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Prediction of a deletion copy number variant by
a dense SNP panel
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Abstract

Background: A newly recognized type of genetic variation, Copy Number Variation (CNV), is detected in
mammalian genomes, e.g. the cattle genome. This form of variation can potentially cause phenotypic variation.
Our objective was to determine whether dense SNP (single nucleotide polymorphisms) panels can capture the
genetic variation due to a simple bi-allelic CNV, with the prospect of including the effect of such structural
variations into genomic predictions.

Methods: A deletion type CNV on bovine chromosome 6 was predicted from its neighboring SNP with a multiple
regression model. Our dataset consisted of CNV genotypes of 1,682 cows, along with 100 surrounding SNP
genotypes. A prediction model was fitted considering 10 to 100 surrounding SNP and the accuracy obtained
directly from the model was confirmed by cross-validation.

Results and conclusions: The accuracy of prediction increased with an increasing number of SNP in the model
and the predicted accuracies were similar to those obtained by cross-validation. A substantial increase in accuracy
was observed when the number of SNP increased from 10 to 50 but thereafter the increase was smaller, reaching
the highest accuracy (0.94) with 100 surrounding SNP. Thus, we conclude that the genotype of a deletion type
CNV and its putative QTL effect can be predicted with a maximum accuracy of 0.94 from surrounding SNP. This
high prediction accuracy suggests that genetic variation due to simple deletion CNV is well captured by dense SNP
panels. Since genomic selection relies on the availability of a dense marker panel with markers in close linkage
disequilibrium to the QTL in order to predict their genetic values, we also discuss opportunities for genomic
selection to predict the effects of CNV by dense SNP panels, when CNV cause variation in quantitative traits.

Background
A recently recognized source of genomic structural varia-
tion called Copy Number Variation (CNV), is gaining
interest in genomic studies. It is defined as a DNA segment
that is 1 or more kb long and is present at a variable copy
number in comparison with a reference genome [1]. CNV
are shown to be functionally active in humans. They are
responsible for phenotypic changes by altering gene
dosage, disturbing coding sequences and perturbing long-
range gene regulation [2]. With the discovery of CNV in
the cattle genome [3-5] and their potential to cause varia-
tion in economically important traits, capturing the effects
of CNV and other complex genotypes on phenotype

becomes an important factor in the prediction of genetic
values.
The aim of this study was to investigate whether a sim-

ple deletion CNV can be predicted from dense SNP geno-
typing data using a multiple regression approach, which, if
successful, implies that genetic variation due to this dele-
tion CNV can be predicted in an automated manner by
dense SNP genotyping. To this end, we report the linkage
disequilibrium (LD) of a bi-allelic deletion type of CNV
(the locus varying in copy number, 2 = normal and 1 =
deletion) with surrounding SNP to determine whether
SNP can predict this simple CNV. A model to predict
CNV from surrounding SNP is developed and its accuracy
is tested by cross-validation. Prediction of CNV with high
accuracy would eliminate the need for explicit detection
and genotyping of simple CNV. Our approach is general
and can be extended to more complex CNV, but
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estimation of the prediction accuracy of more complex
CNV is outside the scope of this paper.

Methods
Genotypic data on SNP and CNV
The SNP and CNV genotypes for dairy cattle were pro-
vided by the Milk Genomics Project conducted at
Wageningen University, The Netherlands. In the project,
2,000 Holstein Friesian cows (belonging to five large sire
families with about 200 daughters and 50 small sire
families with about 20 daughters) were genotyped for
50 000 SNP on the Illumina Infinium platform [6],
using a custom array described by Charlier et al. [7].
The 2,844 SNP genotypes on bovine chromosome 6
with a median interval of 18 kb were used for CNV
detection. Two algorithms, PennCNV (2008 Nov19 ver-
sion) [8] and cnvPartition (v1.2.0, a plug in of Bead stu-
dio version 3; Illumina Inc.) [9] were used with default
settings for the detection of CNV. In total, 476 samples
showed CNV regions with PennCNV and 245 samples
with cnvPartition.
A bi-allelic deletion type CNV was detected on bovine

chromosome 6 around 53 megabases (Mb) by both algo-
rithms and was validated by significant evidence for
Mendelian inheritance in 17 sire families. This common
deletion CNV locus (a CNV region, CNVR [10]) was
found to vary in copy number; two copies (normal) and
one copy (deletion) and spanned 233 kb in the 53 Mb
region. The CNV detection algorithms showed ambiguity
in mapping the breakpoints of this CNV; the same dele-
tions were detected with different boundaries both within
and across families (Figure 1). We used the results from
PennCNV for our study since it showed better compliance
with the test of Mendelian inheritance. The boundaries of
the variant detected in the majority of the animals (163)
were considered to be the true boundaries of the CNV
(53,481,069-53,719,948 bp in terms of map positions on
bovine chromosome 6 on BTAU4 [11]). This CNVR was
considered a validated deletion CNV to test our
hypothesis.
Samples with missing genotypes were excluded from

the analysis. This resulted in a dataset of CNV and SNP
genotypes for 1,682 individuals, of which 263 carried the
deletion. The dataset can be accessed in Additional file 1.

Data analysis
Multiple linear regression analysis was carried out on
the CNV using adjacent flanking SNP markers. Model
(1) was run with different numbers of surrounding SNP
markers (m = 10, 20, 30....100; with an equal number of
markers to the left and right of the CNV):

y = µ1n + Xb + e (1)

where y = n × 1 response vector of CNV genotypes,
for n = 1,682 animals, coded as 1 for deletion and 2 for
normal copy number; μ = overall mean; 1n = vector of
n ones; X = n × m matrix, with genotypes of n = 1,682
animals for m SNP markers; b = m × 1 vector of SNP
effects on copy number; and e = vector of random resi-
duals. The SNP carrying the “A” allele were encoded as
the number of “A” alleles (AA = 2, AT/AC/AG = 1 and
TT/CC/GG = 0). For one CG SNP, the number of “C”
alleles was used for coding (CC = 2, CG = 1 and GG =
0). Model (1) was fitted using the SAS® software [12].
The SNP were selected so that half of them were
upstream and half were downstream from the CNV,
starting adjacent to the CNV with 10 SNP and then
further away up to 50 SNP on each side. Distances of
SNP from the CNV borders are shown in Figure 2. The
fraction of variation in copy number explained by the
model was quantified by the coefficient of determination
(R2) and the model accuracy (AM) was calculated as the
square root of R2.

Cross-validation
Ten-fold cross-validation was carried out to test the pre-
dictive accuracy of the model [13]. The data was randomly
split into ten non-overlapping sample subsets. The data
from nine subsets were used to fit the model with 10, 20,
30....100 SNP. The estimated SNP effects were then used
to predict the copy number in the remaining 10th sub-set,
which was excluded from the model fitting. This proce-
dure was repeated for each of the 10 subsets, so that a pre-
diction for every record was obtained once whilst it was
excluded from the estimation model. The correlation
between the predicted and observed copy number was cal-
culated for each sample as a measure of accuracy (accu-
racy estimated by cross-validation; ACV) and was used to
obtain the prediction accuracies with different numbers of
SNP fitted in the model.

Linkage disequilibrium
The linkage disequilibrium (LD) plot for the SNP and
CNV was generated using HaploView (http://www.
broadinstitute.org/haploview/haploview) [14]. The CNV
was encoded as an SNP, as described elsewhere [15];
AT for deletion and TT for no deletion in the input file.
The LD plot was also used to identify a “disconnected
SNP” (dSNP, S173; see next section) that fell outside the
tightly linked haplotype blocks, as defined by
HaploView.

Prediction of dSNP
To compare the prediction accuracy of the CNV by sur-
rounding SNP with that of a certain single SNP, an SNP
was predicted using the same model. Since the majority
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of the SNP were in tight LD blocks with r2 ~ 1, SNP
genotypes for the dSNP S173 were included in the “y“
vector and models (1) were fitted in SAS®. The R2 of
the dSNP prediction models were compared with those
of the CNV prediction models.

Results
Linkage disequilibrium plot
HaploView was used to assess the LD pattern (Figure 3a
and 3b) of the CNV with nearby SNP. Many SNP adja-
cent to the CNV region showed a D’ of 1. However, no
single SNP appeared to tag the CNV perfectly (r2 = 1).
Among the SNP with a D’ value of 1, S135 (115 kb down-
stream the CNV boundary) showed the highest r2 value
of 0.13. The majority of the SNP showed tight LD with
adjacent SNP (r2 = D’ = 1) (red triangles in Figure 3a).

Prediction of the CNV
The CNV and SNP data on 1,682 animals were analyzed
using model (1). This model used 10 to 100 SNP flanking

the CNV. The fraction of the variance explained by the
model (R2) increased with the number of SNP in the
model (Figure 4). A low R2 of 0.107 was obtained for the
model with ten SNP but this increased gradually to 0.609
for a model with 40 SNP. A large increase in R2 (0.27)
was observed when the number of included SNP
increased from 40 to 50. With 50 SNP, the model
explained 88.1% of the variation in copy number.
Including even more SNP resulted in little increase in

the value of R2, which reached a maximum value of 0.914
with 100 SNP. Since the curve was very flat between 50
and 100 SNP, we expect limited further increases in R2 by
extending the SNP panel beyond 100 SNP.

Cross-validation
Cross-validation was carried out to assess the perfor-
mance of the model by predicting CNV genotypes for
samples that were excluded when fitting the model. The
prediction accuracy estimated by cross-validation (ACV)
was plotted against the model accuracy (AM), i.e. the
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Figure 1 Deletion variants detected in the 53 Mb region according to PennCNV. The red bars show the SNP boundaries of the deletion
with their position (bp); the number of animals detected with the variants is given at the top of the red bars and the vertical lines indicate the
position of the SNP relative to the map of BTAU4 [11].
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accuracy of the predicted results by the model in Figure 5.
The ACV closely followed the accuracy predicted by the
model, AM, for different numbers of SNP and increased
with an increasing number of SNP but was slightly lower
compared to the accuracy predicted by the model. It
reached a value of 0.93 with a 50 SNP model. Increasing
the number of SNP in the model further, showed very lit-
tle increase in ACV, which reached a maximum value of
0.94 for 100 SNP. Figure 5 also shows that the small
increase in prediction accuracy, when increasing from 50
to 100 SNP, was even smaller for ACV than for AM.

Prediction of dSNP
A disconnected SNP (dSNP, S173) that fell just between
two tightly linked haplotype blocks (Figure 6) was com-
pared to the CNV for its predictability. The SNP was pre-
dicted from 10 to 100 flanking SNP. The R2 for the dSNP
prediction model with different numbers of SNP is com-
pared to that of the CNV in Figure 4. The models with 40
or less markers performed better for dSNP prediction
than for CNV prediction. With 40 markers in the model,
an R2 of 0.81 was obtained for dSNP prediction compared
to that of 0.61 for the CNV prediction model. However,

with 50 SNP, a higher R2 was obtained for the CNV pre-
diction model (0.88) than for the dSNP prediction model
(0.84). Thereafter, the R2 for the dSNP prediction model
closely followed the CNV prediction model, reaching a
value of 0.92 for 100 SNP within 1,000 kb on each side of
the CNV (Figure 2).

Discussion
In this study, we have investigated the prediction of a
CNV from surrounding SNP typed on a custom Illumina
Infinium 50 k BeadChip, using a multiple regression
model. Although the investigated CNV was discovered
using specific CNV detection algorithms, we used it as a
model for other, currently unknown CNV. We have
assessed the accuracy with which an unknown CNV gen-
otype can be predicted by predicting a common deletion
CNV genotype using the surrounding SNP. The investi-
gated CNV was a rather common large deletion CNV of
233 kb. We did not find any SNP in perfect LD (r2 = 1),
contrary to previous studies that reported strong LD for
deletions with nearby SNP [15,16]. However, it was possi-
ble to predict the CNV with a high accuracy (0.94) by
combining information from 50 or more flanking SNP in
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a multiple regression model. This accuracy was con-
firmed by cross-validation. If this result proves to be gen-
eral, it can be concluded that the presence of a bi-allelic
deletion type CNV and, in case it has causative effects, its

related phenotypic effects, may be estimated by dense
SNP genotyping with a high accuracy.
The in silico CNV detection algorithms used in the

present study showed ambiguity in mapping the

a

b

Figure 3 a. Linkage disequilibrium plot (from HaploView) based on D’ for the SNP surrounding the CNV. Key: when LOD < 2, D’ < 1 is
white and D’ = 1 is blue; when LOD > 2, D’ < 1 is given in shades of pink/red and D’ = 1 is given in bright red; the pair-wise D’ values are
given in the boxes. b. Linkage disequilibrium plot (from HaploView) based on r2 for the SNP surrounding the CNV. Key: r2 = 0 is given in white,
0 < r2 < 1 is given in shades of grey and r2 = 1 is given in black.
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breakpoints (Figure 1). Seventy-seven of the CNV (out of
263 samples harboring a CNV in the 53 Mb region)
started at position 53,535,915 on chromosome 6 (~54 kb
downstream relative to the most common variant) and
14 CNV started at position 53,605,836, almost ~124 kb
downstream (Figure 1). Thus, it is possible that there are
multiple distinct CNV in this region. Similarly, there is
an alternative CNV endpoint 5 kb upstream of the com-
mon CNV endpoint. This uncertainty in breakpoints
might explain why we failed to find a SNP in perfect LD
with the deletion region, although the CNV genotype
calls seemed accurate since they showed Mendelian
inheritance. Confirming the nature of the deletion and
fine-mapping the CNV boundaries may help to detect
better tag SNP for this region.
Perhaps a more likely reason for the relatively low LD

between the CNVR and its surrounding SNP is the rela-
tively large distance between the CNVR and the closest
SNP, which may be general for CNV due to the often low
SNP coverage in CNV regions (as shown in Figure 2).
The first SNP downstream from the CNV was 39 kb
away, whereas upstream, the first SNP was 145 kb away,
which is far greater than the median SNP to SNP

distance of 18 kb. Studies [15,16] that report SNP in
strong LD with CNV use a denser SNP map and obtain
perfect LD for nearby SNP. Thus, with the next genera-
tion SNP chips (containing ~700 k SNP), we expect to
predict the CNV more accurately with fewer SNP. How-
ever, it is difficult to reliably detect SNP in CNV regions
because of the genomic complexity that is generally
found in the deleted or duplicated regions and the result-
ing low reliability of the reference sequence.
The accuracy of the model, as estimated by cross-vali-

dation, was high. The cross-validation accuracies were
only slightly lower than those predicted by the statistical
model. Thus, given a sufficiently big training data set, the
model proved to be reliable for future predictions of dele-
tion type CNV from SNP data.
A small increase in accuracy was observed for CNV pre-

diction, when increasing from 50 to 100 SNP (Figure 5).
The increase was much smaller for cross-validation accu-
racy than predicted by the model. Thus, the increase in R2

(and AM) when increasing from 50 to 100 SNP is to a
large extent due to over-fitting of the data by the model,
and hardly results in a real increase in R2 beyond 50 SNP.
This suggests that the LD might be decreasing at distances
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>500 kb since the 50 SNP used in the model were within
500 kb from the CNV (Figure 2). This is consistent with a
previous study that reported LD in eight breeds of cattle
[17] and showed that the LD between pair-wise loci drops
to background LD level at a distance of 500 kb.
We compared the predictability of the CNV with that of

a ‘disconnected’ SNP (dSNP), S173. When using informa-
tion from 40 or less flanking SNP, the SNP was predicted
more accurately than the CNV. When including more
SNP, the two models showed a similar R2 pattern. Hence,
it may be concluded that the predictability of a simple bi-
allelic CNV follows the predictability of a dSNP when
information from many (>50) SNP is used. This and the
fact that the accuracies of the predictions of the CNV and
S173 are almost identical with >50 SNP, suggest that both
the CNV and dSNP may be on an extended haplotype that
is predicted by the SNP with an accuracy of 0.94.
In this study, we have shown that a simple deletion CNV

can be predicted with a high accuracy from neighboring
SNP using a multiple regression approach. This suggests
that dense SNP panels can capture the effects of this type
of CNV. However, our study was limited to one large

common deletion type CNV that was detected using CNV
detection algorithms from SNP data, and a 50 K SNP chip
that was solely targeted at SNP genotyping and generally
has a poor coverage of CNV regions (as shown in Figure
2). Thus, although our approach is general, further studies
are needed to investigate whether similar accuracies can
be attained for other, more complex types of CNV.
Genomic selection relies on dense markers that jointly

are in sufficiently high LD with (unknown) QTL, so that
the effect of the QTL is accurately predicted by the sum of
the SNP effects. This situation resembles very much our
prediction of the CNV, in cases where the CNV causes
quantitative trait genetic variation, and its position is not
known. With a CNV of unknown position, we could not
have selected the 100 nearest SNP, and we would have
had to rely on all ~50 000 genome-wide markers to pre-
dict the CNV. Thus, in this case, the number of SNP
effects would greatly exceed the number of records, which
is known as the k>>n problem in statistics. Genomic selec-
tion deals with this problem by using informative prior
distributions for the SNP effects. The accuracy of 0.94
found here is thus an upper bound for the accuracy of
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prediction of breeding values for a quantitative trait by the
genomic selection approach, when the quantitative trait
that is affected by the current CNV, possibly along with
other CNV can be predicted with similar accuracy, and
environmental effects. The prediction accuracy of 0.94 is
an upper bound, because the k>>n problem may not be
completely resolved by the prior distribution of SNP
effects and the environmental effects reduce the accuracy
of the estimates of the SNP effects relative to those in our
study. Both these problems can be overcome by increasing
the number of records, in which case the accuracy of
genomic selection will approach this upper bound. A simi-
lar maximum accuracy of genomic selection was suggested
by the result of Daetwyler [18]. With recent studies pro-
viding further evidence that CNV are associated with com-
plex diseases in humans, designing genotyping chips with
CNV probes may be important to increase the accuracy
from the current ~90% towards 100% and thus to capture
all genetic variation.

Additional material

Additional file 1: Genotypic data on SNP and CNV. The SNPs and
CNV genotypes are given in the map order. CNV genotypes (with the
header CNV) are coded as AT for deletion and AA for no deletion.
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