in the reference,
l = s2e /s

2
u where s2e is the residual variance and s2u

is the genetic variance at a single locus and is estimated
by s2

u = h2/Me ·k where Me = 2NeL and is the effective
number of chromosome segments, h2 is the heritability
and k = 1/log(2Ne). For the simulation example N =
1750, Ne = 100, h2 = 0.3 and L = 30. Then k = 0.189,
l = 3773.8, a = 5.31 and consequently the accuracy for
an individual with no phenotype was equal to 0.36.
Similarly, the alternative method described by Daetwyler
et al. [15] results in a predicted accuracy of 0.28 (details
not shown). The predicted accuracies resulting from
either method were similar to the baseline accuracy in
our study achieved by gBLUP in unrelated individuals
(0.34). In the theoretical prediction methods, there is
some ambiguity about the approximation of Me [5,23],
with proposed values equal to: a) 2NeL/ln(4NeL); b)
4NeL and c) 2NeL. Using [6] for each of these values
results in predicted accuracies of a) 0.74 b) 0.27 and c)
0.36. Consequently 2NeL appears to be the most appro-
priate variable for baseline accuracy in our simulation
example. For the Merino sheep data, with an estimated
Ne of approximately 1,000 [24], the expected accuracy
was 0.15 and lower than that achieved by gBLUP for
EMD (0.28) and for SC_WT (0.18). This increase for
gBLUP in the real data is possibly due to extra informa-
tion from animals that shared a genomic relationship
but were unknown in the pedigree, or the estimation of
Ne may have been affected by heterogeneity of the
breed, which really consists of several sub-populations.
Accuracy estimated using the prediction error variance

of the mixed model equations (r(PEV)) was shown to be a
good approximation of empirical accuracy for the simu-
lation example. Estimated and empirical accuracies were
also very similar when using gBLUP for the EMD exam-
ple. However, some differences between r(PEV) and
empirical accuracy were observed for both, BLUP-D and
gBLUP in real data in the case of SC_WT. In the simu-
lation example, the empirical accuracy was the correla-
tion between the TBV and EBV (or GEBV), whereas in
the Merino data example, the empirical accuracy was
the correlation between the ASBV and EBV (or GEBV).
The ASBVs are progeny test estimates and have some
prediction error associated with them. The empirical
accuracy was also likely to be affected by sampling
because of the small size of each test data set (50-60
animals). Furthermore, unlike the simulation data,

where all animals were linked by a true pedigree, many
Merino animals in the unrelated test set had no direct
pedigree relationships with the reference data set and
therefore only zero breeding values were estimated for
these animals. In contrast, in the case of missing pedi-
gree, gBLUP could use genomic relationship information
and a more accurate breeding value was estimated for
all animals in the test set.
Another complexity in our real data example is the

heterogeneity of the Merino sheep population, as it con-
sists of many sub-populations. In routine ASBV ana-
lyses, this population structure is accounted for using
pedigree information and genetic groups based on indi-
vidual flock data. When correlating GEBV and ASBV,
we accounted for sub-population effects by assigning
sires to groups of “fine wool”, “medium wool” and
“strong wool”. Empirical accuracies for SC_WT were
clearly affected by correcting for the sub-population
structure, which may explain why there are some differ-
ences between r(PEV) and r(cor) for this trait. The correc-
tions had little to no effect on empirical accuracy for
EMD. Note that EMD was corrected for SC_WT and
this may have removed some of the sub-population
effects on EMD.
The makeup of reference data sets is an important

factor for the design of genomic evaluation systems to
enable additional genetic gain from genomic selection at
the lowest cost. This is especially true for beef cattle
and sheep breeding programs that do not have a distinct
nucleus tier. We have shown that genomic predictions
are more accurate when animals are related to the refer-
ence data set; however substantial baseline accuracy can
be achieved for all animals in the population. To achieve
this, the reference data set will need to include a large
number of animals that cover the genetic diversity of
the given population (breed). It may be important to
include animals that are expected to contribute more to
the future gene pool in that breed but these contribu-
tions need to be balanced by contributions to genetic
diversity [8].
The optimal size of the reference data set will depend

on Ne of the given population; populations with higher
Ne may need a larger reference data set so that suitable
baseline accuracies can be achieved. If the baseline accu-
racy is low (large Ne and small reference data set size)
the contribution of relatives’ information will be larger,
however this information from relatives is only limited
to closely related individuals and will not last over many
generations.

Conclusions
The relationship between animals in the reference and
test data sets affects the accuracy of predicting breeding
values using gBLUP. When there is a close relationship
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between the animals in the reference and test data sets,
gBLUP can estimate breeding values with a high accu-
racy. When there is only a distant relationship between
the animals in test and reference data sets, gBLUP can
still estimate a breeding value with some accuracy. This
baseline accuracy depends on the effective population
size and the size of the reference data set, and should be
carefully considered when designing a reference data set
for a breeding program.

Appendix 1: Accuracy estimated using the PEV of
the mixed model equations weighted by genomic
relationships
Firstly the variance of a is defined as:

var(a) = σ2a .Gii

where σ 2
a is the additive genetic variance and Gii is

the diagonal of the numerator relationship matrix (or
genomic relationship matrix). The prediction error var-
iance is defined as:

PEV = var (a − â) = σ 2
e Cii

where σ 2
e is the residual variance and Cii is the diago-

nal of the inverse of the coefficient matrix, furthermore:
var (a − â) = var (a) − var (̂a) where var( â ) is the

estimate of the variance of a and is equal to:

var (̂a) = var (a) − (
1 − r2

)
var (a)

Therefore the regression coefficient (r2) is equal to:

r2 = var(a) - var (a − â) /var (a)

recall: var(a) = σ2aGii and

PEV = var (a − â) = σ 2
e Cii

Therefore:

r2 = σ2a .Gii − VeCii/(σ2aGii)

= 1 - VeCii/(σ2aGii)

Finally the accuracy (r) of the estimated breeding
value is then given by:

r =
√
1 − σ 2

e Cii/(σ 2
a .Gii)
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