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Abstract

Background: Genomic selection is an appealing method to select purebreds for crossbred performance. In the case
of crossbred records, single nucleotide polymorphism (SNP) effects can be estimated using an additive model or a
breed-specific allele model. In most studies, additive gene action is assumed. However, dominance is the likely
genetic basis of heterosis. Advantages of incorporating dominance in genomic selection were investigated in a
two-way crossbreeding program for a trait with different magnitudes of dominance. Training was carried out only
once in the simulation.

Results: When the dominance variance and heterosis were large and overdominance was present, a dominance
model including both additive and dominance SNP effects gave substantially greater cumulative response to
selection than the additive model. Extra response was the result of an increase in heterosis but at a cost of reduced
purebred performance. When the dominance variance and heterosis were realistic but with overdominance, the
advantage of the dominance model decreased but was still significant. When overdominance was absent, the
dominance model was slightly favored over the additive model, but the difference in response between the models
increased as the number of quantitative trait loci increased. This reveals the importance of exploiting dominance even
in the absence of overdominance. When there was no dominance, response to selection for the dominance model
was as high as for the additive model, indicating robustness of the dominance model. The breed-specific allele model
was inferior to the dominance model in all cases and to the additive model except when the dominance variance and
heterosis were large and with overdominance. However, the advantage of the dominance model over the
breed-specific allele model may decrease as differences in linkage disequilibrium between the breeds increase.
Retraining is expected to reduce the advantage of the dominance model over the alternatives, because in general, the
advantage becomes important only after five or six generations post-training.

Conclusion: Under dominance and without retraining, genomic selection based on the dominance model is
superior to the additive model and the breed-specific allele model to maximize crossbred performance through
purebred selection.

Background
Numerous studies have shown encouraging results of
applying genomic selection (GS) in purebred popula-
tions [1-6]. However, except for dairy cattle, most animals
used in livestock production systems are crossbreds, with
advantages of heterosis and breed complementarity. For
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such systems, the breeding goal in purebreds should be to
optimize the performance of crossbred descendents.
GS has advantages in selection for crossbred perfor-

mance over conventional methods [7-9] as reported in [9].
In particular, training on crossbred data for GS accounts
for genetic differences between purebred and crossbred
animals and genotype by environment effects. Different
GS models have been proposed and used to select pure-
breds for crossbred performance [8-11]. In most studies,
additive gene action or perfect knowledge of gene sub-
stitution effects or both have been assumed. It has been
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argued that dominance is the likely genetic basis of het-
erosis [12,13], therefore explicitly including dominance in
the GS model may be beneficial for selection of purebreds
for crossbred performance.
Allele substitution effects are a function of additive and

dominance effects, and of allele frequencies [12]. In the
case of crossbred records, Dekkers [8] proposed a model
that fits breed-specific allele substitution effects (BSAM),
where the substitution effects at the QTL (quantitative
trait loci) for paternal and maternal alleles would be dif-
ferent if the parental breeds differ in allele frequencies at
the QTL. It has been shown that, when additive and dom-
inance effects of the QTL are known without error, BSAM
can give greater response to selection than the usual addi-
tive model that fits a common substitution effect for each
QTL [10,11]. When the QTL genotype is not observed
and marker genotypes are fitted in the model, linkage dis-
equilibrium (LD) between SNPs and the QTL may not be
consistent between the parental breeds. This difference in
LD will also contribute to differences in allele substitution
effects between breeds. When SNP effects must be esti-
mated, the advantage of fitting BSAM over the additiveGS
model was not always observed under additive inheritance
[9], which suggests that differences in LD between breeds
may not be as important as the presence of dominant gene
action in practice.
Dekkers [14] showed that, to maximize performance in

the first generation of crossbreds, the allele substitution
effect for an identified QTL must be derived based on
allele frequencies in the selected mates. However, allele
frequencies of selected mates cannot be observed prior to
computation of the substitution effects that are needed for
selection. Thus, Dekkers [14] proposed an iterative algo-
rithm to compute substitution effects based on selected
mates.
A model that explicitly includes dominance effects

(the dominance model) provides estimates of both addi-
tive and dominance effects and therefore enables the
computation of allele substitution effects using appro-
priate allele frequencies. Once estimates of SNP effects
are obtained from training, they can be successively
applied over generations with updated allele frequen-
cies to develop prediction equations specific to that
generation.
The BSAM model gives allele substitution effects for

each parental breed that depend on allele frequencies
among individuals from the other breed that were used to
produce the training population. It is not straightforward
to apply the iterative algorithm of Dekkers to BSAM. In
addition, the substitution effects from BSAM cannot be
used to recompute the appropriate substitution effects in
the subsequent generations, as allele frequencies change
due to selection. Furthermore, breed origin of SNP alle-
les must be known or inferred for the BSAMmodel [8,10],

but such knowledge is not needed for the dominance
model.
The primary objective of this study was to assess the

performance of the dominance model in comparison
with the additive model or BSAM for GS on purebreds
for crossbred performance. Substitution effects from the
dominance model were computed based on allele fre-
quencies of unselected mates. Ibánẽz-Escriche et al. [9]
compared BSAM to the additive model under additive
gene action alone and Kinghorn et al. [10,11] made this
comparison with dominant gene action when QTL effects
were assumed known. Thus, a secondary objective of this
study was to compare BSAM to the additive model under
dominance when SNP effects must be estimated. Model
performance was evaluated by computer simulation based
on response to 20 generations of selection in a two-way
crossbreeding program.

Methods
Simulations
Comparisons between the dominance, BSAM and addi-
tive models were made for four scenarios of gene action.
To clearly detect an advantage of including dominance in
the model, the dominance variance VD and heterosis H
were chosen to be large in scenario 1, allowing for over-
dominance. In scenarios 2 and 3,VD andH were restricted
to more realistic values with (scenario 2) or without (sce-
nario 3) overdominance. In scenario 4, VD was reduced to
zero to examine any disadvantage of using the dominance
model when gene action is purely additive. Changes to VD
and H were achieved by changing the size and propor-
tion of beneficial dominance effects. Other parameters,
including locus positions and LD between loci and allele
frequencies were held constant between the four scenar-
ios. A total of 16 random simulations were carried out for
each scenario.

Genome and trait phenotypes
A genome was simulated with either one or ten chromo-
somes. Each chromosome was one Morgan and consisted
of 100 randomly distributed QTL and 1000 SNP markers
that were almost evenly spaced. All loci were biallelic with
starting allele frequencies of 0.5 and a reversible mutation
rate of 2.5 × 10−5. A binomial map function was used to
model recombination with interference on a chromosome
[15]. A base population of 500 unrelated individuals was
randomly mated for 1000 discrete generations to create
LD between loci in the founders of different breeds.
The additive effect a of a QTL is defined as half the dif-

ference in genotypic value between alternate homozygotes
and the dominance effect d as the deviation of the value
of the heterozygote from the mean of the two homozy-
gotes [12]. Bennewitz and Meuwissen [16] evaluated QTL
mapping results from many studies in pigs for meat
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quality and carcass traits and concluded that an exponen-
tial distribution with rate parameter 5.81 is an adequate
“generating mechanism” for the absolute values of the
additive effects of QTL. That distribution was used here
to generate the unsigned value of the additive effect for
each QTL, and a positive or negative sign was assigned
to each additive effect with equal probability. Although
the relationship between additive and dominance effects
of QTL has been studied [16-18], a consistent relation-
ship has not been observed. Thus, in scenarios 1 and 2
with overdominance, we assumed, for simplicity, that the
dominance effects were independent of additive effects.
The absolute values of dominance effects were indepen-
dently sampled from the same exponential distribution as
was used for the additive effects. This was considered rea-
sonable because the exponential distribution has a high
probability for the occurrence of small effects, which is
also plausible for dominance effects. In scenario 3 with no
overdominance, the dominance effect of a QTL was sam-
pled from a uniform distribution that ranged from zero
to the absolute value of the QTL’s additive effect. In order
for the trait to manifest positive heterosis, only 30% of the
sampled dominance effects were negative in scenarios 1
and 2, and this fraction was further reduced to 20% in sce-
nario 3 for the sake of no overdominance. The resulting
distribution of dominance coefficients, defined as the ratio
of the dominance effect over the absolute value of additive
effect, was similar to what has been observed for real data
[16].
The QTL effects were scaled (as described in Appendix

A) such that the relative contributions of the additive and
dominance effects to the genetic variability of the trait
were 2:1, 4:1 and 1:0 in the scenarios where VD was set
to be large, realistic or null, respectively. After scaling,
40-45% of QTL showed partial dominance and 30-35%
overdominance when overdominance was present. Trait
phenotypes were simulated by adding a standard normal
residual effect to the genotypic value of each animal. The
variance of the residual effects was chosen such that broad
sense heritability h2bs of the trait was 0.5 in the founders.
As a result, narrow sense heritability h2ns was 0.33 for the
scenario with large VD, 0.4 with realistic VD, and 0.5 with
VD = 0.

Breed formation
Breeds A and B were simulated by randomly sampling
100 animals from the founders in generation -55 and ran-
dommating for 54 additional generations to mimic recent
breed formation (Figure 1). In the founder generation, 100
QTL and 1000 SNPs were randomly chosen from those
with a minor allele frequency greater than 0.1. To guar-
antee that the number of such loci to choose from would
be sufficient, five times as many loci were simulated in the
base population. This procedure ensured that most QTL

chosen to define the trait and SNPs chosen for inclusion
in the analysis segregated in both breeds.
In generation -1, the genetic disparity between breeds

was due to differences in LD and in allele frequencies.
Averaged over simulations, the heterozygosity of each
breed was about 0.3, and the mean difference in allele
frequencies between breeds was about 0.3. In each simu-
lation, while the same set of QTL characterized the trait,
the contribution of QTL effects to the phenotypic vari-
ability differed between breeds due to disparities in allele
frequencies. Between simulations, the observed values
of variance components in a given breed varied due to
genetic drift during the 54 generations of random mating
after breed separation.
In livestock, dominance can explain up to about 10% of

phenotypic variation [19] and heterosis from a breed cross
can be up to 10% [20]. In scenario 1, where VD was large,
VD was on average 16.7% in the pure breeds and H was
on average 31%. Under more realistic settings, VD = 10%
and H = 9.1% in scenario 2, where overdominance was
allowed, and VD = 4.5% and H = 8.4% in scenario 3,
where overdominance was not allowed.When the genome
was extended from one to ten chromosomes, these values
were kept about the same by reducing the proportion of
beneficial dominance effects.

Crossbreeding program
A two-way crossbreeding program with 20 generations of
selection was simulated, as illustrated in Figure 1. The goal
was to improve crossbred performance through selection
in both parental breeds, starting from 1000 animals of sire
breed (A) and 1000 animals of dam breed (B) in generation
0. The selection criteria was the rank of the individual’s
genomic estimated breeding values (GEBV). The SNP
effects for the prediction of GEBV were estimated only
once, using 1000 crossbred AB0 animals in generation
0. These estimates of SNP effects were then repeatedly
applied to predict GEBV in the following 20 generations
of selection. In generation 1 through 20, 600 animals
were selected from 1000 candidates in each parental breed
based on their GEBV, of which the top 100 were used as
males and the other 500 as females. As described in detail
later, with the dominance model, GEBV were based on the
breed-specific allele substitution effects that were recom-
puted for each generation, using allele frequencies in the
opposite breed in that generation. The selected animals
were randomly mated within each breed to produce 1000
purebred replacement animals for the next generation.
Meanwhile, the 100 selected males of breed A were also
randomly mated to the 500 selected females of breed B to
produce 1000 crossbred progeny. The phenotypic mean
of crossbreds was computed in each generation of selec-
tion (AB1 – AB20) to evaluate the cumulative response
to selection.
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Figure 1 Schematic representation of the simulated population history and the two-way crossbreeding program. The crossbreeding
program consisted of 20 generations of purebred selection for crossbred performance; crossbred AB0 is the training population; AM and BM
represent the selected breed A and B males, AF and BF the selected breed A and B females; lines with arrows denote reproduction, while lines
without arrows denote selection.

Starting from the same set of purebred selection can-
didates in generation 0, the subsequent 20 generations of
selection were repeated 100 times to increase power to
detect differences between the GS models in cumulative
response. A mixed linear model (see Appendix B) was
used to test for differences between GS models by gener-
ation 20. Note that the 16 random simulations each with
100 repetitions account for differences in purebreds due to
genetic drift. In sum, the collected data consisted of 1600
observations in each generation of selection.
The cumulative response in the ith generation of selec-

tion, where i = 1, ..., 20, was computed as

Ri = μi − μ0
σ0

,

where μi is the phenotypic mean of crossbreds in gen-
eration i and σ0 is the phenotypic standard deviation of
crossbreds in generation 0.

Statistical models
Additivemodel
The following mixed linear model was used to estimate
SNP effects assuming additive gene action:

yi = μ +
k∑

j=1
Xijαj + ei,

where yi is the phenotype of animal i, μ is the overall
mean, Xij is the copy number of a given allele of SNP j
centered by the mean, αj is the allele substitution effect
for SNP j, and ei is the residual effect for animal i. The
prior specification for model parameters and the sampling
strategy followed the BayesCπ method proposed by [6].
In order to concentrate the signal and reduce noise, only a
proportion of SNPs was assumed to have a non-null effect.
Conditional on σ 2

α , the variance of random substitution
effects for all SNPs, αj had a mixture prior of a normal
distribution and a point mass at zero:

αj|σ 2
α =

{
0 with probability π

∼ N(0, σ 2
α ) with probability 1 − π . (1)

The proportion π of SNPs that have null effects on
the trait was considered unknown, with a uniform prior
between 0 and 1. A scaled inverse Chi-square distribution
with degrees of freedom να = 4 and scale parameter S2α
was specified as a prior for σ 2

α ∼ ναS2αχ−2
να

. The value of S2α
was chosen based on the following relationship between
the expectation of a scaled inverse Chi-square variable and
its scale parameter:

E(σ 2) = S2ν
ν − 2

, (2)

and E(σ 2
α ) was obtained following [21] such that E(σ 2

α ) =
VA

k(1−π0)E(2pq) , where k is the total number of SNPs, π0 is
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the chosen probability that a SNP has no effect prior to the
analysis, p = 1 − q is the allele frequency, and VA is the
additive genetic variance for the trait that is explained by
all SNPs. The residual ei had a normal prior with variance
also following a scaled inverse Chi-square distribution:
ei|σ 2

e ∼ N(0, σ 2
e ) and σ 2

e ∼ νeS2eχ−2
νe , where νe = 4. The

value of S2e was obtained from (2), with E(σ 2
e ) = VE , where

VE is the residual variance that cannot be explained by the
SNPs. True values were given to VA and VE in this study.

Dominancemodel
The dominance model, as shown below, simultaneously
fits additive and dominance effects of SNPs:

yi = μ +
k∑

j=1
(Xijaj + Wijdj) + ei, (3)

where yi,μ,Xij are as defined in the additive model, Wij
is the indicator variable for the heterozygous genotype
of SNP j that is centered by its mean, aj is the additive
effect, and dj the dominance effect for SNP j, and ej is
the residual. Given the assumption that epistasis is absent,
the residual term in the dominance model only contains
non-genetic effects, while that of the additive model also
includes dominance deviations. The model specification
for the dominance model is similar to that of the addi-
tive model. Conditional on πa (the probability that aj is
zero) and σ 2

a (the variance of aj when it is nonzero), the
prior for aj is a mixture of normals, as given in the addi-
tive model (1). Similarly, the prior for dj is also a mixture
of normals, given πd and σ 2

d , with corresponding defini-
tions. However, in order to account for the directionality
of dominance, the normal component of the prior for dj
has an unknown nonzero mean μd:

dj|μd, σ 2
d =

{
0 with probability πd
∼ N(μd , σ 2

d ) with probability 1 − πd.
(4)

For convenience, the prior of μd was assumed to depend
on the variance:

μd|σ 2
d ∼ N(η, σ 2

d /φ),

where η is our prior belief about μd and φ is the “prior
sample size”, which expresses the strength of the prior
belief in terms of σ 2

d . Here, φ was set to 10, a small number
relative to 100 QTL, to allow the data to “dominate” the
posterior distribution of μd. The value of η was chosen as
described below.
Let the allele frequency at SNP j be pSj in sires and pDj in

dams in generation -1. Assuming Hardy-Weinberg equi-
librium in the parental populations, heterosis (H) in the
training crossbred AB0 is a function of the dominance

effects and the difference in allele frequencies in the
parental populations (	 = pSj − pDj ) [12]:

H =
∑

j
dj	2.

Assuming independence between dominance effects and
allele frequencies and ignoring selection, this can be writ-
ten as

H = k(1 − πd,0)E(d)E(	2),

where πd,0 is a chosen value for the proportion of SNPs
that have nonzero dominance effects. Assuming that each
QTL is associated with at least one SNP, πd,0 should be
at most 0.9, as 100 QTL and 1000 SNPs were simulated.
Rearranging gives

η = E(d) = H
k(1 − πd,0)E(	2)

.

The variance components σ 2
a and σ 2

d were assumed to
have independent scaled inverse Chi-square distributions.
As shown in (2), specification of the hyper parameters S2a
and S2d requires knowing E(σ 2

a ) and E(σ 2
d ). The following

describes how E(σ 2
a ) or E(σ 2

d ) were computed based on
the known quantities VA and VD.
Given independence between SNPs holds and in the

absence of selection [12]:

VD =
∑

j
(2pjqjdj)2. (5)

Assuming independence between effects and allele fre-
quencies, this can be written as

VD = k(1 − πd,0)E[ (2pq)2] E(d2)

= k(1 − πd,0)E[ (2pq)2] {(1 + 1/φ)σ 2
d+[ E(d)]2 }.

Rearranging and replacing E(d) by η gives

σ 2
d = (

VD
k(1 − πd,0)E[ (2pq)2]

− η2)/(1 + 1/φ). (6)

Also [12]:

VA =
∑

j
(2pjqjα2

j ). (7)

Under the same assumptions as made in (5), in addition to
additive effects having mean zero and being independent
of dominance effects, this becomes

VA = k(1 − πa,0)E(2pq)E(α2), (8)

where

E(α2) = E{[ a+ (1 − 2p)d]2 }
= σ 2

a + E[ (q − p)2] (σ 2
d + η2).
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Substituting this in (8) and rearranging gives

σ 2
a = VA

k(1 − πa,0)E(2pq)
−E[ (1− 2p)2] (σ 2

d +η2). (9)

Values for S2a and S2d can now be calculated by substituting
(9) and (6) in (2), respectively.

Breed-specific SNP allele model
As shown in [9] (with a slightly different notation), BSAM
fits SNP allele states in the following model:

yi = μ +
k∑

j=1
(XA

ij α
A
j + XB

ijα
B
j ) + ei, (10)

where XA
ij and XB

ij , with value (0, 1), are the breed-specific
copy numbers of a given allele at SNP j of breed originA or
B that animal i received from its sire or dam, and αA

j and
αB
j are the breed-specific substitution effects for the alleles

of breed origin A and B. The other parameters are defined
as in the additive and dominance models. In BSAM, the
SNP allele effects have breed-specific variances σ 2

αA and
σ 2

αB , and breed-specific parameters παA and παB . The same
prior as used in the additive model is used for σ 2

αA and σ 2
αB .

Inference for model parameters
Markov chain Monte Carlo (MCMC) sampling was used
to draw inferences from the posterior distributions of
parameters. Gibbs sampling was used to sample param-
eters from their full conditional distributions, which are
derived for some key model parameters in Appendix
C. Since the implementation of a Gibbs sampler in the
additive model has been well described by [6], here we
focus on the algorithm for the dominance model. The
decision to include a SNP in the model was separately
sampled for the additive and dominance effects in the
dominance model. Similarly, in BSAM, the decision to
include a SNP in the model was separately sampled
for the sire and dam breed-specific allele substitution
effects.
The analyses were implemented by modifying GenSel

[22] to allow dominance and allele specific effects. The
Markov chain used for inference consisted of 11 000 sam-
ples, with the first 1000 discarded as a burn-in. Longer
chains did not improve prediction accuracy. Parameters
were estimated from the mean of the resulting 10 000
posterior samples.

True and genomic estimated breeding values
For animal i from breed r, the true breeding value is given
by

TBVr
i =

m∑
t=1

Titα
r
t , (11)

where Tit is the QTL genotype, coded as 0, 1, or 2, and
αr
t is the true allele substitution effect for QTL t, and the

GEBV is given by

GEBVr
i =

k∑
j=1

Zijα̂
r
j , (12)

where Zij is the marker genotype and α̂r
j is the estimated

allele substitution effect for SNP j. The definition of αr
t for

a purebred animal with a breeding goal of maximizing the
performance of the crossbred descendents is described
next.
Suppose Q1 and Q2 are two alleles at a QTL. Let pS

denote the frequencies of Q2 in the sire breed and pD
denote the frequencies of Q2 in the dam breed. The geno-
typic values (G) of genotypes Q1Q1,Q1Q2 and Q2Q2 are
0, a + d and 2a, respectively. The average effect of a Q1
allele from the sire is defined as the expected genotypic
value of a crossbred offspring that received Q1 from the
sire minus the crossbred population mean. Let S denote
the allele that animal i inherited from its sire. Based on the
above definition,

αS
1 = E(G|S = Q1) − μ

= (a + d)pD − μ.

Similarly, the average effect of aQ2 allele from the sire is
αS
2 = (a+d)(1−pD)+2apD −μ. The difference between

the two average effects gives the substitution effect for the
sire:

αS = αS
2 − αS

1

= a + (1 − 2pD)d.

Similarly, the substitution effect for the dam is αD = a +
(1 − 2pS)d. As a result, the allele substitution effects for a
purebred parent used for crossbreeding are breed-specific
and defined in terms of the allele frequencies in the breed
of the other parent.
In summary, for a purebred r, αr

t in (11) is defined as

αr
t = at + (1 − 2pr

′
t )dt , (13)

where r′ is the breed of the other parent of the cross-
breds. In BSAM, αr

j is directly estimated for prediction of
GEBVr

i in (12), while it is indirectly estimated from the
dominance model by combining the estimates of aj and
dj with the current value of pr′j from breed r′ in (13). The
additive model does not estimate breed-specific substitu-
tion effects. Instead, it estimates a common αj for SNP j,
which uses the allele frequency in the crossbreds used for
training.
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Results
Cumulative response to selection
Figure 2 depicts cumulative responses to GS for the addi-
tive, BSAM and dominance models under the four scenar-
ios, when the genome consisted of one chromosome, 100
QTL and 1000 SNPs. The cumulative response to selec-
tion at generation 20 by the BSAM and the dominance
model compared to the additive model is also given in
Table 1. In scenario 1, where the dominance model was

most favored, the dominance model had a substantially
greater cumulative response than BSAM and the additive
model. By generation 20, the dominance model had addi-
tional responses of 14.9% over BSAM and of 22.4% over
the additive model (P < 10−16). In scenario 2, however,
this advantage was reduced, since the proportion of dom-
inance variance and heterosis decreased from 16.7% and
31% to about 10% for both. As a result, in generation 20,
the advantage of the dominance model was reduced from
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Figure 2 Cumulative response to genomic selection with one chromosome. Cumulative response to GS was computed using the dominance
model, BSAM and the additive model in the four scenarios, when there was one chromosome, 100 QTL and 1000 SNPs; the plotted cumulative
responses are means from 1600 replicates, standardized by the phenotypic standard deviation of crossbreds in generation 0: (a) results from
scenario 1, where VD was large with overdominance, (b) results from scenario 2, where VD was realistic with overdominance, (c) results from
scenario 3, where VD was realistic without overdominance and (d) results from scenario 4, where dominance was absent.
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Table 1 Cumulative response to genomic selection at generation 20 by the BSAM and dominancemodels compared to
the additivemodel

One chromosome Ten chromosomes

Scenario Dominancemodel BSAM Dominancemodel BSAM

1 22.4%* 6.5%* 10.1%* 1.7%

2 8.6%* 0.3% 2.1% -3.1%

3 0.2% -1.7% 1.0% -4.4%

4 -0.1% -5.9%* -0.7% -6.6%*

*Significant difference at the 0.01 level.
Cumulative responses were measured as the mean advantage of the additive model based on 1600 replicates of the simulations; the four scenarios are: (1) large
overdominance, (2) realistic overdominance, (3) realistic incomplete dominance and (4) additive; in all scenarios, there was either one chromosome, 100 QTL and 1000
SNPs or ten chromosomes, 1000 QTL and 10 000 SNPs.

14.9% to 8.9% for BSAM and from 22.4% to 8.6% for the
additive model. However, the differences in the cumula-
tive response at generation 20 between the dominance
model and the BSAM and additive model were still sig-
nificant (P < 10−9). The advantage of BSAM over the
additive model was 6.5% (P = 9 × 10−4) in scenario 1 but
this advantage was not significant (P = 0.84) in scenario 2.
In scenario 3, where overdominance was absent, the pro-
portion of VD was only 5% and the realized heterosis was
8.4%. In this situation, responses to all three GS models
were not significantly different (P > 0.37). In scenario 4,
where there was no dominance, the dominance model still
had a response as high as the additive model, which was
6.2% greater than the response for BSAM in generation 20
(P = 4 × 10−8).
Figure 3 shows the results with ten chromosomes, 1000

QTL and 10 000 SNPs in the genome. In scenario 1, where
the dominance variance and the heterosis were set to be
large, the dominance model had a clear advantage over
BSAM and the additive model (P < 10−10). In the other
scenarios, the dominance model had either the highest
response or a response equal to that of the additive model,
whereas BSAM was inferior to the additive model in most
situations. Even in scenario 1, with large dominance vari-
ance, BSAMhad merely a small non-significant advantage
(P = 0.16) over the additive model. It can be seen from
Table 1 that with more chromosomes and loci, the advan-
tage of the dominance model over the additive model by
generation 20 decreased, except in scenario 3, which had
only incomplete dominance. The performance of BSAM
was negatively affected by the increase in the number of
loci in all scenarios. Although the differences between
models became less significant in the simulations with ten
chromosomes, the ranking of the models was consistent
with those from the simulations with one chromosome.

Changes in breed averages and heterosis in response to
selection
From the definition of heterosis, cumulative response to
selection in crossbred performance (CR) can be written as

CR = BA + H,

where BA denotes the breed average and H the het-
erosis manifested in the crossbreds. Thus, the observed
advantage of the dominance model in some scenarios
may be due to greater response in BA or in H, or in
both. The relative contributions of BA and H to CR were
investigated by partitioning CR into the response in BA
and H for each of the 20 generations, and the differ-
ences between models were shown by plotting the results
of selection on GEBV from one model against those of
another model (Figure 4). Only results from scenario
1 with a single chromosome were used for illustration.
In Figure 4, the advantage of a model in heterosis was
always accompanied by some cost to purebred improve-
ment. The dominance model had a lower response in BA,
especially compared to the additive model. However, this
lower response was more than compensated by increased
heterosis, which resulted in a greater overall CR. By gen-
eration 20, the dominance model had a BA that was 0.35
phenotypic standard deviation (sd) lower than that of the
additive model. This loss, however, was made up by an
advantage of 1.2 phenotypic sd in heterosis, summing up
to a total benefit of 0.95 phenotypic sd in CR for the
dominance over the additive model (Figure 2a). In con-
trast, the advantage of BSAM over the additive model
in heterosis was almost cancelled out by a comparable
loss in response in BA (Figure 4c). This explains why
BSAM had a limited advantage in CR over the additive
model.

Response to selection in heterozygosity
When overdominance is present, crossbred performance
is maximized when alternate alleles are fixed in the two
pure breeds. Then, all crossbreds will be heterozygous for
the over-dominant QTL. Genomic selection had a dra-
matic effect on heterozygosity of over-dominant QTL in
crossbreds (Figure 5). In scenario 1, the dominance and
BSAM models steadily increased heterozygosity over the
20 generations. However, the rate of increase was smaller
for BSAM, for which heterozygosity stabilized to a lower
level than for the dominance model after about 12 gener-
ations of selection because there was no retraining of the
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Dominance
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Broad sense heritability: 0.5
Narrow sense heritability: 0.33
Heterosis: 36%

Broad sense heritability: 0.5
Narrow sense heritability: 0.4
Heterosis: 9.8%

Broad sense heritability: 0.5
Narrow sense heritability: 0.36
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No overdominance
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Figure 3 Cumulative response to genomic selection with ten chromosomes. Cumulative response to GS was computed using the dominance
model, BSAM and the additive model in the four scenarios, when there were ten chromosomes, 1000 QTL and 10 000 SNPs; the plotted cumulative
responses are means from 1600 replicates, standardized by the phenotypic standard deviation of crossbreds in generation 0: (a) results from
scenario 1, where VD was large with overdominance, (b) results from scenario 2, where VD was realistic with overdominance, (c) results from
scenario 3, where VD was realistic without overdominance and (d) results from scenario 4, where dominance was absent.

predictionmodel.With the additivemodel, heterozygosity
increased up to generation 6 and then dropped in subse-
quent generations.
Figure 6 shows the response to selection in allele fre-

quencies of two over-dominant QTL in the two parental
breeds, where the plotted values are the means of 100
replicates of the selection process in a given random
simulation. The advantage of the dominance model over

the additive model had two components. First, the rate
of fixation of alternate alleles was faster with the domi-
nance model. Second, the same allele wasmore often fixed
in both parental breeds with the additive model, which
is undesirable for over-dominant QTL. The greater effi-
ciency of the dominancemodel in fixing alternate alleles in
the two breeds at over-dominant QTL explains the greater
heterosis in Figure 4a.
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Figure 4 Cumulative response for breed average and heterosis in crossbreds. Cumulative response for breed average (red crosses) and
heterosis in crossbreds (blue dots) was computed from scenario 1, with large VD and allowing overdominance, when there was one chromosome,
100 QTL and 1000 SNPs; the plotted cumulative responses are means from 1600 replicates, standardized by the phenotypic standard deviation of
crossbreds in generation 0: (a) cumulative response using the dominance model (y-axis) plotted against response using the additive model (x-axis),
(b) cumulative response using the dominance model against response using BSAM and (c) cumulative response using BSAM against the additive
model; the broken line is y=x.

Discussion
Including dominance in addition to additive effects in the
model was advantageous for response to selection when
dominant gene action was present. Even when all gene
action was purely additive, using the dominance model
did not show a negative effect. However, an advantage
of BSAM was observed only when dominance variance
and heterosis were large, which confirms our hypothe-
sis that the superiority of BSAM over the additive model

may be primarily due to dominance effects, rather than
differences in LD between the parental breeds.

Comparison between the dominancemodel and the
additivemodel
It has been shown [14] that for a two-way cross and
ignoring selection, the allele substitution effects for QTL
or markers in one parental breed depend on the allele
frequencies in the other parental breed. Thus, in the
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Figure 5 Changes in heterozygosity for over-dominant QTL in crossbreds over generations. The plotted values are changes in heterozygosity
for over-dominant QTL in crossbreds over generations of selection, under the dominance model, BSAM and the additive model, in scenario 1, with
one chromosome and large dominance, averaged over 1600 replicates.
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Figure 6 Changes in allele frequencies of two over-dominant QTL in the parental breeds over generations. The plotted values are changes
in allele frequencies of two over-dominant QTL with major dominance effects in the sire and dam breeds over generations of selection, under the
additive model and the dominance model, in scenario 1, with one chromosome and large dominance; results are means from 100 replicates in a
given random simulation: (a) shows alternate alleles approaching fixation in the sire and dam breeds more rapidly with the dominance than the
additive model and (b) shows the same allele approaching fixation in both parental breeds with the additive model, in contrast to the dominance
model.

computation of substitution effects, failure to use the
appropriate allele frequencies may result in a loss of
response to selection. Dekkers [23] showed that, with the
availability of only purebred data, selection within a breed
using QTL allele substitution effects that are based on
the allele frequencies from the opposite breed gave sub-
stantially greater response to selection than using allele
frequencies from the same breed.
In the additive model, a single substitution effect was

estimated for each SNP, assuming it is the same for both
parental breeds. Selection on GEBV derived using such
allele substitution effects is expected to fix the favorable
allele in both breeds (Figure 6a). Exceptions to this could
be genetic drift or the marker and QTL being in LD with
opposite phases in the two parental breeds (Figure 6b).
When the two breeds have opposite LD phases, and a
common nonzero substitution effect is estimated for a
SNP in the additive model, the allele frequencies of asso-
ciated QTL will move in opposite directions in the two
breeds.
In the dominance model, breed-specific allele sub-

stitution effects were computed using estimated domi-
nance and additive effects, together with the appropriate

allele frequencies from the other parental breed. When
overdominance is present, the allele substitution effect
α = a + (1 − 2p)dmay have opposite signs in the parental
breeds, depending on allele frequencies p in the two
breeds [12]. In this case, the two parental breeds are
expected to be fixed for alternate alleles of over-dominant
QTL, which increases the frequency of favorable het-
erozygotes in crossbred progeny. Note that under the
additive model, fixation of the favorable allele in both
breeds would result in lower heterozygosity in the
crossbreds. This explains why the dominance model
resulted in substantially greater heterosis than the addi-
tive model (Figure 4a). Recall that the purebred gain was
lower with the dominance model than with the addi-
tive model because the unfavorable allele was moved
towards fixation in one parental breed at some loci.
However, the crossbred gain was more than compen-
sated by the larger amount of heterosis in the crossbreds.
The dominance model was mostly favored in crossbred
gain in scenario 1, where the dominance variance was
large (Figure 2a), because in this scenario the differ-
ence in allele substitution effects between breeds was
large.
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When dominance is incomplete, the breed-specific sub-
stitution effects for a locus will have the same sign in
both breeds, as can been seen from (13). In the long
term, and ignoring drift, the favorable allele will be fixed
in both breeds with any GS model. Thus, differences in
response to selection in scenario 3 were not significant
between GS models (Figure 2c). However, Kinghorn et al.
[11] observed that withmany QTL, even incomplete dom-
inance had a significant influence on the divergence of
allele frequencies in the parental breeds because the effect
of drift is not negligible with a large number of loci. This
phenomenon was also confirmed in our study, in which
the advantage of the dominance model over the additive
model in cumulative response to selection increased from
0.2% to 1.0% in the presence of only incomplete dom-
inance (Table 1, scenario 3), when the number of loci
increased ten-fold. Although the signs of the substitution
effects are the same in the parental breeds with incomplete
dominance, their magnitude can be very different depend-
ing on the allele frequencies. In the additive model, where
a common substitution effect is used, loci with negligible
substitution effects will be under higher selection pres-
sure than in the dominance model, where breed-specific
substitution effects are used. When the number of loci is
large, relative to the additive model, the dominance model
will put little or no selection pressure on loci with small or
negligible substitution effects, resulting in greater genetic
progress. Thus, the ability to exploit dominance for loci
without overdominance may still be very important.
The advantage of the dominance model over the addi-

tive model is attributable to the use of breed-specific
allele substitution effects to calculate GEBV of purebreds
for crossbred performance with the dominance model.
Kinghorn et al. [10,11] observed an advantage of using
breed-specific allele substitution effects for crossbreed-
ing (reciprocal recurrent genomic selection, RRGS) in an
ideal situation, where additive and dominance effects at
the QTL were known without error. In the presence of
overdominance, RRGS had greater cumulative response to
selection than the additive model, regardless of whether
recalculation of substitution effects of QTL alleles was
performed only in the first generation, every five genera-
tions or every generation [10]. In the absence of overdomi-
nance, the advantage of RRGS over the additivemodel was
still observed with retraining each generation, especially
for many QTL [11].

Comparison between BSAM and the additivemodel
In BSAM, for the first generation after training, the esti-
mated breed-specific allele substitution effects of SNPs
account for differences in LD and allele frequencies
between breeds. However, with repeated selection over
generations, the breed-specific allele substitution effects
must be re-estimated in BSAM to accommodate changes

in allele frequency and LD. Ibánẽz-Escriche et al. [9]
showed that, when using crossbred data to predict GEBV
of purebred descendants, the additive model had a greater
accuracy of prediction than BSAM if the breeds were
related and the training population size was small rela-
tive to the number of markers. However, pure additive
inheritance was assumed in their study. Under dominant
gene action, we expect BSAM to have an additional advan-
tage over the additive model because, as can be seen from
(13), apart from different LD, breed-specific allele sub-
stitution effects will be different when allele frequencies
differ between breeds. However, in this study, BSAM had
a lower response to selection than the additive model,
except when the dominance effects were large and the
number of SNPs was not greater than the number of
observations. When the number of SNPs was ten times
greater than the number of observations, the advantage of
BSAM over the additive model was not significant.
One reason for the inferior performance of BSAM in

most scenarios is model complexity. If a SNP is segre-
gating in both parental breeds, then the SNP will have
a nonzero substitution effect in the crossbreds for both
breeds. Thus, when most SNPs are segregating in both
breeds, we expect BSAM to have about twice the num-
ber of nonzero SNP effects in the model as the additive
model. As shown in Table 2, the posterior mean of the
number of effects in the additive model was proportional
to themagnitude of the dominance variance relative to the
additive variance, but this relationship was not observed
in BSAM, for which the number of nonzero effects hardly
changed between scenarios. In scenario 1, where the dom-
inance variance was about half of the additive variance,
manymarkers were needed in the additivemodel to jointly
pick up the QTL effects. In this case, BSAM was superior
to the additive model since only a few additional effects
were fitted in the model. In scenario 4, where the size of
additive variance was maximum, the number of effects in
the additive model was reduced to about the same as the
number of QTL, while the number of effects in BSAM
was still higher than twice the number of QTL because
the allele substitution effects were expected to be nonzero
for both breeds. When the number of chromosomes and
loci increased ten-fold, the performance of BSAM com-
pared with the additive model became even worse due to
the increased model complexity (Table 1).
Another possible reason to explain the lower response

of BSAM relative to the additive model was given by [9].
Consider a locus that is segregating in breed A but fixed
in breed B. Because the additive model regresses pheno-
types only on segregating alleles, the common substitution
effect for this locus is actually the effect specific to breed
A, just as in BSAM. However, BSAM includes an addi-
tional substitution effect for breed B, for which the allele
is fixed. The substitution effect estimated from BSAM for
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Table 2 Posteriormeans of the number of nonzero SNP effects fitted in themodel

BSAM Dominancemodel

Scenario Additive model αS αD Total a d Total

1 183.1 73.2 131.0 204.2 284.3 58.4 342.7

2 166.3 88.2 151.3 239.5 181.8 58.1 239.9

3 130.9 68.7 114.4 183.1 149.4 34.8 184.2

4 105.4 90.9 144.8 235.7 116.3 4.1 120.4

Numbers in the table are means from 16 random simulations, where there was one chromosome, 100 QTL and 1000 SNPs; αS and αD are the breed-specific allele
substitution effects for the sire and dam breeds in BSAM; a and d are the additive and dominance SNP effects in the dominance model; numbers in column “Total” in
BSAM and the dominance model are the sum of the number of nonzero SNP effects of different types in the corresponding model.

the breed B allele will only add noise to the prediction
of GEBV. Therefore, when several loci are nearly fixed in
one of the parental breeds but segregating in the other,
the additive model is expected to show an advantage over
BSAM.

Comparison between BSAM and the dominancemodel
The number of effects in BSAM equals the number
of breeds times the number of SNPs. When only two
breeds are involved in the cross, the dominance model
is expected to have the same number of parameters as
BSAM if the number of SNPs included in the model
is fixed. However, with separate probability of inclusion
parameters πa and πd for additive and dominance effects,
the number of dominance effects that are fitted in the
model only depends on the actual number of dominance
effects for the trait. As dominance variance was lowered
from large to null, the posterior mean of the number
of nonzero dominance effects in the model decreased
from 58.4 to 4.1 (Table 2). Thus, in contrast to BSAM,
model complexity does not seem to be an issue for the
dominance model. Even when dominance was absent,
the response in the dominance model could not be dis-
tinguished from that of the additive model (Figure 2d)
because only a few nonzero dominance effects were fitted
in the model. In this regard, the dominance model is more
robust than BSAM.
Even when additive and dominance effects are consis-

tent between breeds, allele substitution effects will be
breed-specific if allele frequencies differ between breeds.
In such a case, the estimates of breed-specific allele substi-
tution effects in the dominance model are expected to be
more accurate than those in BSAM for the following four
reasons:
First, the estimates of additive and dominance effects

from the dominance model are combined with the
observed allele frequencies in the opposite parental breed
to calculate the breed-specific allele substitution effects.
In BSAM, however, breed-specific allele substitution
effects are estimated directly. Thus, the allele frequen-
cies used in BSAM are based on the frequencies in the

training population of the alleles inherited from the oppo-
site parental breed. Note that the alleles inherited by the
training population are a random sample of those from the
parental population, and therefore their frequencies will
deviate from those of the parental population. Thus, the
use of observed allele frequencies from the parental popu-
lation to compute breed-specific allele substitution effects
favors the dominance model over BSAM.
Second, in the dominance model, as selection pro-

gresses and allele frequencies change due to selection, the
observed allele frequencies in each generation are com-
bined with the estimates of additive and dominance effects
obtained in training to compute the current values of the
breed-specific allele substitution effects. However, with
the additive model and with BSAM, the allele substitution
effects estimated in training are repeatedly used to com-
pute GEBV of selection candidates, ignoring changes in
allele frequencies. As a result, drops in accuracy of GEBV
in generations of selection were greater for the additive
model and BSAM than for the dominance model (results
not shown). Thus, use of the dominance model is expected
to require less frequent retraining than use of BSAM or
the additive model. This is appealing for traits that are
difficult or expensive to measure.
Third, under the assumption that additive and dom-

inance effects of QTL are consistent across breeds, as
explained below, the goodness of fit to training data is
expected to be better for the dominance model than for
BSAM. The expected phenotypic value for a given geno-
type ij at a QTL is,

E(y|ij) = Gij =

⎧⎪⎪⎨
⎪⎪⎩
G00, ij = 00

G00 + a + d, ij = 01 or 10

G00 + 2a, ij = 11.

(14)

In the dominance model given by (3), these expected val-
ues aremodeled exactly in terms of a and d asμ+Xa+Wd,
where X = W = 0 for ij = 00, X = W = 1 for ij = (01
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or 10), or X = 2 and W = 0 for ij = 11. In BSAM, these
conditional expectations are modeled as

G00 = μ + αA
1 + αB

1 + ε00, (15)

G01 = μ + αA
1 + αB

2 + ε01, (16)

G10 = μ + αA
2 + αB

1 + ε10,

G11 = μ + αA
2 + αB

2 + ε11.

Subtracting (16) from (15) gives

G01 − G00 = αB
2 − αB

1 + ε01 − ε00.

As αB = αB
2 − αB

1 , based on (13),

G01 − G00 = αB
2 − αB

1 + ε01 − ε00

= a + d − 2pAd + ε01 − ε00.

Comparing this to (14), whereG01 −G00 = a+ d, implies

ε01 − ε00 = 2pAd.

Thus, deviates ε00 and ε01 cannot both be zero. Similarly,
it can be shown that ε10 − ε00 = 2pBd and ε11 − ε00 =
2(pA + pB − 1)d. The nonzero differences between the
deviates imply that at least some deviates are not equal to
zero. More simply, μ + αA

1 + αB
2 in the BSAM forG01 may

not be equal to μ+αA
2 +αB

1 for G10, although G01 is equal
to G10. In other words, the genotypic value is not exactly
modeled in BSAM.
Forth, implementation of BSAM requires knowing the

breed origins of SNP alleles but this is not required for
the dominance model. In this study, breed origins of SNP
alleles were assumed to be known without error but this
may not hold for real data, which would introduce errors
to the estimation of breed-specific SNP effects in BSAM.
However, the advantages of the dominance model may

not hold if additive and dominance effects of SNPs are
not consistent between breeds. More precisely, although
a and d at the QTLmay be consistent between breeds, the
SNP effects may differ between breeds due to differences
in LD. When these differences of SNP effects between
breeds are large, the dominance model may become infe-
rior to BSAM, for which breed-specific allele substitution
effects account for differences in LD in addition to dif-
ferences in allele frequencies. The magnitude and phase
of LD, especially long-range LD, has been found to be
inconsistent between breeds in livestock [24-26]. How-
ever, whether those differences in LD are large enough to
enable BSAM to outperform the dominance model needs
further investigation with real data.
The benefit of using one model over another depended

on the number and size of QTL and the density of SNPs
relative to the size of the training population. When the
genome was extended from one to ten chromosomes,
there was a ten-fold increase in the number of SNPs but
the SNP density remained the same. In addition, with the
values of variance components held constant, each QTL

explained a smaller proportion of the total genetic vari-
ance for the larger genome, which made it more difficult
to capture the QTL effects through SNPs. This explains
the observed reduction of differences in response between
models. This suggests that the preference of the dom-
inance model is expected to hold for a larger genome
but the amount of benefit will decrease when the genetic
architecture is more polygenic. Furthermore, a larger
training population will be needed.
In this study, SNP effects were estimated only once and

applied successively over 20 generations of selection. This
is rarely done in practice and retraining is usually carried
out after each generation of selection. With retraining,
the advantage of the dominance model is expected to be
much smaller ormay even be ignored because in that case,
the additive and BSAM models are also expected to give
estimated allele substitution effects using allele frequen-
cies from the current or recent generations. However, if
the training population consists of individuals frommulti-
ple generations, the estimates of substitution effects in the
additive model or BSAMwill depend on allele frequencies
across multiple generations, which may not be appropri-
ate to predict crossbred performance for the purebred
candidates.
Although the dominance model was studied here when

purebreds were selected for crossbred performance, the
advantages of this model over the additive model also
apply to selection for purebred performance. Further-
more, the estimates of a and d from the dominance
model can be used to predict GEBV in any population
with SNP genotypes, provided the LD in the training and
candidate populations are about the same. It has been
found that the accuracy of GEBV in Holstein-Friesian cat-
tle with training in Jerseys and vice versa was as low
as -0.1 to 0.3 over traits [27], and the correlations of
SNP allele frequencies between Holsteins, Jerseys, and
Brown Swiss cattle were as low as 0.65 to 0.67 [28].
Thus, differences in allele frequencies between breeds,
along with dominant gene action, can be attributed to
the low accuracy of prediction across breeds in dairy cat-
tle. In this situation, the dominance model is expected
to give better results, especially with a high marker den-
sity, since then LD would be more consistent between
breeds.
Besides dominance, other types of non-additive effects

may also contribute to heterosis, such as epistasis,
imprinting, etc. The dominance model can be further
extended to account for imprinting if the heterozygotes
are phased. Epistatic interactions between loci are par-
tially included in BSAM as a component of allele sub-
stitution effects but will be misspecified in the domi-
nance model, which will impair accuracy of selection.
Thus, BSAM may be more robust in the presence of
epistasis.
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Conclusions
When dominance, particularly overdominance, is the key
driver of heterosis, using a dominance model for GS is
expected to result in greater cumulative response to selec-
tion of purebred animals for crossbred performance than
either BSAM or the additive model. The extent of this
additional response to selection depends on the size of
dominance effects at the QTL and the power of detect-
ing the dominance effects through SNP genotypes. Also,
when there are many loci, it is important to exploit dom-
inance, even in the absence of overdominance. When
BayesCπ is used, the dominance model is robust because,
even in the absence of dominance, it does not give a
lower response than the additive model. BSAM is favored
over the additive model only when dominance effects are
large enough to overwhelm its shortcomings. Further-
more, implementation of BSAM requires that the breed
origins of SNP alleles are known. Our results suggest
that in the presence of dominant gene action, relative to
BSAM and the additive model, GS with the dominance
model is superior to maximize crossbred performance
through purebred selection, especially when no retraining
is carried out at each generation.

Appendix A
Scaling procedure for QTL additive and dominance effects
Let VA and VD denote the observed additive and domi-
nance genetic variance of the trait. Assuming no genotype
by genotype interactions among QTL that define the trait,
the genetic variance components can be written as the
sum of the variance explained by each QTL [12]:

VA =
∑
j
2pjqjα2

j , (17)

VD =
∑
j

(2pjqjdj)2, (18)

where pj = 1−qj is the observed allele frequency for QTL
j, dj is the QTL dominance effect, and αj is the QTL allele
substitution effect defined as

αj = aj + (qj − pj)dj,

where aj is the QTL additive effect.

For scenarios allowing overdominance
Let V ∗

A and V ∗
D denote the corresponding desired genetic

variance components and a∗
j , d

∗
j , α

∗
j the corresponding

scaled QTL effects. Let

s = V ∗
D

VD
. (19)

From (18) and (19), we have∑
j

(2pjqjd∗
j )

2 = s
∑
j

(2pjqjdj)2.

Thus,

d∗
j = √

sdj.

Similar to
√
s the scalar for dominance effects, we have

a scalar t for additive effects such that

a∗
j = taj, (20)

and

V ∗
A =

∑
j
2pjqj(α∗

j )
2

=
∑
j
2pjqj(a∗

j + (qj − pj)d∗
j )

2. (21)

Substituting (20) in (21) and rearranging it, we have

t2
∑
j
2pjqja2j + t

∑
j

(qj − pj)ajdj +
∑

(qj − pj)2d∗2

− V ∗
A = 0.

This can be seen as a quadratic equation with variable t
unknown. Thus, the scalar t for the additive effects can be
obtained by solving this equation.

For scenarios without overdominance
Since d is already smaller than a for each QTL, to obtain
the desirable additive genetic varianceV ∗

A, we have a scalar
c where

c = V ∗
A

VA
.

Based on (17), the new substitution effect α∗
j for QTL j is

simply

α∗
j = √

c αj.

Thus, the scaled additive and dominance effects are
respectively, a∗

j = √
caj and d∗

j = √
cdj. With this

approach, the additive genetic variance is the one desired
but the dominance genetic variance is not under control.
However, as desired, there would be no overdominance
affecting the trait.

Appendix B
Hypothesis test for the GS model effect
The objective was to test if any difference in cumulative
response to GS observed at generation 20 of selection
among the additive model, BSAM, and the dominance
model is statistically significant. As described, data were
collected from 16 simulations each with 100 replicates
resulting in a total of 1600 observations. The following
mixed linear model was used to fit the data:

yij = μ + mi + bj + eij,

where yij is the response from GS model i in simulation
j, mi is the fixed effect for GS model i = {1, 2, 3}, bj ∼
N(0, σ 2

b ) is the random blocking effect for simulation set
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j = {1, ..., 16}, and eij ∼ N(0, σ 2
e ) is the residual. A set

of t-tests was used for testing the null hypothesis that 1)
m1 = m2, 2)m1 = m3, or 3)m2 = m3.

Appendix C
Full conditionals for some keymodel parameters
Let βj denote either aj or dj in the dominance model. The
mixture prior for βj allows it to be included or not in the
model. Let δj,β denote a model inclusion indicator variable
defined as

δj,β =
{
1 then βj ∼ Normal
0 then βj = 0

with a prior probability 1 − πβ that δj,β = 1. It should be
clear that the model allows δj,a �= δj,d. The indicator δj,β
and the effect βj can be sampled jointly by first sampling
δj,β from its marginal distribution and then sampling βj
conditional on δj,β . The posterior “marginal” probability
that δj,β = 1 respecting to βj is calculated by

Pr(δj,β = 1|y, θelse)
= f (y|δj,β = 1, θelse)Pr(δj,β = 1)∑

δj,β f (y|δj,β , θelse)Pr(δj,β )
, (22)

where θ else denotes other parameters besides δj,β and βj.
The “likelihood” in (22) can be obtained by integrating βj
out from the sampling distribution as described below.
Let

v = y − 1μ − Xa−
∑
j′ �=j

W j′dj′ = W jdj + e.

Then,

f (y|δj,d = 1, θelse)

=
∫

f (y|δj,d = 1, dj, θelse)f (dj) ddj

= (2π)−
n
2 (σ 2

e )−
n
2 (σ 2

d )−
1
2 (
Cj,d

σ 2
e

)−
1
2 (23)

exp{−
v′v + λμ2

d − Cj,d(d̂j + λC−1
j,d μd)

2

2σ 2
e

}, (24)

where Cj,d = W ′
jW j + σ 2

e
σ 2
d
and d̂j = W jv

Cj,d
are, respectively,

the coefficient of themixed-model equation and the BLUP
estimate for dj. Similarly, let

u = y − 1μ − Wd −
∑
j′ �=j

X j′aj′

= X jaj + e.
We have

f (y|δj,a = 1, θelse) =(2π)−
n
2 (σ 2

e )−
n
2 (σ 2

a )−
1
2 (
Cj,a

σ 2
e

)−
1
2

exp{−u′u − Cj,a(âj)2

2σ 2
e

}, (25)

where Cj,a = X ′
jX j + σ 2

e
σ 2
a
and âj = X ju

Cj,a
. For δj,β = 0, the

“likelihood” is simply

f (y|δj,β = 0, θelse) = (2π)−
n
2 (σ 2

e )−
n
2 exp{−w′w

2σ 2
e

}, (26)

where w is either v or u corresponding to δj,d or δj,a. Sub-
stituting (24-26) in (22) gives the marginal distribution of
δj,β respecting to βj.
Given that δj,d = 1, dj has a normal prior centered at

μd, otherwise it is zero. Let d−j denote the other additive
effects besides that for SNP j, then the full conditional for
dj is

f (dj|y,μ, d−j, a,μd, σ 2
d , σ

2
e )

∝ f (y|μ, d−j, a, σ 2
e )f (dj|μd, σ 2

d )

∝ exp

⎧⎪⎨
⎪⎩−

Cj,d

{
dj −

(
d̂j + λ

Cj,d
μd

)}2
2σ 2

e

⎫⎪⎬
⎪⎭ ,

which is a normal N(d̂j + λ
Cj,d

μd,
σ 2
e

Cj,d
) where λ = σ 2

e
σ 2
d
.

The variance variable for the dominance effect depends
on the data only through the dominance effects:

f (σ 2
d |y,μ, a, d, σ 2

e , Sd) ∝ f (d|σ 2
d )f (σ 2

d |Sd).
Thus, due to the conjugacy, the full conditional for σ 2

d is
also a scaled inverse Chi-square ∼ S̃dχ−2

ν̃d
where ν̃d = k +

νd and S̃d = (d−1μd)′(d−1μd)+νdSd
ν̃d

given the sampled value
of μd.
As shown, the prior of μd depends on the value of σ 2

d ,
therefore the full conditional for μd is

f (μd|y,μ, a, d, σ 2
d , σ

2
e , η, φ)

∝ f (d|μd, σ 2
d )f (μd|η, φ, σ 2

d )

∝ exp{− (μd − 1′d+φη
k+φ

)2

2σ 2
d /(k + φ)

},

which is a normal ∼ N
(

1′d+φη
k+φ

, σ 2
d

k+φ

)
.

The full conditionals for the other parameters including
additive effect for SNP j and its variance variable are as
illustrated in [6].
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