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Abstract

Background: In quantitative trait mapping and genomic prediction, Bayesian variable selection methods have
gained popularity in conjunction with the increase in marker data and computational resources. Whereas
shrinkage-inducing methods are common tools in genomic prediction, rigorous decision making in mapping studies
using such models is not well established and the robustness of posterior results is subject to misspecified
assumptions because of weak biological prior evidence.

Methods: Here, we evaluate the impact of prior specifications in a shrinkage-based Bayesian variable selection
method which is based on a mixture of uniform priors applied to genetic marker effects that we presented in a
previous study. Unlike most other shrinkage approaches, the use of a mixture of uniform priors provides a coherent
framework for inference based on Bayes factors. To evaluate the robustness of genetic association under varying prior
specifications, Bayes factors are compared as signals of positive marker association, whereas genomic estimated
breeding values are considered for genomic selection. The impact of specific prior specifications is reduced by
calculation of combined estimates from multiple specifications. A Gibbs sampler is used to perform Markov chain
Monte Carlo estimation (MCMC) and a generalized expectation-maximization algorithm as a faster alternative for
maximum a posteriori point estimation. The performance of the method is evaluated by using two publicly available
data examples: the simulated QTLMAS XIl data set and a real data set from a population of pigs.

Results: Combined estimates of Bayes factors were very successful in identifying quantitative trait loci, and the
ranking of Bayes factors was fairly stable among markers with positive signals of association under varying prior
assumptions, but their magnitudes varied considerably. Genomic estimated breeding values using the mixture of
uniform priors compared well to other approaches for both data sets and loss of accuracy with the generalized
expectation-maximization algorithm was small as compared to that with MCMC.

Conclusions: Since no error-free method to specify priors is available for complex biological phenomena, exploring a
wide variety of prior specifications and combining results provides some solution to this problem. For this purpose,
the mixture of uniform priors approach is especially suitable, because it comprises a wide and flexible family of
distributions and computationally intensive estimation can be carried out in a reasonable amount of time.
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Background

Genetic association studies, quantitative trait loci (QTL)
mapping and genomic prediction rely on increasingly
dense DNA information such as single nucleotide poly-
morphisms (SNP). The increasing abundance of marker
data amplifies one of the essential statistical problems
in such studies: the number of potential explanatory
variables represented by single markers is often larger
than the number of observations in the sample stud-
ied, and some regularization is required to ensure the
identifiability of the marker effects. Suitable statisti-
cal models can accomplish this regularization by vari-
able (i.e. marker) selection, shrinkage of marker effects
towards zero or a combination of these two strategies
[1-4].

Many variable selection and shrinkage techniques based
on Bayesian modelling and Markov chain Monte Carlo
(MCMC) algorithms have been proposed for genetic asso-
ciation studies, QTL mapping and genomic prediction
(see [5,6]). They differ in the set-up of the statistical
model and in their prior specifications. Probably the
most popular alternatives are reversible jump MCMC
[7-9], stochastic search variable selection (SSVS) [10,11]
and locus-indicator models [12]. To avoid some of the
complications in model selection, saturated models have
been proposed in which genetic effects from all pos-
sible explanatory markers are collected simultaneously
into the model and their identifiability is increased by
prior assumptions that result in shrinkage of effect sizes
towards zero [1,4,13]. Such a shrinkage-inducing method
leads to a solution in which large effects tend to occur only
at rather few positions along the genome in the posterior
distribution.

In a previous study, we presented a new class of
shrinkage-inducing priors: a mixture of discrete uniform
distributions (MU), and compared it to other methods in
the context of QTL detection [14]. Compared to meth-
ods commonly used in genomic prediction, the main
differences and similarities are the following: MU is a
shrinkage-based method like BayesA [1] and Bayesian
LASSO [13,15], but it is richer in the variety of tuning-
parameters. This may be bad from a tuning point of view,
but the hyper-parameter combinations in the prior spec-
ification potentially covers a wider spectrum of different
scenarios concerning the genetic architecture of the trait,
heritability, marker spacing or structure of linkage dise-
quilibrium (LD) in the data. Like BayesB [1] and SSVS
[10,11], MU includes a hyper-parameter for the prior
probability of no marker association, but unlike BayesB
and SSVS, the prior of MU does not include any indi-
cator variables. Therefore, use of such separate indicator
variables is avoided in the estimation algorithms of MU,
which otherwise could negatively affect the speed and
the mixing properties during MCMC simulation or cause

Page 2 of 16

multimodality problems in maximum a posteriori estima-
tion (see [16]).

Bayesian shrinkage methods are common tools in
genomic prediction, but rigorous decision making in
the context of QTL detection via such models is not
well established [17]. Here, we shall examine in more
detail the properties of MU, focusing in particular on
how robust the results are in the analysis of the well-
studied QTLMAS XII data set with tightly linked markers
[18,19]. In addition, we test the prediction ability for
genomic selection purposes in a real data set on a pop-
ulation of pigs [20]. As suggested in [14], MU appears
to be sensitive to prior parameters. In this study, we
resume the issue of prior sensitivity and we extend the
analysis. As a potential solution to the prior sensitivity
issue, we define a finite set of prior specifications and
use "poor-man’s” model averaging over these by giving
equal probability/weight to each prior setting. We com-
pare these consensus estimates to the presumably less
robust ones from single prior specifications. MU com-
prises a wide and flexible family of prior distributions,
because it is controlled by three hyper-parameters instead
of two or one as in most other shrinkage approaches
without indicators in the model. Furthermore, the prior
assumptions in MU provide a coherent framework for
formal hypothesis testing and calculation of Bayes fac-
tors, which is lacking in most other shrinkage-based vari-
able selection methods [17]. As another exception with
a coherent framework, a decision rule based on Bayes
factors has been proposed for the extended Bayesian
LASSO [21].

For MCMC simulation of the posterior distribution, we
have implemented a Gibbs sampler, for which we pro-
vide the fully conditional distributions in Additional file
1 and the C code as an extension module to the soft-
ware package R [22] in Additional file 2. As a faster
alternative to MCMC estimation, we have constructed a
generalized expectation-maximization (GEM) algorithm
for maximum a posteriori (MAP) point estimation [23],
for which we provide the estimation details and the C
implementation in Additional file 3.

Methods

Data model and Bayesian hierarchical set-up

Consider a population-based sample of N individu-
als with phenotype measurements Y¥; (j = 1,...,N).
Suppose each individual has been scored at M mark-
ers and the genotype observation of an individual at
marker m (m = 1,...,M) is denoted by xj;,. Assum-
ing bi-allelic markers such as SNP (single nucleotide
polymorphisms) and only additively acting gene effects,
genotype observations are coded as —1,0 and 1 corre-
sponding to the three possible genotypes, say AA, Aa
and aa.
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The phenotype of individual j is modelled by the follow-
ing regression equation

M
Y=a+ Z BmXjm + €;. (1)

m=1

Here, « is the intercept common to all individuals in
the population. Furthermore, each fB,, holds the addi-
tive effect of marker m, and ¢; the error term for the
individual. A complete description of the distributional
assumption made to specify the likelihood as well as its
mathematical formula are included as supporting infor-
mation [see Additional file 1]. Constant variances are
assumed for o and {B,,} in their respective prior spec-
ifications, whereas a common random variance o2 is
assumed for the error terms. Conditional on ¢2, mutual
independence is assumed among the other parameters
(o, {Bm}, {€}). If appropriate, the regression can read-
ily be extended to include a polygenic component with
kinship-based variance-covariance structure to account
for infinitesimal marker effects and/or background QTL.

Prior specifications for shrinkage-based variable selection
As typical in this type of Bayesian variable selection
approaches, restrictive shrinkage priors are assigned to
the effect size parameters to regularise the model, to
avoid overfitting and to ensure the identifiability of genetic
marker effects. In the following, we describe such an
approach, which provides a mechanism to shrink spurious
effect sizes towards 0. We use a mixture of three distinct
uniform distributions (MU), the performance of which
has been previously evaluated using two well-documented
real data sets and comparing it to two other Bayesian
variable selection approaches [14]. Since we used the soft-
ware package OpenBUGS [24] in our previous study to
perform MCMC simulation, our report was restricted to
samples with much fewer individuals and markers than in
this study. Here, we overcome this drawback by a Gibbs
sampler implementation for MCMC simulation of the
posterior distribution and a GEM algorithm for fast max-
imum a posteriori point estimation in the low-level C
programming language.

Both types of algorithms are based on the fully condi-
tional univariate posterior distributions and single param-
eters are updated one at a time; whereas the Gibbs sampler
iterates over random draws from these distributions,
GEM only iterates over the fully conditional expected
values before reaching convergence in a - possibly local -
maximum of the parameter space. For a detailed discus-
sion on GEM and its affinity with standard EM and related
algorithms see [25].

The assumptions of the prior distribution are com-
pletely specified in the supporting information [see Addi-
tional file 1]. In Additional file 1, we also derive the
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univariate fully conditional posterior distributions needed
for a single-site Gibbs sampler and the fully conditional
expected values for GEM. The C codes for both algo-
rithms are provided in the supporting information [see
Additional files 2 and 3].

In MU, each effect size, B, is assigned a prior distribu-
tion with probability density function

1
2b1(7b,b) (Bm)

l_pO' [
2 I-b

p(Bm) =po -

+ I-g,-5)(Br) + Iip,y (Bi) ]

2)

where I4 () is the indicator function of a set 4, i.e. its value
is 1ifx € A and 0 otherwise; furthermore, pg € (0,1) is
the prior probability that 8, obtains a value close to 0 in
the interval (—b, b), with the border value set to b > 0, and
1 — po is consequently the prior probability that B, lies
further away from O, either in [ —/, —b] or in [ b, /], with the
effect size limit set to / > b. If the three hyper-parameters
po, b and [ are appropriately chosen, this density has a nar-
row peak around zero and is flat on the rest of its support.
Thus, this density is a step function, resembling a spike
and a slab [26]. The slab is sometimes also referred to as a
smear (e.g. [27]).

The mixture of three uniform distributions is specified
by allocating a major amount of probability mass, pg, on
a small interval (—b, b) that covers 0 and the remaining
probability mass, 1 — po, on two intervals that lie sym-
metrically at either side away from 0. Distributing the
probability mass in this way reflects the prior perception
that a marker chosen arbitrarily from a large set is unlikely
to explain a substantial portion of the phenotypic varia-
tion. In other words, most marker effects are expected to
be so close to 0 that their contributions can be considered
negligible.

Biological expert knowledge and practical consid-
erations should determine the choice of the three
hyper-parameters. Considering the contribution to the
phenotypic variation of effect sizes lying within the spike
(IBm| < b) as negligible, yields a criterion to discriminate
between associated and non-associated markers. How-
ever, other aspects such as sample size and coarseness
of measurement affect the choice of b, because a small
sample size and imprecise data reduce the chances to
identify small marker effects. If |8,,| > b is used as the
criterion for QTL identification, the prior belief concern-
ing the total number of associated markers can be directly
expressed via the choice of pp; the number of markers
with |B8,,| = b has a priori a binomial distribution with
mean M(1 — pg) due to the independence assumed
among {B,}. The hyper-parameter [ restricts the absolute
effect size of a marker to a certain upper limit, which is
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difficult to quantify a priori, because the genetic architec-
ture of the trait and specifically the distribution of effect
sizes are not known. However, empirical studies indicate
that effect sizes of more than a few phenotypic standard
deviations seem unlikely (see [28-30]).

In the context of regression models for genomic pre-
diction, a rough guideline has been suggested for choos-
ing hyper-parameters in the prior distribution of genetic
effects based on a connection between the prior variance
of SNP effects and the expected heritability of the trait
(cf. [6]). For MU, the variance of the effect of a single SNP
can be easily obtained from Equation (2) and integration
yields

1
Var(B) = , [0 + 10+ 51 = po)].

Gianola et al. [31] derived that
Va
23 1 fn(1 = fon)

under idealized conditions (Hardy-Weinberg equilibrium,
linkage equilibrium between QTLs, and QTL positions
coinciding with marker positions). Here, V4 is the additive
genetic variance and f;, the allele frequency at marker m.
Under these conditions, the narrow-sense heritability, i.e.
h* = V4/Vp with Vp being the phenotypic variance, can
be expressed as

_2Var(Bm) Yom—1 fin(L — fin)
Vp '
As pointed out by de los Campos et al. [6], if the genotypes
at each marker are standardized to have a mean of 0 and
a variance of 1 instead of using -1, 0, and 1 as genotype
codes, the relationship just mentioned becomes
_ Var(B)M
= Vo

Var(By,) =

n? 3)

W (4)
Note that the values of 4 are not restricted to the inter-
val (0, 1) but merely to (0, 00). Here, it is noteworthy that
altering the genotype codes via standardization affects the
interpretation of the effect size estimates, since §;,,s do not
represent additive genetic effects on the phenotype scale
in this case.

Tools of inference

Asin our previous study, we calculated the Bayes factor for
the hypothesis that the absolute value of the marker effect
exceeds a certain threshold value to assess the strength
of the association between the phenotype and a single
marker m. As in any shrinkage-inducing approach, choos-
ing this threshold is arbitrary or needs to be controlled
by permutation of the phenotype [4]. In the case of MU,
however, the choice of b as the threshold results in a
framework which is coherent with the prior assumptions
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concerning the effect size B,,, namely that the contribu-
tion of markers with effect sizes in the interval (—b, b)
are negligible. By defining an indicator variable S,, =
Itp,n(IBm|), the posterior probability of the hypothesis can
be expressed as P(S,, = 1|data). To obtain the Bayes fac-
tor for the two competing hypotheses H; : S, = 1 against
Hy : S, = 0, the posterior odds is divided by its prior
odds [32,33]:

P(S,, = 1|data) P(Syy = 1)

BF,, = ,
"1 —DPS,, =1|data)/ 1= P(S,, = 1)

where the prior probability P(S,, = 1) = 1 — py is readily
available from the prior specification of 8, in MU.

Kass and Raftery [32] have suggested the following cat-
egories to classify the strength of evidence provided by
twice the natural logarithm of the Bayes factor, 2In(BF,,),
as a slight modification to the categories presented by
Jeffreys [34]: evidence in favour of the hypothesis is con-
sidered very strong for values > 10, strong for values in
(6,10], positive for values in (2, 6], and not worth more
than a bare mention for values in (0, 2], respectively.

As mentioned above, the choice of a threshold for
the effect size B, is generally problematic in shrinkage
approaches, whereas the prior specification of MU entails
a justification for a specific threshold in MU. Unless indi-
cator variables are integrated into the likelihood of the
model (e.g. as in [35]), most shrinkage approaches do not
provide an unequivocal frame of hypotheses necessary
for the Bayes factor. A notable exception is the extended
Bayesian LASSO [21], where the prior distributions of
locus-specific variances depend on regularizing shrink-
age parameters, which can be tested for QTL presence via
Bayes factors.

Besides the choice of a threshold for 8, another con-
ceptual problem may arise in shrinkage approaches in
which improper priors for the effect sizes are used, such
as the model proposed in [36] as a modification of the
approach in [4]; although the posterior probability P(S,, =
1|data) and consequently the posterior odds may exist
also for improper priors, the prior odds is not avail-
able for the complementary hypotheses b < |B] vs.
|Bm| < b, because the integral over the prior distribution
corresponding to the former hypothesis does not exist.

We assessed the sensitivity of single analyses by com-
paring results under varying prior specifications, and for
MCMC additionally under identical prior specifications to
detect convergence or mixing problems. In addition, we
combined Bayes factor information from different anal-
yses to increase the robustness in detecting association
signals.

We also evaluated the predictive abilities of our model
by comparison of genomic estimated breeding values
(GEBV) either with the true breeding values (TBV), as
available in simulated data sets, or with the phenotype
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measurements directly, as available in real data sets. The
GEBYV for individual i is

M
GEBV; = ) Byuikims

m=1

where Em is the posterior mean of 8,, in the case of
MCMC or the MAP point estimate in the case of the
GEM algorithm, and (x;,,) is the vector of genotype codes
for the individual. For cross-validation of our results,
we employed the faster GEM algorithm. Also here, we
compared estimates from single prior specifications with
combined estimates from multiple ones. A more detailed
description of these procedures is given in the following
sections.

Analysis of the simulated QTLMAS XIl data

This simulated data set was originally distributed as a part
of the 12th European workshop on QTL mapping and
marker assisted selection (QTLMAS XII) held in Uppsala,
Sweden, on 15-16 May 2008. Detailed information on the
publicly available data [37] has been presented by Crooks
et al. [18] and Lund et al. [19].

The simulation of the phenotype involved a total of 50
bi-allelic QTLs with additive effects. Crooks et al. [18]
classified 15 of these as major QTL (denoted by M1-M15),
because they yield P-values of less than 0.05 after Bonfer-
roni correction in a multiple linear regression including
all genotypes of true QTLs. The whole data set avail-
able for QTL detection consists of 4665 individuals from
a pedigree of consecutive generations. We excluded the
165 individuals of the first generation from our analy-
sis, because they do not form full-sib families of size 10
like the 4500 individuals in the subsequent generations.
The founders of each generation were 15 males and 150
females. In the first generation, all individuals were used
as parents, whereas in the second and third generation,
they were randomly sampled. Each male parent was mated
to 10 females, each producing 10 full-sib offspring. Thus,
the pedigree actually has a full-sib and half-sib structure.
However, we did not take into account the familial resem-
blance between half-sibs or between parents and offspring
from consecutive generations in our statistical model.

For simplicity, we merely considered polygenic family
effects (uy) for full-sib families and extended the regres-
sion in Equation (1) to

M
Yij=a+ Z BmXijm + i + €k

m=1

for individual j (j = 1,...,Ni) from family k (k =
1,...,K). The polygenic terms u; were assumed condi-
tionally independent random effects with a mean of 0 and

a common random variance 0'3.
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Our results are based on N = 4500 individuals in K =
450 full-sib families, each of size Ny = 10. The marker
data consists of 6000 completely genotyped SNP equidis-
tantly spaced by 0.1 cM spanning six chromosomes with
1000 markers each. We removed the 106 markers with
minor allele frequency of less than 0.01, yielding M =
5894 markers for analysis of the complete genome.

Association mapping

We ran MCMC simulations for four different sets of prior
specifications (see details in Table 1). Our first goal was to
evaluate the power of MU to detect QTL and the false pos-
itive error rate in this data set with tightly-linked markers
and to compare the findings with the results from the six
association studies reported in [18]. Secondly, we aimed at
assessing the robustness of our results in several MCMC
runs under identical and varying prior specifications. For
each set of prior specifications, we started two MCMC
chains from different starting values. Thus, the results
are based on a total of eight chains (marked by A-H). In
each run, we simulated 220 000 Gibbs iterations, of which
the first 20000 were discarded as burn-in. This burn-
in size was determined based on informal convergence
checks. We applied thinning to save disk space and only
stored every 20th iteration. Thus, each of the eight runs
yielded 10000 MCMC samples for the analysis of the joint
posterior distribution. The MCMC simulation of a sin-
gle chain took 6 - 6.5 hours on a computer with a 3 GHz
dual core processor and a physical memory of 2 GB. All
simulations shared the following prior specifications: the
upper limit of the effect size parameters ,, was set to
[ = sd(Y) = 2.10, the prior variance of the common inter-
cept o to ¢ = 10° and the shape and rate parameters
(Su> Fu> s, v) were all set to 0.01 in the inverse-gamma dis-
tributions used as priors of the variance components o2
and 2 [see Additional file 1 for the parametrisation of the
inverse-gamma distribution]. For an inverse-gamma dis-
tribution with shape parameter s and rate parameter r, its
mean has the value ", if s > 1, and its variance has the

(Sil)’;(siz), if s > 2. Thus, the mean and variance
do not exist for our choice of shape and rate parameters
because of a heavy right tail. However, the mode exists,
with a value of |, = 1(1)1. With both r and s decreasing
towards 0, the inverse-gamma distribution approaches the
noninformative scale-invariant, but improper prior with

density o 1/02.

value

Genomic prediction

In addition to the four generations used for QTL detec-
tion, the QTLMAS XII data spans over three more gener-
ations, providing a validation set for genomic prediction
models. Each of these generations holds 400 individuals
with complete genotype information and TBV.
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Table 1 Comparison of the prior specifications in the eight MCMC chains A-H used to analyse the QTLMAS XII data,
posterior estimates of model parameters and summary statistics

Prior specification

Chain Po b@ Nq o
A 0.99 0.01 589 20(06)
B 0.99 0.01 589 26(07)
C 0.99 0.001 589 23(05)
D 0.99 0.001 589 26(05)
E 0.999 0.01 59 2.1(0.5)
F 0.999 0.01 59 2.8(0.5)
G 0.999 0.001 59 1.9(04)
H 0.999 0.001 59 2.0(0.7)

(@ given in units of phenotypic standard deviations (sd(Y) = 2.10).
(®) The true overall heritability of the trait is 0.30 [19].

Posterior mean (sd) of

10202 o2 h12VI ®) Nq

1.7(1.2) 3.0(0.1) 032(0.02) 23.0(2.5)
1.7(1.2) 3.0(0.1) 032(0.02) 229(26)
3.0(1.9) 3.0(0.1) 030(0.02) 31.5(2.5)
3.0(1.9) 3.0(0.1) 0.29(0.02) 31.1(25)
1.9(1.3) 3.0(0.1) 0.31(0.02) 15.3(1.3)
2104 3.0(0.1) 0.31(0.02) 14.3(1.3)
39(23) 3.1(0.1) 0.28(0.02) 215(1.4)
372 3.1(0.1) 0.28(0.02) 226(1.8)

Hyper-parameter py defines the prior probability that the effect size lies in the interval of the spike, (—b, b). Ng is a summary statistic for the number of QTL (see text
for details), & the common intercept in the regression, (ruz the variance component of the polygenic terms, o2 the residual variance, and th the part of the heritability

due to marker effects.

To assess the predictive abilities of our model, we first
calculated GEBV for the validation individuals, using the
posterior means of the effect sizes, 8,,, from the MCMC
chains. For simplicity, the estimated family effects, uy,
reflecting pedigree information within the training gener-
ations, were not taken into account, because the polygenic
effect was negligible in our analysis (see Results section),
as well as in a previous study [25]. Furthermore, the fam-
ily effects were estimated for full-sib families within the
training generations and could thus not be applied to the
individuals in the validation generations.

We evaluated these GEBV for single prior specifications
and their averages across the four prior specifications con-
sidered. As in [19], we assessed the predictive ability of
the GEBV in the validation individuals by three measures:
the accuracy was estimated as the Pearson correlation
between GEBV and TBYV; in addition, the Spearman rank
correlation was calculated between GEBV and TBV for
the 10% of the individuals with the largest TBV; finally,
the bias of GEBV was estimated as the coefficient of
regression of TBV on GEBV.

We also obtained GEBV from the GEM algorithm and
assessed their predictive ability as just described. Again
for simplicity, we excluded the family effects, uy, from the
model. Instead of using the original phenotype and geno-
type information, we standardized the phenotype and the
genotype codes at each SNP to have a sample mean of 0
and a variance of 1 in the training set. The GEBV were
then estimated as above and translated back to the origi-
nal scale. The GEM algorithm for one prior specification
required 3 to 14 seconds and 19 to 125 iterations to con-
verge on the same computer as mentioned above (with a
3 GHz processor and 2 GB memory). Convergence was
declared when the sum of deviations between current and
updated parameter values was smaller than (M+2)x 1077,

where M 4 2 = 5896 is the number of parameters in the
model.

As TBV are only available in simulated data sets, we
also applied a cross-validation (CV) approach as a method
to assess predictive ability of the model in real data sets.
Here, we used only the 4500 individuals in the three train-
ing generations. Specifically, we used two different 10-fold
CV strategies: (I) we randomized the data into 10 dis-
tinct validation sets, each holding 45 full-sib families, i.e.
all members of a family belonged to the same validation
set; (II) each of the 10 full-sibs of a family was randomly
assigned to a different validation set. To predict GEBV for
the individuals of a single validation set, the other nine sets
were combined to form the training set. We divided the
correlation between GEBV and phenotype by the square
root of heritability & = 4/0.30 [19] to convert it to an esti-
mate of the accuracy of the GEBV. The bias of GEBV was
estimated as the coefficient of regressing phenotype on
GEBV.

Analysis of the real data

To test the predictive ability of our method in real data,
we analysed a pig data set made available by Pig Improve-
ment Company (a Genus company) to the scientific
community [20]. Here, we used one of the five pheno-
types provided (T5), which was recorded for 3184 geno-
typed individuals and for which a heritability of 0.62 was
reported in [20]. Before analysis, the trait was standard-
ized to have a sample mean of 0 and a standard deviation
of 1.

A total of 52 843 SNP were contained in the genotype
data made public. The original genotype codes were 0, 1,
and 2 for the three SNP genotypes, respectively, and for
missing genotypes (< 1%), a non-integer between 0 and 2
had been imputed (see [20] for details). For our analysis,
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genotype codes were standardized to have a mean of 0
and a standard deviation of 1 at each SNP. Here, we used
four subsets of these SNP: (i) a random set of 10000
SNP from the entire SNP data; (ii) a random pick of
1000 SNP from the set in (i); (iii) a subset of 10 000 SNP,
each with a minor allele frequency > 0.05 and filtered
from the entire SNP data by sure independence screening
(SIS) of the marginal correlations between the pheno-
type and SNP [38]; (iv) a subset of 1000 SNP, also each
with a minor allele frequency > 0.05 and filtered from
the entire SNP data by SIS; this was a subset of the set
in (iii). Note that the set of 10000 SNP filtered by SIS
is identical to the one used in [25]. We report results
including prediction accuracies for all four sets of SNP
(i)-(iv).

As the results obtained from other Bayesian approaches
were shown to be nearly unaffected by the inclusion of
pedigree information in this data set [25], we chose not to
include a polygenic component in this part of the analysis.
For parameter estimation, we applied the GEM algorithm
and considered numerous combinations of the hyper-
parameters po and b, which ranged from 0.9 to 0.9999 and
from 0.0001 to 0.036, respectively. The hyper-parameter /
was kept constant at 2.

The accuracy of GEBV was estimated by their correla-
tion with phenotypic values divided by the square root of
the reported heritability, i.e. +/0.62. The breeding value of
an individual was predicted via 10-fold cross-validation,
in which each individual was randomly assigned to one
of 10 subsets. Each of these subsets was used once as
the validation set, with the other nine subsets forming
the training set. By using the same subsets as in [25],
our results are directly comparable to the ones obtained
in that study. We also obtained an estimate for the bias
of GEBV as the coefficient of regression of the pheno-
type on GEBV. It is important to note that, similar to
[25], the pre-selection by SIS was done using a// individ-
uals, i.e. it was influenced not only by training but also
by validation individuals, and may have caused the sub-
sequent cross-validation procedure to over-estimate the
accuracies.

Results

QTL detection in the QTLMAS Xl data

Comparison of common model parameters

We begin with an overview of the posterior estimation
for the model parameters, with the exception of marker-
specific parameters and compare results obtained from
the eight MCMC chains A-H. Table 1 shows the varying
prior specifications of the MCMC chains and poste-
rior results for model parameters and summary statis-
tics. The values for the border parameter, b, are given
in units of phenotypic standard deviations (sd(Y) =
2.10). We defined a summary statistic for the number of
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QTL based on the marker-specific indicator variables by

M

> Sm, and for the heritability due to marker
m=1

effects by i3y = 1 — (62 + 202)/var(Y), where the sam-
ple variance var(Y) was used as an approximation of the
phenotypic variance, ignoring the relatedness between the
individuals studied. Here, the variance component 03 of
the polygenic effects was multiplied by a factor 2, because
the coefficient of the additive genetic covariance between
full sibs is 1/2 (see e.g. chapter 7 in [39]).

For the common intercept, somewhat higher deviations
of the posterior results were observed between chains
with identical prior specifications when the border value
of the effect sizes was set to b = 0.01 (chains A vs. B
and E vs. F) than when it was set to & = 0.001 (chains
C vs. D and G vs. H). Thus, at least for these parame-
ters, the prior specification b = 0.001 yielded more robust
results.

All chains produced virtually identical estimates for the
residual variance o2. The point estimates for the between-
family variance o2 were of about two orders of magni-
tude smaller than o2. This indicates that the polygenic
effects, uy, absorbed rather little phenotypic variation in
the simultaneous analysis of all chromosomes, which is
consistent with the results reported by Lund et al. [19].
Since the genetic variation in the data was explained
almost completely by the marker effects, little informa-
tion would be lost if the polygenic terms were excluded
from the model. In the analysis of only one chromo-
some, the polygenic terms played a more influential role
(results not shown), since they can absorb genetic effects
from the rest of the genome (cf. [40]). Although the esti-
mates for o2 were small when analysing the complete
genome, we observe differences between prior specifica-
tions: more phenotypic variation was explained by the
polygenic effects when » = 0.001, i.e. in chains C, D, G
and H, since o, obtained larger posterior means in these
chains than in the others. This also explains the slightly
higher estimates of 43, for b = 0.01. Here, we should
note that the true heritability of the trait for the full pedi-
gree data is 0.30 [19], which closely coincides with our

estimates, which ranged from 0.27 to 0.32.
Estimates of the summary statistic Ng for the number

of QTL were, as expected, higher for the chains with pg =
0.99, i.e. with a smaller prior probability of marker exclu-
sion. Here we note that the prior mean of Nq is M- (1—po).
Thus for pg = 0.99, the posterior mean values between
24 and 33 were lower than the prior mean of 60. In con-
trast, the prior mean of Ng was 6 for pg = 0.999, but the
posterior means were larger with values ranging from 14
to 22. In this sense, the intuition that the prior specifica-
tions with pg = 0.999 are more conservative is confirmed.
We also observed that the chains with b = 0.01 produced
lower posterior means of N for fixed po. This result

Nq =
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is intuitive also, since marker indicators are expected to
reach the value 1 more easily, when the interval (-5, b) is
shortened.

Marker-specific results

Two of our main goals were (1) to assess how well MU
identifies true QTL in this data set and (2) to evaluate
the risk of false positive QTL detection when apply-
ing the Bayes factor as the measure of the evidence in
favour of marker association. In Table 2, the 20 mark-
ers with the strongest signals in our analysis are listed.
Here, we used the following criterion to rank the strengths
of association from all M = 5894 markers: for each
marker, we calculated the Bayes factor for the hypoth-
esis S;; = 1 (see above, Tools of inference) in each
of the eight MCMC chains A-H. Next, we ranked the
Bayes factors within each chain and calculated a marker-
specific mean rank across chains as a measure to sum-
marize information from the eight chains. This was done
to increase the robustness in assessing the strength of
evidence by making the results less dependent on the spe-
cific choices of the hyper-parameters in single MCMC
chains.

For each of these 20 markers, their position in the
genome, minor allele frequency and distance to the clos-
est true major QTL are given in Table 2 (cf. Table one
of [18]). The minor allele frequencies of the true QTL
were added as a reference. The table also provides the
posterior means of 2In(BF,,) averaged across chains as a
consensus measure of evidence, the minimal and maxi-
mal means across the chains, and the absolute values of
the effect sizes (|Bq|) for the true major QTL as reported
in [18]. Here we should note that, in the case of a sin-
gle value of an effect size, it is sufficient to report only
the absolute value, since the sign of the value will depend
on the genotype coding of the data set. Of course, our
estimates also depend on the genotype coding. Neverthe-
less, we report the signed posterior means of the effect
sizes, Epost (Bm), from our analysis, because the minima
and maxima from the eight MCMC chains could have
opposite signs — although this did not happen for the
20 markers reported. Finally, the posterior means of the
percentage of phenotypic variance explained are given
in Table 2. They were calculated by Epost (%PVE) =
2MAF,,(1 — MAF,,)Epost (B2) /var(Y). Here, MAF,, is
the minor allele frequency of marker m1, Epost (/33”) the
posterior mean of ,3,2,1, and var(Y) is as defined above. Note
that E,ost (%PVE) are estimates for single markers and
simply summing them up does not yield an estimate for
the entire proportion of variance explained by markers, as
covariances due to LD between markers are missed in this
sum. However, the proportion of variance accounted for
by the regression on markers is captured in our estimates
h12v[ (see Table 1).
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Identification of true QTL by Bayes factors and false
positives

Twelve of the 15 major true QTL were located within 5
cM from the markers reported in Table 2. In the compar-
ative study of six association analyses, Crooks et al. [18]
considered a QTL to be identified correctly if a positive
signal was reported within 5 cM from the QTL. The most
successful study by Ledur et al. [41] detected 11 true major
QTL (see Table four in [18]). No study compared in [18]
identified the true major QTL M7, whereas we found a
marker with a signal of association within 2.01 ¢M of that
QTL. The only study identifying M9 was Ledur et al. [41],
who found an association with exactly the same marker
as we did, namely at 60.1 cM on chromosome 3. Another
QTL, M14 at 5.15 cM, was identified by only one study:
Bink and van Eeuwijk [42] detected a signal at 2.0 cM, but
the marker we identified at 4.2 cM is somewhat closer to
this QTL.

Three true major QTL, namely M5, M10 and M11, are
absent from Table 2. M5 is very close to M4, at 2.59 cM
from M4 at position 30.00 cM on chromosome 2. Each
of the six analyses compared in [18] identified either M4
or M5 only. M10 at position 3.2 ¢cM on chromosome 4
was identified by all six studies and explained 4% of the
phenotypic variance. It is therefore quite intriguing that
our results regarding M10 contrast so markedly. M11 was
identified only by Cleveland and Deeb [43].

In the list of the 20 markers with the strongest sig-
nals in our analysis, two markers were more than 5 cM
from a major true QTL and would have been considered
false positives in [18]: one of them, at position 54.1 cM
on chromosome 3, was 5.9 ¢cM from M9 (at 60.00 cM),
and the other, at 85.9 ¢cM on chromosome 4, was located
about midway between M12 (at 76.06 cM) and M13
(at 96.49 cM).

Up to now, we have considered an arbitrary num-
ber, namely 20, of markers showing the strongest signals
of association across different MCMC chains. In many
empirical studies, a decision making tool is used to clas-
sify markers into two groups: markers with "significant”
and "non-significant” QTL signals. For this purpose, one
can apply a threshold of, say, 10 to the average of 2 In(BF,,)
across the chains when multiple chains are considered.
Sixteen of the markers shown in Table 2 fulfil this crite-
rion and four do not. In addition to the three true major
QTL mentioned above (M5, M10, M11), M14 would also
remain unidentified if this criterion was used. Moreover,
the markers at 54.1 cM on chromosome 3 and at 85.9 cM
on chromosome 4 would still be false positives, with both
Bayes factors exceeding the threshold.

Three of the six analyses compared in [18] produced no
false positive signals. To achieve this level of type I error,
the threshold has to be set to 12 in our analysis. This would
result in missing two additional QTL (M7 and M8) and
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Table 2 The 20 markers with the strongest signals of association across chains in the analysis of the QTLMAS XIl data

Marker Closest true 2In(BF ;)
major QTL@
Chr Pos MAF MAF Name Dist avg min max
1 19.5 0.28 0.28 M1 0.50 30 28 32
1 40.1 0.09 0.07 M2 -0.10 15 9 21
1 777 0.28 0.29 M3 -047 28 22 32
2 269 0.44 0.44 M4 0.51 12 10 15
2 282 0.24 0.44 M4 -0.79 12 7 18
2 48.2 0.38 0.40 M6 042 25 14 32
2 729 0.11 0.18 M7 2.01 M 8 15
3 132 033 0.40 M8 1.71 11 7 18
3 148 039 0.40 M8 0.11 8 6 12
3 54.1 0.27 0.07 M9 5.90 1 6 16
3 60.1 0.16 0.07 M9 -0.10 24 20 29
4 757 0.05 0.41 M12 0.36 26 12 32
4 76.4 0.46 0.41 M12 -0.34 30 28 32
4 859 0.18 0.41 M12 -9.84 10 9 12
4 96.4 0.27 0.19 M13 0.09 13 1 14
4 9%.6 0.8 0.19 M13 -0.11 9 4 16
4 983 0.23 0.19 M13 -1.81 9 5 13
5 4.2 0.19 0.21 M14 0.95 8 6 1
5 934 0.36 0.26 M15 0.10 30 28 32
5 94.5 0.09 0.26 M15 -1.00 22 15 32

1Bal Epost (Bm) %PVEq Epost (%PVEm)
avg min max avg min max

0.62 0.60 0.59 061 35 34 32 35
056 -035 -046 -0.17 09 0.6 03 0.8
0.37 0.43 0.41 0.46 13 1.7 16 19
0.35 0.22 0.15 0.28 14 0.9 0.5 1.3
0.35 0.20 0.09 0.33 14 0.6 0.3 1.2
0.37 -0.41 -045 -0.36 15 1.8 15 2.2
0.50 0.15 0.04 0.24 1.6 0.2 0.1 04
0.30 0.14 0.03 0.28 1.0 04 0.1 09
030 -004 -008 -001 1.0 0.1 0.0 03
0.68 0.12 0.01 0.21 13 03 0.0 0.5
0.68 -0.39 -0.41 -0.37 13 1.0 0.9 1.1
0.58 -0.72 -0.78 -0.58 3.7 1.1 0.9 1.3
0.58 0.64 0.61 0.67 3.7 46 4.2 5.1
0.58 0.12 0.02 0.19 3.7 0.3 0.0 0.5
029 -019 -027 -006 0.6 0.5 0.1 0.8
0.29 0.1 0.02 0.28 0.6 03 0.0 0.7
029 -008 -020 -0.02 0.6 0.2 0.0 04
018 -006 -0.15 -0.01 0.2 0.1 0.0 03
0.75 -0.71 -0.73 -0.68 5.0 53 49 56
0.75 -0.50 -0.53 -0.48 5.0 1.0 0.9 1.1

@The three true major QTLs missing are:

MS5 on chr. 2 at pos. 30.00 (MAF= 021, |Bo| = 0.33, %PVEq =0.8),
M10 on chr. 4 at pos. 3.21 (MAF= 0.39, | Bo| = 0.61, %PVEq =4.0),
M11 on chr. 4 at pos. 36.93 (MAF= 0.24, | Bo| = 0.34, %PVEq =1.0).

Chr = chromosome, Pos = position in cM from the start of the chromosome, MAF = minor allele frequency, Dist = directed distance in cM of a marker to the closest
true major QTL, 2In(BF,,) = posterior mean of the 2xlog-transformed Bayes factor in favor of marker association, | 8o| and Epost (Bm) = true absolute value and signed
posterior mean of the additive effect size, respectively, %PVEq and Epost (%PVEs,) = true value and posterior mean of the percentage of variance explained,

respectively.True values are taken from Table one in [18].

the total number of detected QTL would decrease to nine.
One study (with no false positives) detected more QTL,
namely that of Ledur et al. [41], with 11 QTL. However,
this study also exploited haplotype information.

Robustness of marker-specific results
As shown in Table 2, the Bayes factors varied rather little
across chains for some markers and a lot for others: e.g.
the minimal and maximal 2In-transformed Bayes factors
were 28 and 32, respectively, for the marker at 19.5 cM on
chromosome 1, but were 4 and 16 for the marker at 96.6
c¢M on chromosome 4. Thus, the latter marker showed
very strong evidence in one chain but “only” positive evi-
dence in another one, according to the classification by
Kass and Raftery [32].

To quantify the robustness among the eight MCMC
chains, we calculated pairwise Spearman’s rank cor-
relation coefficients p between the chains for the 20

Bayes factors reported in Table 2 (see the upper right
triangle in Table 3). When comparing chains with identi-
cal prior specifications, the strongest pairwise agreement
was observed between chains A and B (pg = 0.99 and
b = 0.01), with a correlation of 0.99, and the weak-
est agreement between chains C and D (pg = 0.999
and b = 0.001), with a correlation equal to 0.84. For
chains with different prior specifications, the correlation
coefficient obtained its lowest value, 0.67, between chains
C and E, which differ in both pg and b.

We also report the ratios of the 2 x log-transformed
Bayes factors averaged across the 20 markers for pairs of
chains in the lower left triangle of Table 3. These mean
ratios give an indication of the differences in magnitude
of the Bayes factors between the chains. On average,
chains A, B and C yielded the largest Bayes factors of
about the same magnitude. The largest differences in
Bayes factors were observed between chains A and H and
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Table 3 Comparison of Bayes factors in the eight MCMC
chains to analyse the QTLMAS XII data

MCMC chain |

] A B C D E F G H
A 0.99 074 089 0.89 0.87 0.79 0.78
B 1.00 . 0.72 0.88 0.90 0.88 0.79 0.76
C 1.00 1.00 . 0.84 0.67 0.70 0.70 0.78
D 0.86 0.86 093 . 0.82 0.85 0.83 0.78
E 0.84 0.83 0.95 1.02 . 0.96 0.88 0.82
F 0.87 0.86 0.98 1.04 1.03 . 0.89 0.82
G 0.72 0.71 0.77 0.83 0.85 0.84 . 0.90
H 0.68 0.68 0.73 0.80 0.81 0.81 0.98

Pairwise comparison of the eight MCMC chains A-H by Spearman'’s rank
correlation coefficient p (upper right triangle) and mean ratio of the 2 x
log-transformed Bayes factors in chain | vs. chain Il (lower left triangle) for the 20
markers with the strongest signals of association across chains in the analysis of
all chromosomes by MU.

between chains B and H, both having mean ratios equal
to 0.68.

Genomic prediction in the QTLMAS XII data

The comparison of GEBV and TBV in the three vali-
dation generations showed accuracies between 0.79 and
0.90 for MCMC-based and GEM-based estimation under
the four prior specifications considered (see Table 4).
The Bayesian genomic prediction approaches compared
in [19] achieved accuracies ranging from 0.84 to 0.92
and the methods compared in [25] from 0.70 to 0.90.
The best results reported by [44] and [45] (0.90 and
0.88, respectively) fall within this range. The accu-
racy of GEBV obtained by frequentist G-BLUP esti-
mation has previously been reported at 0.75 and of
GEBV obtained from Bayesian G-BLUP at 0.76 [25].
The rank correlation between GEBV and TBV for the
10% of individuals with the highest TBV ranged from
0.42 to 0.57, whereas [19] reported corresponding val-
ues between 0.46 and 0.56. Estimates of bias ranged
from 0.84 to 0.98 in our analyses and from 0.85 to 0.98
in [19]. The accuracies from GEM were somewhat lower
than from MCMC for single prior specifications, but aver-
aging the GEBV across prior specifications, i.e. the com-
bined estimates, yielded similar accuracy estimates, 0.89
for MCMC and 0.88 for GEM. Notably, the combined esti-
mate for GEM was higher than any of the estimates from
single prior specifications. Likewise, the rank correlations
ranged from only 0.42 to 0.51 for GEM under single prior
specifications, while the combined estimate was 0.53. The
corresponding value for MCMC was again somewhat
higher (0.56). In contrast, GEM yielded a slightly better
value (0.98) for the combined estimate of bias, i.e. the
regression coefficient was closer to 1, than the estimate of
bias from MCMC (0.94).

Page 10 of 16

The accuracies obtained by cross-validation within the
first three generations via GEM were higher (r; and ry
from 0.91 to 0.96) than those reported above for the
three validation generations. This result supports the
expectation that accuracy of GEBV declines for genet-
ically more distant individuals. We did not observe
clear differences in the results between the two cross-
validation approaches, although keeping the individuals
from an entire family together in the same validation
set (approach I) increases the genetic distance between
training and prediction sets more than assigning indi-
viduals from the same family to different validation sets
(approach II).

Also for cross-validation, averaging GEBV across prior
specifications improved accuracy, when compared to
single prior specifications. However, averaging increased
estimates of bias (b and byy), from values below 1 for single
prior specifications to values above 1 for the combined
estimates.

Finally, we used Equations (3) and (4) to calculate values
of a priori heritability under the four different prior spec-
ifications. As mentioned above, Equations (3) and (4) do
not restrict a priori heritability to the range from 0 to 1.
For the non-standardized genotype codes used in MCMC
estimation, the four prior specifications as ordered in
Table 4 correspond to #2-values of 7.9, 7.7, 0.86 and 0.78,
respectively. For the standardized genotype codes used in
GEM estimation, the corresponding /2-values are 20.0,
19.7, 2.2 and 2.0, respectively. Thus, impossible values
for heritability, i.e. with values above 1, were implicitly
assumed in most of the prior specifications. However, rea-
sonable estimates of accuracy were obtained in all cases
and the a priori heritabilities varied far more in magnitude
than estimates of accuracy.

Genomic prediction in the real data

For the tested combinations of py from 0.9 to 0.9999
and b from 0.0001 to 0.036, the best accuracy, with
a value of 0.631, was obtained with py = 0.9999
and b = 0.008 for the set of 10000 random SNP
(RAND10K). For this combination of py and b, the accu-
racy for the 10000 SNP filtered by SIS (SIS10K) was
only slightly lower, with a value of 0.623. The high-
est value reported in [25] was 0.63 for two Bayesian
model variants with hierarchical Laplace shrinkage pri-
ors. In the same study, the accuracy for Bayesian G-
BLUP was reported at 0.63. The prior expectation about
heritability (cf. Equation (4)) under idealized conditions
corresponds to a value of 1.6 for this specific prior
specification and 10000 SNP. It is noteworthy that val-
ues of b < 0.008 yielded lower accuracies, despite
the fact that they corresponded to more realistic, i.e.
lower, values of heritability, which was 0.62 for this
trait.
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Table 4 Comparison of genomic estimated breeding values (GEBV) and true breeding values (TBV) and predictive ability
via cross-validation under varying prior specifications for the QTLMAS XIl data

Prior specification Accuracy? Rank correlation® Bias© GEM Cross-validation?
Po b MCMC GEM MCMmC GEM MCMC GEM r i by b
0.99 0.01 0.87 0.80 0.56 042 091 0.87 0.92 093 0.97 0.98
0.99 0.001 0.88 0.87 049 051 0.88 0.86 0.94 0.94 0.97 0.97
0.999 0.01 0.88 0.79 0.57 041 0.94 0.88 091 093 0.99 1.00
0.999 0.001 0.90 0.84 0.54 051 0.92 0.84 0.92 091 0.96 0.95
Combined® 0.89 0.88 0.56 0.53 0.94 0.98 0.96 0.96 1.05 1.04

2Pearson correlation between GEBV and TBV, for MCMC chains and generalized EM algorithm (GEM);
bSpearman rank correlation between GEBV and TBV for the 10% of the individuals with highest TBV;

Slope Coefficient from regressing TBV on GEBV;

dAccuracy (r: Pearson correlation of GEBV and phenotype, divided by the square root of heritability) and bias (b: slope coefficient from regressing the phenotype on
GEBV) as estimated from two 10-fold cross-validation approaches: (I) entire families assigned together to folds and (Il) individuals from the same family assigned to

different folds;
¢Combined estimates obtained by averaging GEBVs across prior specifications.

As shown in Figure 1, the estimated accuracies were
highly sensitive to the choice of b and, for SIS10K and
RANDI10K, deteriorated with b approaching 0 and b >
0.015. In contrast, both RAND1K and SIS1K exhibited
the best accuracies for » > 0.015, showing horizontally
asymptotic-like behaviour for increasing values of b. The
accuracies were quite similar for RAND10K and SIS10K,
except for b ranging between 0.015 and 0.03, where
SIS10K yielded higher accuracies. In all cases, RAND1K
had lower accuracies than SIS1K. As mentioned above, the
higher accuracies for SIS may be, at least partially, due to
the over-estimation induced during pre-selection by SIS.

For all values of pog, the accuracy showed very simi-
lar behaviour when b was varied. For both RAND10K
and SIS10K, accuracies were best for b ranging between
0.005 and 0.012 and deteriorated when b tended towards
0 and also for increasing values of b. In contrast, both
RANDIK and SIS1K exhibited the best accuracies for b >
0.015, showing horizontally asymptotic-like behaviour for
increasing values of b. In all cases, RAND1K had lower
accuracies than SIS1K.

For both RAND10K and SIS10K, the least biased esti-
mates, i.e. with regression coefficients closest to 1, were
obtained for b between 0.002 and 0.008 and deteriorated
down to 0.2 for increasing values of b. For RAND1K and
SIS1K, the bias was more stable with respect to b, with the
exception of a considerable bias upward for pg = 0.9999
and b between 0.006 and 0.015.

Tables 5a, 5b, 5¢ and 5d show the estimates of accuracy
and bias for the four SNP sets and the 16 prior speci-
fications of the hyper-parameter pair (po, b), as well as
the combined estimates obtained from averaging GEBV
across the prior specifications. In contrast to the obser-
vations made in the analysis of the QTLMAS XII data,
averaging GEBV did not consistently improve the accura-
cies of single prior specifications. Whereas the best single
estimate for SIS10K was 0.62 and the estimate combined

across all 16 prior specifications was also 0.62, at least one
single estimate in each of the three other SNP sets was
slightly superior to the corresponding estimate combined
from 16 prior specifications.

Discussion

In this article, we successfully applied MU, a shrinkage-
based Bayesian variable selection that we had previously
presented in [14], to the well studied and publicly avail-
able QTLMAS XII and real data sets with genome-wide
marker coverage. In particular, we focussed our attention
on comparing the impact of different prior specifications
on the stability of QTL detection for genetic association
and the stability of breeding value prediction for genomic
selection. A Gibbs sampler for MCMC simulation and a
GEM algorithm for MAP point estimation were imple-
mented as C extensions to the software package R [22].
The source codes are publicly available as supporting
information [see Additional files 2 and 3]. The computa-
tion time required by the implementations on a desktop
PC appears feasible, being maximally a few hours for
MCMC and a few minutes for GEM.

We have compared our results regarding QTL detection
and false positive signals to findings from previous stud-
ies of the QTLMAS XII data. Overall, our analyses by MU
ranked well among the association and mapping meth-
ods that were summarized by Crooks et al. [18]. Only one
method [41] clearly outperformed MU. Instead of single
SNP, this method exploited haplotype information of mul-
tiple SNP. Arguably, integration of this additional infor-
mation into the regression model via a revised genotype
matrix could improve the performance of MU.

Especially in the context of QTL detection, the collinear-
ity of the putative predictors (SNP) in genome-wide dense
marker data may cause problems in multi-locus models
that assume mutual independence of predictors a priori,
such as scattering of QTL signals over several markers.
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Figure 1 Accuracy (panel 1) and bias (panel Il) estimates under varying specifications of the hyper-parameters pg (subpanels a-d for both
panel I and 1) and b for the four SNP sets in the analysis of the real data set.
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Table 5 Accuracy estimates (bias estimates in brackets) for the four SNP sets (SIS10K, RAND10K, SIS1K, RAND1K) under
16 different prior specifications (pairs of (po, b)) and combined estimates across prior specifications (real data)

a-SIS10K
Po 0.004 0.008
0.9999 0.56(1.18) 0.62(1.03)
0.975 0.56 (0.98) 0.62 (1.00)
0.95 0.57(0.96) 062 (0.98)
0.90 0.57(091) 0.62(0.97)
Combined 0.58(1.06) 062 (1.00)
b - RAND10K
Po 0.004 0.008
0.9999 0.56(1.18) 0.63(1.05)
0.975 0.57(0.97) 0.62(1.01)
0.95 057(0.93) 0.61(0.98)
0.90 0.57(0.90) 0.61(0.95)
Combined 0.58 (1.04) 0.62 (1.01)
c-SIS1K
Do 0.004 0.008
0.9999 048 (1.05) 0.51(1.16)
0.975 0.48(0.96) 0.51(1.02)
0.95 0.48(0.94) 0.51(1.02)
0.90 0.49 (0.94) 0.51(0.99)
Combined 0.49 (1.00) 0.52(1.08)
d-RAND1K
Do 0.004 0.008
0.9999 0.34(1.03) 046 (1.51)
0.975 0.38(0.85) 0.42 (1.00)
0.95 0.40(0.86) 0.42(0.95)
0.90 0.42(0.87) 044 (0.94)
Combined 0.41(0.98) 044(1.12)

Several authors have suggested procedures to improve
model performance in such settings: for example remov-
ing part of the data to reduce the collinearity (e.g. [46]).
This general problem of applying MU and other Bayesian
variable selection or shrinkage methods needs further
research to improve their performance in QTL mapping.
The rather strong positive correlations among Bayes fac-
tors with QTL signals observed in several MCMC chains
suggest an appreciable robustness of the results with
regard to QTL detection under varying prior assumptions.
Besides its advantages (see e.g. [27,47-50]) over such mea-
sures as P-values, the systematic differences in magnitude,

0.012 0.016 Combined
0.61(0.83) 0.57(0.63) 0.62 (0.95)
0.61(0.83) 0.57(0.63) 0.62(0.92)
0.61(0.83) 0.56 (0.63) 0.62(0.91)
0.61(0.82) 0.56 (0.63) 0.62(0.89)
0.61(0.83) 0.56 (0.63) 0.62(0.92)

0.012 0.016 Combined
0.60(0.81) 0.52(0.51) 0.61(0.92)
0.61(0.81) 0.52(0.51) 0.61(0.88)
0.61(0.81) 0.52(0.51) 0.61(0.87)
0.61(0.80) 0.52(0.51) 0.61(0.85)
0.61(0.81) 0.52(0.51) 0.61(0.88)

b

0.012 0.016 Combined
0.54(1.14) 0.56 (1.08) 0.54(1.16)
0.53(1.07) 0.56 (1.08) 0.53(1.08)
0.54(1.05) 0.55(1.08) 0.53(1.07)
0.54(1.03) 0.55(1.03) 0.53(1.04)
0.54(1.09) 0.56 (1.07) 0.54(1.10)

0.012 0.016 Combined
0.50(1.37) 0.52(1.20) 049 (1.42)
0.48(1.17) 0.51(1.13) 047(1.13)
048(1.11) 0.51(1.12) 047 (1.09)
0.48 (1.06) 0.51(1.08) 0.48(1.05)
0.49(1.21) 0.52(1.15) 0.48(1.18)

that we observed between the Bayes factors from different
MCMC chains, demonstrate the problems and limita-
tions of the categories suggested by Jeffreys [34] and Kass
and Raftery [32]. Specifically, blind application of deci-
sion rules based on these categories to declare positive
QTL signals in genetic association and QTL mapping
studies seem inadvisable. We stress the importance of
an exhaustive analysis under varying prior assumptions.
This need for a wide-ranging analysis is specifically evi-
dent, because, in general, weak prior knowledge exists
on relevant biological parameters such as the prior prob-
ability of a positive QTL signal and the shape of the
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prior distributions for genetic effects. We tried to alleviate
this problem by combining Bayes factor information from
several analyses under varying prior specifications.

Obviously, an exhaustive sensitivity analysis under vary-
ing prior assumptions is necessary in shrinkage-based or
other Bayesian variable selection approaches in general.
However, we argue that MU provides some solution to the
open problem of selecting relevant variables in Bayesian
shrinkage approaches (see [17]), because MU provides
a formal framework for hypothesis testing and conse-
quently for the calculation of Bayes factors, in contrast to
most other shrinkage approaches.

For the purpose of genomic prediction, MU was com-
petitive with other studies in the estimation of GEBV for
both data sets. For the simulated QTLMAS XII data set, it
is noteworthy that we considered only four prior specifi-
cations in our analysis and did not attempt an exhaustive
coverage of the hyper-parameter space. For this data set,
our main focus was to compare MCMC and GEM estima-
tions. Although point estimation via the GEM algorithm
produced accuracies of GEBV that were inferior to accu-
racies from point estimation by MCMC for the single
prior specifications, accuracy for GEM estimation was
improved by combining GEBV across prior specifications
to almost the same level as MCMC results.

In the analysis of the real data set, we explored a larger
part of the hyper-parameter space and considered a dense
grid of hyper-parameter values. Thus, we were able to
assess accuracies of GEBV and differences more compre-
hensively than for the QTLMAS XII data set. Our results
showed that the estimated accuracies were very sensitive
to the choice of the hyper-parameter » in MU and that the
sensitivity increased with the number of markers. Unfor-
tunately, comparison of the sensitivity with other Bayesian
genomic prediction approaches was hampered, because
accuracies from an extensive search across varying prior
specifications in other approaches are not documented for
this data set.

In very poorly stated problems with many more SNP
than individuals, as in the real data set, it may be ben-
eficial to decrease the number of SNP to reduce this
disparity prior to variable selection [38,51]. This will save
computer storage capacity and may provide better con-
vergence properties for the algorithms. In this study, we
compared random sampling of SNP with sure indepen-
dence screening (SIS) [38] as two simple methods of SNP
pre-selection. For SIS, we followed the pre-selection and
cross-validation procedure by [25] to be able to com-
pare MU with the Bayesian genomic prediction meth-
ods considered in that study. Our results suggest that
MU is competitive with other approaches and SIS pro-
duces superior accuracies for GEBV on large parts of
the hyper-parameter space, although random sampling
and SIS produce almost identical accuracies in the case
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of 10 000 SNP under optimally chosen hyper-parameters.
However, the absolute level of SIS accuracy estimates
reported here may be biased upward, because SIS pre-
selection depended not only on the training sets but also
on the validation sets. This bias may hamper the compar-
ison of SIS and random sampling results.

Pre-selection of SNP surely remains an issue for future
research and SIS cannot be the final solution, since some
drawbacks of SIS remain unresolved. Because SIS exploits
only marginal correlations between markers and the phe-
notype, and LD between markers is ignored, this approach
is associated with a risk that too many SNP in the proxim-
ity of a QTL, that carry essentially identical information,
are pre-selected. In contrast, SNP with a low marginal
correlation but still in LD with a QTL have no chance of
entering the set of pre-selected SNP. Methods that simul-
taneously exploit the connection between SNP and the
phenotype and the LD structure between markers could
be more appropriate.

Three approaches are available for choosing hyper-
parameters. First, cross-validation can be employed to
detect the optimal prior configuration with respect to the
assessment of prediction for some specific set of indi-
viduals. This approach is probably the most suitable and
most widely used approach for prediction purposes in
experimental studies.

Second, prior expectation about the heritability and lim-
iting assumptions about the genetic architecture of the
trait yield a criterion to calibrate hyper-parameters via the
prior variance of additive genetic effect sizes. In this study,
we derived such a criterion for MU and tested its perfor-
mance in the analysis of the real data. However, the results
do not support the idea that values of hyper-parameters
corresponding to realistic heritabilities according to this
criterion positively affect prediction accuracy.

As a third alternative to choose hyper-parameters,
expert knowledge may be available on the size of hyper-
parameters. However, these three approaches are not free
of error in practical situations and, therefore, doubt will
remain for any specific prior choice. Combining results
from varying prior specifications using “poor man’s”
model averaging, as was done here, may provide some
solution, as a wider choice of hyper-parameters can be
integrated into “consensus” estimates. For this purpose,
an approach like MU is especially suitable, because it
comprises a wide and flexible family of prior distributions.

To reduce the problem induced by the sensitivity to
the choice of hyper-parameters, it is common practice
in Bayesian modeling to add an extra layer to the hier-
archy and to assign own prior distributions to at least
some of the hyper-parameters. This is commonly done,
for example, in Bayesian LASSO and stochastic search
variable selection methods such as BayesCn and BayesDn
(see e.g. [52]). We have refrained from doing so in this
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study, for the following reasons: (1) the sensitivity problem
may just be moved to the next layer of the hierarchy and
the method may then become sensitive to the parameters
controlling the prior distribution of a hyper-parameter
(see [25]), and (2) even if the approach may work in
MCMC implementation, the hyper-parameter may not
be identifiable in faster maximum a posteriori estima-
tion algorithms such as EM, GEM or variational Bayes
algorithms (e.g., [16,25]). This behaviour would possibly
have a negative impact on the performance of the GEM
estimation algorithm that was introduced in this study to
make the MU method scalable for large SNP panels with
thousands of variables and individuals. Finally, assigning
priors to hyper-parameters may result in bad separation
of QTL signals [5], which is less important in genomic
prediction but of major concern in genetic association
studies.
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