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Abstract

Background: In recent theoretical developments, the information available (e.g. genotypes) divides the original
population into two groups: animals with this information (selected animals) and animals without this information
(excluded animals). These developments require inversion of the part of the pedigree-based numerator relationship
matrix that describes the genetic covariance between selected animals (A22). Our main objective was to propose
and evaluate methodology that takes advantage of any potential sparsity in the inverse of A22 in order to reduce
the computing time required for its inversion. This potential sparsity is brought out by searching the pedigree for
dependencies between the selected animals. Jointly, we expected distant ancestors to provide relationship ties that
increase the density of matrix A22 but that their effect on A−1

22
might be minor. This hypothesis was also tested.

Methods: The inverse of A22 can be computed from the inverse of the triangular factor (T-1) obtained by Cholesky
root-free decomposition of A22. We propose an algorithm that sets up the sparsity pattern of T-1 using pedigree
information. This algorithm provides positions of the elements of T-1 worth to be computed (i.e. different from
zero). A recursive computation of A−1

22
is then achieved with or without information on the sparsity pattern and time

required for each computation was recorded. For three numbers of selected animals (4000; 8000 and 12 000), A22

was computed using different pedigree extractions and the closeness of the resulting A−1
22

to the inverse computed
using the fully extracted pedigree was measured by an appropriate norm.

Results: The use of prior information on the sparsity of T-1 decreased the computing time for inversion by a factor
of 1.73 on average. Computational issues and practical uses of the different algorithms were discussed. Cases
involving more than 12 000 selected animals were considered. Inclusion of 10 generations was determined to be
sufficient when computing A22.

Conclusions: Depending on the size and structure of the selected sub-population, gains in time to compute A−1
22

are possible and these gains may increase as the number of selected animals increases. Given the sequential nature
of most computational steps, the proposed algorithm can benefit from optimization and may be convenient for
genomic evaluations.
Background
For a population of n animals, the numerator relation-
ship matrix (A), is an n-by-n matrix with the following
properties:

(1) aij is the numerator relationship coefficient between
two animals i and j among n, as defined by Wright [1];

(2) diagonal element aij is equal to 1 + Fi, where Fi is
the inbreeding coefficient [1] of animal i;
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(3) A is non-singular and symmetric: for two animals i
and j among n, aij = aji.

Because the numerator relationship matrix describes
the additive similarity between animals, it is an import-
ant element explaining genetic (co)variances between
animals and has numerous applications in the field of
animal genetics, the most important one being its use in
setting up the mixed model equations for estimation of
breeding values [2].
In some situations, a particular type of information

(genomic information, foreign genetic evaluation, pheno-
types on a particular trait, etc.) is only available for some
ntral Ltd. This is an open access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

mailto:Pierre.Faux@ulg.ac.be
http://creativecommons.org/licenses/by/2.0


Faux and Gengler Genetics Selection Evolution 2013, 45:45 Page 2 of 15
http://www.gsejournal.org/content/45/1/45
animals, which are selected for this particular purpose,
while other animals are excluded. The original popula-
tion can therefore be split into two sub-populations:

(1) a sub-population composed of animals called
“excluded” hereafter;

(2) a sub-population composed of animals called
“selected” hereafter.

Splitting the original population in this way leads to
the following partition of A:

A ¼ A11 A12

A21 A22

� �
:

The four blocks include the relationships between ex-
cluded animals (A11), between excluded and selected ani-
mals (A12 and A21) and between selected animals (A22).
Recent methodological developments in animal breed-

ing require inversion of A22, for example for genotyped
animals in the context of genomic prediction using a
single-step procedure [3-5]. Another example concerns
external animals when integrating foreign information
into a local genetic evaluation [6]. It is also noteworthy
that the pedigree-based relationship matrix A22 and the
genomic relationship matrix (G, [7]) show structural
similarities: both matrices express polygenic/genomic
similarities among animals inherited from ancestors that
are not represented in these matrices. Thus, the present
research on A22 can be extended to genomic relation-
ships in G.
Based on the original work by Henderson [8] on inver-

sion of A, a general framework for the inversion of relation-
ship matrices follows (see Appendix 1). Henderson outlined
a method that is based on the root-free factorization of A
and showed the high sparsity of the inverse triangular factor
of A. An efficient use of this sparsity then allows direct
computation of A-1 as a sum of individual contributions
based on a chronological reading of the pedigree. Applying
partitioned matrix theory, van Arendonk et al. [9] gave a
general expression for the sum of individual contributions
outlined by Henderson [8]: an additional row/column in A
leads to updating its inverse by increasing the order by 1
and by summing the square of a very sparse vector to A-1.
The very sparse vector is the corresponding row (below the
diagonal) of the inverse triangular factor. All details on
these developments are given in Appendix 1.
When required, the inverse of A22 is currently obtained

by brutal inversion algorithms (e.g. generalized inverse al-
gorithm). In these algorithms, any potential sparsity occur-
ring in the matrix to invert or in its inverse is brought out
by matrix computations. In contrast, the main objectives
of this paper were to investigate how potential sparsity in
the inverse triangular factor of A22 can be characterized
using only the pedigree, thus without requiring matrix
computations, and then use the sparsity pattern of the in-
verse triangular factor of A22 in the computation of its in-
verse. Whereas the structure of the inverse triangular
factor is known for A (positions are given by the pedigree;
values are a priori known), no information is available on
the structure of the inverse triangular factor of A22, nei-
ther on the positions of non-zero elements nor on the
values of these elements. Moreover, the inverse triangular
factor of A22 may be close to dense. Therefore, we ad-
dressed our objective in the following five steps:

(1) inversion of A22 with an algorithm that uses the
inverse triangular factor;

(2) development of an algorithm that uses pedigree
information to find the positions of the non-zero
elements (sparsity pattern) in the inverse triangular
factor of A22;

(3) inversion of A22 with the algorithm of step (1) but
restricting computations to the non-zero elements
identified by the algorithm in step (2);

(4) assessment of the time reduction when computing
the inverse as in step (3) instead of as in step (1);

(5) and evaluation of the effect of the number of
generations in the pedigree used to compute
A22, in order to reduce density of the inverse
triangular factor.

Methods
Blockwise inversion of A22

For simplicity, we assume that we are working on the
last selected animal, indexed as animal n. Similarly to in-
version of A (see equation 1.6 in Appendix 1), assume
that A22 is partitioned in a sub-matrix Z, of order (n-1),
a (n-1)-long vector y, and a scalar m as:

A22 ¼ Z y
y′ m

� �
ð1Þ

Using blockwise inversion, A−1
22 can be recursively

computed using the following equation:

A−1
22 ¼ Z−1 0

0′ 0

� �
þ 1

s
⋅ −Z−1y

1

� �
−y′Z−1 1

� � ð2Þ

where s is a scalar equal to m − y′Z− 1y.
Computing b = Z− 1y and defining α = s− 1 simplifies

equation (2) as follows:

A−1
22 ¼ Z−1 0

0′ 0

� �
þ α

−b
1

� �
⋅ −b′ 1
� � ð3Þ

Similarly, as for A (see Appendix 1), there is a link be-
tween vector b and the root-free Cholesky factorization
of A22 (A22 =TDT′), in that –b′ corresponds to the last
row of the inverse triangular factor of A22 (T

-1).
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Equation (3) shows that A−1
22 can be constructed recur-

sively by adding a vector product to the previous result
(Z-1). This recursive construction of A−1

22 will be called
“Algorithm A” and implies, from the second row to the
last row, the computation of the whole vector b.
If an animal and its parents are all selected, vector b is

as sparse as in the case of A, i.e. the only non-zero ele-
ments of b correspond to parents. Restricting computa-
tions to these elements, i.e. discarding computations
involving elements that we know equal 0, results in sav-
ing computing time. Such a case is, however, highly triv-
ial. In the next sections, we propose a method to deal
with more complex cases.
Figure 1 Small example: a population of 12 animals.
Genealogical tree for a population of 12 animals, partitioned in sub-
populations 1 (excluded, circle) and 2 (selected, square). Alphabetical
order gives the birth order.

Table 1 Matrix A22 for the example of Figure 1

C F G I J K L

C 1.00 0.25 0.25 0.25

F 1.00 0.50 0.50

G 0.25 0.50 1.00 0.06 0.06 0.25 0.25

I 0.06 1.00 0.06

J 0.25 0.06 1.00 0.06

K 0.50 0.25 1.00

L 0.25 0.25 0.06 0.06 1.00

Empty cells are 0.
Contribution of selected animals to relationships in A22:
characterizing the sparsity pattern of T-1

For animal n, vector b is the row of T-1 that spans from
column 1 to column (n-1). By definition (b = Z-1y thus
Zb = y), vector b contains the required coefficients to
compute relationships (y) of animal n with the n-1 pre-
ceding animals from the relationships between those n-1
preceding animals (Z). In the case of A, only known par-
ents of animal n are required to compute its relationships
with the preceding animals. Therefore, only positions of
known parents have a value different from zero in vector
b. In the case of A22, some selected animals replace the
parents if they are excluded: the value in b of these se-
lected animals is different from 0, which means that they
are needed to compute relationships between selected ani-
mals (y) from the relationships between all selected ani-
mals (Z). This can be illustrated by the example pedigree
in Figure 1 and Tables 1 and 2, which specifyA22 and T-1

for the example pedigree. Three cases are outlined and de-
tailed in the following:
(i) animal G has two known parents, E and F. Animal

E is excluded; its parent C (grandparent of G) is thus re-
quired (T− 1

GC ≠ 0) to explain the relationship between C
and G (A22;CG = 0.25).
(ii) animal K has one known parent, F, that is also selected.

Any relationship that K shares with other selected animals
is necessarily and only explained by F (∀X≠F ;T−1

KX ¼ 0).
(iii) animal L has one known parent, E, that is excluded.

Its selected halfsib (G) and the selected parent of G (F, which
is unrelated to L) are required, among others, to explain
any relationship that L shares with other selected animals.
Animals that are required to explain relationships of a

given selected animal with other selected animals will
hereafter be denoted as the contributors of this selected
animal. Contributors of a selected animal can be found
by an exhaustive search of selected animals that replace
any excluded parent of the selected animal. Their deter-
mination uses the pedigree and returns which elements
of b (and thereby of T-1) are worth computing because
they are expected to be non-zero. By subtraction, we
obtain which elements are zeros, which is referred to
as the “sparsity pattern” of T-1 in the following. In the
next sub-section, we propose a heuristic algorithm that
streamlines the determination of the sparsity pattern of
T-1. Similar methodologies [10,11] have been developed
for the triangular factor of a symmetric-positive definite
matrix rather than the inverse of the triangular factor.

An algorithm to set up the sparsity pattern
Our proposed heuristic algorithm to set up the sparsity
pattern of the inverse triangular factor of A22 (see pseudo-
code below) requires two inputs: the pedigree (of length
n0, renumbered and ordered: parents precede progeny)
and the subpopulation to which any animal belongs: ex-
cluded (population status is 1) or selected (population sta-
tus is 2). The purpose of the algorithm is to complete two
vectors of variable length for any animal i. The first vector
(r(i)) contains references to excluded parents of animal
i. The second vector (c(i)) contains selected contributors of



Table 2 Inverse of the triangular factor (T-1) of A22 for the
example of Figure 1

C F G I J K L

C 1.00

F 1.00

G −0.25 −0.50 1.00

I 0.02 0.05 −0.09 1.00

J −0.25 1.00

K −0.50 1.00

L −0.18 0.13 −0.27 −0.05 1.00

Empty cells are 0.
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animal i. The positions of non-zeros in the i-th row in T-1

(sparsity pattern) includes any position of the i-th row that
is listed in c(i).
Initialize a vector x as the integer sequence from 1

to n0.
For any animal i in the whole population (i goes from

1 to n0),

(0) initialize two vectors c(i) and r(i) as empty vectors
(1) if the status of animal i is 2, then append element

i to c(i); or else if the status of animal i is 1, append
element i to r(i)

(2) if the sire s of animal i is known and its status is 2,
then append element s to c(i); or else if s is known
but its status is 1, append vector r(s) to r(i)

(3) if the dam d of animal i is known and its status is 2,
then append element d to c(i); or else if d is known
but its status is 1, append vector r(d) to r(i)

(4) if the status of animal i is 2 and the vector r(i) is not
empty, then:

a. Select all elements of x that are at positions given

in r(i), remove duplicates and gather them in a
temporary list t

b. for any element k in list t,
i. Append to c(i) the elements of vector c(k) not

yet in c(i)
ii. Select elements of x that are equal to k and

replace them by i;

or else if the status of animal i is 1 or if the vector
r(i) is empty, do nothing.

If the whole population was selected (i.e. A22 =A, every
animal has status 2), it can be easily deduced from the
algorithm that only the animal itself (in step (1)) and its
known sire and dam (in steps (2) and (3)) would enter
vector c(i). The corresponding T-1 would be highly
sparse, as it is for A. This also means that if numerous
parents are selected, then this algorithm is expected to
run very fast.
An example of the use of this algorithm is given in the

Results section.
Use of the sparsity pattern in blockwise inversion of A22

The algorithm for blockwise inversion of A22 (Algorithm
A, summarized in equation (3)) is modified to account
for sparsity and will be called Algorithm B. For simpli-
city, we still consider the last selected animal (animal n).
Algorithm B reduces computations to obtain b from
y = Zb (equations 2 and 3) by three procedures, depend-
ing on the number (k) of elements in the corresponding
vector c(n) and the length of b (n-1).
The first procedure (called EMPTY) is used when k = 0

(c(n) is empty). If so, only α is added to element A−1
22;nn .

The value of α is just the inverse of A22,nn.
The second procedure (called PROD, for matrix

PRODuct) is used when k is smaller than but relatively
close to (n-1). In such a case, we perform a line-wise
partition (equation (4)) of b and Z-1 between non-zeros
(of subscript u) and null (subscript v) entries of b in
order to avoid useless computations:

bu
bv

� �
¼ bu

0

� �
¼ Zu

Zv

� �
y⇒ bu ¼ Zuy ð4Þ

Since (n-1) is the number of elements in b and k the
number of elements in bu, k dot products (of (n-1)-long
vectors) would be performed instead of (n-1) dot prod-
ucts (of (n-1)-long vectors).
The third procedure (called LS, for Linear System of

lower size) is used when k is much smaller than (n-1). In
such a case, we extend the previous partition of b to a
blockwise partition of Z and y (the non-zero and zero el-
ements of b are respectively indexed by u and v):

bu
bv

� �
¼ Zuu Zuv

Zvu Zvv

� �−1 yu
yv

� �
ð5Þ

Then, applying partitioned matrix theory to equation
(5) returns the following expressions for bu and bv (with
SZ ¼ Zvv−ZvuZ−1

uuZuv):

bu ¼ Z−1
uuyu þ Z−1

uuZuvS−1Z ZvuZ−1
uuyu − Z−1

uuZuvS−1Z yv
bv ¼ −S−1Z ZvuZ−1

uuyu þ S−1Z yv
:

�

Vector bu can be expressed in terms of bv (bu ¼ Z−1
uuyu−

Z−1
uuZuvbv ) and, since bv is a vector of zeros, it comes that

computing bu shrinks to compute only Z−1
uuyu . In other

words, the linear system Zb = y is replaced by a linear sys-
tem of lower size Zuubu = yu, and solving it is valuable only
if the number of operations required to solve it is lower
than the number of operations to achieve the product in
procedure PROD. We chose the less expensive procedure
(PROD or LS) by estimation of the number of expected
floating-point multiplications.
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Experimental design for tests on real populations
In order to evaluate Algorithm B in comparison with
regular inversion (Algorithm A), different A22 were com-
puted on the basis of a real pedigree provided by the
Luxembourg breeders society CONVIS. This pedigree
includes dairy cows from Luxembourg with their ances-
tors tracing back up to 24 generations and contains 387
499 animals. Statistics of the pedigree data are Table 3.
Selected sub-populations of three sizes (4000, 8000 and

12 000 animals) were designed and are identified hereafter
as the three size scenarios S4k, S8k and S12k. Animals of
the selected sub-populations were randomly chosen from
a pool of animals born after 1999 (128 465 animals) on
the assumption that only recent animals could be of inter-
est (those being genotyped or in production).
Because a pedigree with a lower number of extracted

generations is expected to provide a sparser T-1, the im-
pact of the number of extracted generations was also
evaluated for each size scenario. This enabled us to as-
sess how many extracted generations were required in
the pedigree to compute a A−1

22 that is a sufficient ap-
proximation to the A−1

22 computed using all available an-
cestors in the pedigree, which will be referred to as the
“real inverse”. Extracting no animals other than selected
animals refers to “generation 0”: the population is only
Table 3 Statistics of the population used (dairy cows
from Luxembourg)

Total number of animals 387 499

Number of cows 366 773

Number of bulls 20 726

Number of animals by birth year class:

Before 1950 5441

From 1950 to 1974 24 577

From 1975 to 1999 229 016

From 2000 to 2012 128 465

Maximum number of generations of pedigree 39

Average number of generations1 for animals in different birth year
classes:

Before 1950 3.28

From 1950 to 1974 6.49

From 1975 to 1999 19.03

From 2000 to 2012 25.11

Pedigree completeness: number of animals with (% of the
pedigree):

Both parents unknown: 70 167 (18.1%)

Dam known, sire unknown 69 721 (18.0%)

Sire known, dam unknown 17 141 (4.4%)

Both parents known 230 470 (59.5%)
1For a given animal, the number of generations is computed as the number of
generations between this animal and its most distant ancestor.
made of selected animals. When extracting one gener-
ation of ancestors (“generation 1”), excluded parents
enter the population. When extracting two generations
of ancestors (“generation 2”), excluded grandparents also
enter the population, and so on. Details on the number
of animals extracted and the percentage of extraction
after each generation, considered as the ratio between
the number of animals in the population and the max-
imum number of animals available in the pedigree, are
outlined in Figure 2.
Deviations from the real inverse were measured by the

following norm: N ¼ tr
�

A gð Þ
22 −A

fð Þ
22

� �′
A gð Þ

22 −A
fð Þ
22

� ��
=tr

A fð Þ
22

� �′
A fð Þ

22

	 

, where A gð Þ

22 is the inverse of A22 computed

using g extracted generations and A fð Þ
22 is the real inverse.

This norm can be interpreted as the average difference be-

tween the value of any element of A gð Þ
22 and its correspond-

ing value in A fð Þ
22 . The two matrices are equal when N is

equal to 0.
Matrix A22 was computed in two steps. Inbreeding co-

efficients were first computed for each size scenario and
number of extracted generations. The average inbreed-
ing coefficient was never greater than 1.23 % and the
greatest inbreeding coefficient was 44.53%. Matrix A22

was then computed using the method of Colleau [12].

Two test software programs
In order to evaluate potential gains in time when using
Algorithm B instead of Algorithm A to invert A22, we
developed two test programs in Fortran 95. The pro-
grams were neither optimized for speed, nor parallelized.
Therefore, all comparisons have to be interpreted as
relative figures.
The first program applies the recursive construction of

the inverse, as outlined in Algorithm A (equations (2)
and (3)). Potential null entries in y are checked to avoid
useless computations when performing product Z-1y.
The second program restricts the same recursive con-

struction of the inverse to non-zero elements by proce-
dures EMPTY, PROD and LS. Potential null entries in y
are also taken into account when performing the prod-
uct Zuy (procedure PROD). The linear system Zuubu = yu
(procedure LS) is solved by factorization and by back-
ward and forward substitutions.
For both programs, computing time was recorded

using Fortran intrinsic subroutine CPU_TIME. For the
program that uses Algorithm B, computing time in-
cludes the time required to determine the sparsity pat-
tern. All computations and file storage were performed
using double precision (15 digits). Each job was repeated
20 times on an Intel® Xeon® 64-bit processor (RAM: 8
Gb, cache size: 6 Mb, clock speed: 3 GHz).
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Figure 2 Pedigree extraction facts. Generation by generation extraction of the pedigree of the selected population for three size scenarios
(green: S4k; orange: S8k; blue: S12k): number of extracted animals (■) and proportion of selected animals in the extracted population (●),
expressed as a percentage. Extraction went up to 23 generations for scenario S4k and up to 24 generations for scenarios S8k and S12k.
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Results
Characterizing the sparsity pattern: a numerical example
The algorithm to characterize the sparsity pattern was
applied to the example pedigree of Figure 1 and speci-
fied in Table 4 (including animal status). The algorithm
starts by initializing a vector x equal to [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12]. Then, we consecutively treat each animal
depending on its status and the status of its parents.
Population status of the animal is given in a 4th col-

umn: 1 for excluded, 2 for selected.
Table 4 Renumbered pedigree for the example of Figure 1

Number Sire Dam Status

A 1 - - 1

B 2 - - 1

C 3 1 2 2

D 4 - - 1

E 5 3 4 1

F 6 - - 2

G 7 6 5 2

H 8 - 4 1

I 9 8 - 2

J 10 1 - 2

K 11 6 - 2

L 12 - 5 2
Animal 1. Status 1 and unknown parents. Thus, r(1) =
[1], c(1) = [−] and x = x.

Animal 2. Status 1 and unknown parents. Thus, r(2) =
[2], c(2) = [−] and x = x.

Animal 3. Status 2 and known parents (1 and 2; both
status 1). Thus, c(3) = [3] and r(3) = [1, 2]. The list of
elements of x that match r(3) is [1,2]. Then, c(3) = [3,
c(1), c(2)] = [3] and any element of x equal to 1 or 2 is
replaced by 3, returning x = [3, 3, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12].

Animal 4. Status 1 and unknown parents. Thus, r(4) =
[4], c(4) = [−] and x = x.

Animal 5. Status 1 and known parents (status 1 and 2).
Thus, c(5) = [3] and r(5) = [5, r(4)] = [5, 4]. No list to
set up because animal has status 1; x = x.

Animal 6. Status 2 and unknown parents. Thus, r(6) =
[−], c(6) = [6] and x = x.

Animal 7. Status 2 and known parents (status 1 and 2).
Thus, c(7) = [7, 6] and r(7) = [r(5)] = [5, 4]. The list of
elements of x that match r(7) is [4,5]. Then, c(7) = [7,
6, c(5), c(4)] = [7, 6, 3] and any element of x equal to 5
or 4 is replaced by 7, returning x = [3, 3, 3, 7, 7, 6, 7,
8, 9, 10, 11, 12].

Animal 8. Status 1 and one known parent (status 1).
Thus, r(8) = [8, r(4)] = [8, 4], c(8) = [−] and x = x.

Animal 9. Status 2 and one known parent (status 1).
Thus, c(9) = [9] and r(9) = [r(8)] = [8, 4]. The list of
elements of x that match r(9) is [7,8]. Then, c(9) = [9,
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c(8), c(7)] = [9, 7, 6, 3] and any element of x equal to 8
or 7 is replaced by 9, returning x = [3, 3, 3, 9, 9, 6, 9,
9, 9, 10, 11, 12]

Animal 10. Status 2 and one known parent (status 1).
Thus, c(10) = [10] and r(10) = [r(1)] = [1]. The list of
elements of x that match r(10) is [3]. Then, c(10) =
[10, c(3)] = [10, 3] and any element of x equal to 3 is
replaced by 10, returning x = [10, 10, 10, 9, 9, 6, 9, 9,
9, 10, 11, 12]

Animal 11. Animal has status 2 and has one known
parent (status 2). Thus, c(11) = [11, 6] and r(11) = [−].
No list to set up because r(11) is empty; x = x

Animal 12. Status 2 and one known parent (status 1).
Thus, c(12) = [12] and r(12) = [r(5)] = [5, 4]. The list of
elements of x that match r(12) is [9]. Then, c(12) =
[12, c(9)] = [12, 9, 7, 6, 3] and any element of x equal
to 9 is replaced by 12, returning x = [10, 10, 10, 12,
12, 12, 12, 12, 12, 10, 11, 12]

Vectors c(i) of the selected animals (3, 6, 7, 9, 10, 11
and 12) contain the non-zero elements of T-1 (Table 5)
and these match with T-1 in Table 2.
Effect of accounting for sparsity on CPU time for
inversion of A22

Algorithms A and B were both applied to the matrices
created by different pedigree extractions of the three size
scenarios. The elapsed CPU time results (averaged over
20 repetitions) are shown in Figure 3. Taking sparsity
into account (Algorithm B) instead of using an inversion
algorithm with cubic complexity (Algorithm A) reduced
the elapsed CPU time for computing the inverse. For in-
stance, the relative gains in computing speed of Algo-
rithm B for the fully extracted pedigree were 1.67 faster
for S4k, 1.75 faster for S8k, and 1.77 faster for S12k.
Effect of the number of extracted generations on
accuracy of A−1

22

For each size scenario, A22 was computed using different
numbers of extracted generations and the inverses were
Table 5 Sparsity pattern of T-1 for the example of Figure 1

C F G I J K L

C X

F X

G X X X

I X X X X

J X X

K X X

L X X X X X

x indicates non-zero entries.
compared (Figure 4) to A−1
22 computed using the fully ex-

tracted pedigree (after 23, 24 and 24 generations respect-
ively for scenarios S4k, S8k and S12k) by computing the
norm N. As shown in Figure 4, regardless of the size of
the matrix, the norm stabilized after 14 generations to
values less than 1E-13, which can be attributed to errors
due to precision.
Discussion
Computation time required by the algorithm to
characterize the sparsity pattern
Figure 5 shows the elapsed CPU time (averaged over 20
repetitions) when running the proposed algorithm to de-
termine the sparsity pattern of T-1 on populations with
different numbers of selected animals (4000; 8000; 12
000) and that were extracted from several generations.
The curves of the three size scenarios (S4k, S8k and
S12k) presented a similar behavior. When the population
consists only of selected animals (generation 0), the
elapsed time was less than 1 second (S4k: 0.03 s, S8k:
0.11 s and S12k: 0.29 s). For this case, only non-zero en-
tries occur for selected sires or dams of selected animals,
a fortiori present in the pedigree. Then, elapsed CPU
time increased linearly up to the 15th extracted gener-
ation, although at a different rate for the different size
scenarios. Beyond that point, adding ancestors did not
affect the elapsed time. These results have to be related
with pedigree extraction (Figure 2): does it make sense
to spend more time for additional generations? Almost
all available ancestors have entered the population after
extracting 10 generations (between 95-99% of the num-
ber of animals in the last extraction round). However,
elapsed CPU time continued to increase at the same rate
from generations 10 to 15. For instance, in scenario
S12k, adding ~3% of the final population cost an add-
itional ~4 seconds (or ~22% of the total elapsed time).
The usefulness of this small group of remote ancestors
for inversion of A22 is discussed hereafter (sub-section
“Number of generations to extract”).
For the fully extracted population (after 23, 24 and 24

generations for scenarios S4k, S8k and S12k, respect-
ively), there was a close-to-linear relationship between
the size of the selected population and the elapsed CPU
time (approximately 6 seconds for 4000 additional
animals in the selected sub-population). The effective
computational complexity of this algorithm is difficult
to establish, however, because it mostly depends, first,
on how the population was split (for instance, a selected
sub-population that includes mainly a few lines or
families would not contain that many excluded parents)
and, secondly, on how the population is structured
(depth of the pedigree, effective size of the population,
average inbreeding). The embedded loop in the algorithm
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Figure 3 CPU time required for inversion of A22 by two algorithms. Elapsed CPU time required for inversion of A22 of three different sizes
(green: 4000; orange: 8000; blue: 12000), computed using pedigrees with different numbers of extracted generations, by algorithms B (■) and A
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Figure 5 CPU time required for determination of the sparsity pattern of T-1. Elapsed CPU time required by the proposed algorithm for
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(step (4b) in the pseudo-code) is the main computational
bottleneck and performs k iterations. In a population of n0
animals, if k is related to the two factors mentioned above
(i.e. splitting and structure of the population), then the
computing time required by the algorithm would behave
as n0 ⋅ k, where k would be a case-specific factor. This
agrees with the observations in Figure 5.
Memory requirements of the algorithm to characterize
the sparsity pattern
For a population of n0 animals with n selected animals, vec-
tors c(i) and y(i) have the greatest RAM requirements. In our
implementation, vector y(i) stores few elements (positions of
excluded ancestors) for all animals (thus ~ n0 integers). For
selected animals, vector c(i) stores non-zero positions and in-
cludes approximately n⋅ n⋅�d

� �
integers, where �d is the aver-

age density of T-1 (number of non-zeros in the lower part of
T-1 averaged by line). For excluded animals, c(i) accounts for
potential selected ancestors, therefore including approxi-
mately n0−nð Þ⋅�a integers, where �a is the average number of
selected ancestors per excluded animal. Memory would thus
be allocated for approximately n2�d þ n0−nð Þ⋅�a integers.
None of these integers may be declared as 3-byte integers
when n0 is lower than 224 (i.e. when pedigree contains less
than 16.77 millions of animals).
Use of the algorithm to characterize the sparsity pattern
on greater populations
If additional animals are selected, then the proportion of
selected animals in the population would likely increase.
In fact these additional animals would either bring new
excluded ancestors (case 1), share ancestors with already
selected animals (case 2), or have no registered parents
in the pedigree (case 3). The two last cases are expected
to be more important as the number of selected animals
increases. Therefore, matrix T-1 of such a population
should get sparser. These expectations were confirmed
by randomly picking animals from the pool of 128 465
animals born after 1999, simulating eight larger selected
sub-populations of 16 000 up to 128 000 animals. Table 6
gives sizes and proportions of the selected sub-
populations. Using a computer with higher memory re-
sources (64 Gb of RAM), the sparsity pattern of these
new situations was computed. Then, the degree of spars-
ity was assessed as the percentage of null entries in the
lower triangular part of T-1 for these new situations, as
well as for previous size scenarios. The results in Figure 6
show that the degree of sparsity remained the same for
low percentages of selected animals in the population
(lower than 20%), while the degree of sparsity increased
linearly beyond approximately 20 k animals in these spe-
cific cases. The average degree of sparsity by number of
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selected animals corresponded to the average number of
contributors for a given animal in a given size situation.
Figure 7 shows that the average number of contributors
was linearly related to the number of selected animals up
to ~80 k selected animals, beyond which the average
number of contributors was constant. We expected the
average number of contributors to decrease as the num-
ber of selected animals increased. These new selected an-
imals would then cover more of the relationships due to
excluded animals. Note that the average number of
Table 6 Populations extracted for different sets of
selected animals

Number of
selected animals

Size of the extracted
population

Proportion of selected
animals in the extracted
population (%)

4 000 40 196 9.95

8 000 59 120 13.53

12 000 73 864 16.25

16 000 87 237 18.34

32 000 127 809 25.04

48 000 159 259 30.14

64 000 183 750 34.83

80 000 204 637 39.09

96 000 222 546 43.14

112 000 238 130 47.03

128 000 252 147 50.76
contributors would be less than 2 if all animals were
selected (i.e. A22 =A).

Computation time required by the algorithm for inversion
of A22 using the sparsity pattern (Algorithm B)
When running Algorithm B, the procedure (EMPTY,
PROD or LS) to compute vector b was chosen according
to the estimated number of floating-point multiplica-
tions to be performed. A view of this choice along all
(n-1) lines of T-1 is given in Figure 8 for each size sce-
nario (A22 was always computed using a fully extracted
pedigree). Due to prior reordering of the pedigree by
generation, the first lines of T-1 correspond to founders
(unrelated animals) and are thus empty. Procedure LS
occurred less than procedures EMPTY and PROD but
was evenly distributed among line numbers, particularly
for scenario S12k.
Considering Algorithm B led to estimation of the com-

putational complexities based on the expected number
of floating-point multiplications involved in the different
tasks achieved by Algorithm B, as specified in Table 7.
Total complexity is detailed for treatment of one line
and for treatment of one full matrix of order n in Table 7,
where treatment refers to all tasks to be performed, i.e.
computing b and adding bb′ to the previous inverse. If k
(average number of contributors) is considered as inde-
pendent of n, the most complex term is O(n2 ⋅ k), which
is required when using the PROD procedure (propor-
tion pP of the total). The PROD procedure is used less
frequently for greater matrices (see Figures 8 and 9
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Table 7 Estimated computational complexity1 of Algorithm B

Procedure Complexity for line i Proportion Complexity on n lines

EMPTY 1 pE pE ⋅ O(n)

LS O(k3) + O(k2) + O(k) pL pP ⋅ [O(n ⋅ k
3) + O(n ⋅ k2) + O(n ⋅ k)]

PROD O(k2) + O(k ⋅ i) pP pP ⋅ [O(n ⋅ k
2) + O(n2 ⋅ k)]

Total O k3
� �þ O k2

� �
þO k⋅ið Þ þ O kð Þ 1 pP⋅O n2⋅kð Þ þ pL⋅O n⋅k3

� �þ pL þ pPð Þ⋅O n⋅k2
� �

þpL⋅O n⋅kð Þ þ pE⋅O nð Þ
Matrix is of order n and average number of contributors is k;
1computational complexity is assessed as the expected number of floating-point multiplications to be performed.
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beyond 80 k animals). Treating k as independent of n is
also a more reasonable assumption for greater matrices
(Figure 7), since k is undoubtedly related to n for
smaller matrices. The total complexity for a matrix of
order n becomes:

�d
� �3

pLO n4ð Þ þ �d pP þ �d
� �2

pL þ pPð Þ
h i

⋅O n3ð Þ
þ�d pLO n2ð Þ þ pEO nð Þ

;

where �d represents the average density of the matrix.

The most complex term �d
� �3

pLO n4ð Þ
� �

is tempered by

two very low coefficients: the proportion of times the
LS procedure is used (pL), which may be very low for
small matrices (Figure 9), and the cube of the average
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Figure 9 Proportional use of different procedures in algorithm B. Prop
yellow: LS; blue: PROD), for different numbers of selected animals (in thousa
density �d
� �

, which was lower than 0.5 in our examples
(Figure 6) for matrices of order beyond 32 000. Thus,
Algorithm B seems more suitable for large matrices
than for small matrices, regardless of whether there is
dependence between n and k or not.
The issue of numerical stability was also addressed.

When using procedure PROD, the result of the previous
iteration was used in the current iteration through α and
b. Accumulating errors could lead to instabilities and/or
divergences. However, in LS procedure, the result of the
previous iteration does not affect the b that is computed.
Choosing the LS procedure at regular intervals among
iterations using the PROD procedure (see Figure 8) stops
the accumulation of errors that could have resulted from
continuously choosing the PROD procedure. Therefore,
interlacing choices for both procedures is a good way to
48k 64k 80k 96k 112k 128k
lected animals 

ortional (%) use of the three procedures in algorithm B (green: EMPTY;
nds of animals).
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prevent numerical instability. Independence between it-
erations also allows procedure LS to parallelized.

Memory requirements of the algorithm for inversion of
A22 using sparsity pattern (Algorithm B)
Algorithm B requires allocation of more than twice the
RAM than Algorithm A because it cannot store the re-
sults of the inversion in the input matrix. This is due to
procedure LS working on different parts of A22. How-
ever, since elements that are required for LS are identi-
fied when determining the sparsity pattern, they could
be stored separately in order to reduce the amount of
RAM required. For that reason, sparsity patterns should
be established prior to computation of A22 to determine
which relationships are worth being computed.

Number of generations to extract
The depth of the pedigree to be used for instance in
genetic evaluations, is still a question of debate, and
often moderately deep pedigrees are used, especially
when only recent data is analyzed.
Results in Figure 4 suggest that pedigree from a limited

number of generations (5 to 10) is sufficient to compute
A−1

22 with reasonable accuracy. The explanation is that dis-
tant ancestors do not greatly enhance a relationship. For
instance, a common ancestor to animals i and j that enters
the pedigree after g extracted generations and that is older
than any selected animal, can only add up to 2− 2g to the
value of the relationship between i and j. In generation g, i
and j can have a maximum of 2g common ancestors.
Therefore, extracting an additional generation can in-
crease the relationship between i and j by only up to
δ = 2− g. Regardless of the number of animals added to the
pedigree when extracting generation 10, the maximum
change brought to any relationship reduces to less than
0.001, which would have a minor effect on the inverse
scale, as confirmed by Figure 4.
However, computing time required for determination of

the sparsity pattern increases linearly after 10 generations
(Figure 5). Thus, limiting extraction of pedigree to 10 gen-
erations appears to be a good balance between taking into
account relationships due to distant ancestors and com-
puting time. Applying a similar study to pedigree extrac-
tions for routine genetic evaluations would be meaningful
and may lead us to consider extracting a number of gener-
ations instead of a birth year limit, which is current com-
mon practice.

Practical use in a genomic background
For genomic evaluations, two specific situations where
A−1

22 is needed may require the use of Algorithm B. First,
as explained above and shown in equation (3), the in-
verse of the matrix is computed recursively by adding a
block specific to the current animal to the previous in-
verse. At each genomic evaluation, A−1

22 could therefore
be stored in a file and reused at the next evaluation
cycle. At each evaluation, the matrix would be enhanced
by adding newly genotyped animals. However, this ap-
proach has some limits:

(1) Animals have to be listed by generation order and
only animals younger than those already genotyped
can be added because older animals may cause
changes in the sparsity pattern. This could be easily
implemented in a cattle breed such as Holstein, where
only few animals are key ancestors of the breed.

(2) The resulting file may be large but this could be
reduced by sparse storage approaches.

Meyer et al. [13] recently applied a similar method-
ology for computation of the inverse of the genomic re-
lationship matrix (G): their methodology also updates
the previous inverse of G, necessitating its storage on
disk from an evaluation to the next one.
Secondly, when using a pedigree of only one extracted

generation, which contains genotyped animals and their
ungenotyped parents, inversion of A22 is even faster
(Figure 6) and the inverse seems to be a reasonable ap-
proximation of A−1

22 computed with a full extracted pedi-
gree (see Figure 4 and Discussion here above). Such a
fair approximation of A−1

22 may be useful as a precondi-
tioner to solve A22x = v, for instance, as required in the
iterative solution of MME of single-step genomic BLUP
(best linear unbiased prediction) proposed by Legarra
and Ducrocq [14].
Current limits
The algorithm to determine the sparsity pattern of the
inverse triangular factor of A22 is obviously useful only
in inversion algorithms that use the inverse triangular
factor. For other inversion algorithms, the algorithm to
determine the sparsity pattern should not be useful.
Inversion algorithms that use the inverse triangular

factor are useful in certain cases (e.g., for updating an
inverted matrix or for obtaining quick approximations),
but they would be less efficient, in terms of computing
time, for the single purpose of inversion. The time re-
quired by Algorithms A and B was compared with the
time required by subroutine “dkmxhf.f90” (K. Meyer,
University of New England, Australia), which is a regular
and efficient inversion algorithm. For inversion of the
three different orders of A22 (4000, 8000 and 12 000),
computing times of dkmxhf.f90 were lower than com-
puting times obtained with Algorithm A and similar to
those obtained with Algorithm B (accounting for spars-
ity). For small numbers of extracted generations,
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computing times were slightly lower for Algorithm B
than dkmxhf.f90, but were greater when greater num-
bers of generations were extracted. However, the com-
puting speed of Algorithm B can benefit from several
optimizations (e.g., parallelization of the LS procedure
and use of specific libraries for matrix products).
For computational ease, a small population (less than 1

million animals) was used in this study. Gains in comput-
ing time have to be tested for other sizes of population.
This study was also restricted to only one population by
size scenario and used repetitions (20) of the algorithm on
the same data. Use of a Holstein population may also be
criticized because although the average computed in-
breeding was never greater than 1.23%, such a population
has few key ancestors. Having the key ancestors in the se-
lected sub-population might avoid density, because they
would be contributors of many other selected animals.

Conclusions
The determination of the sparsity pattern of T-1 using
pedigree information is a prior step that allows gains in
computing time for inversion based on the use of T-1. This
allowed the computing time for inversion of matrices of
three different sizes (4000, 8000 and 12 000 selected ani-
mals) to be reduced by a factor 1.73 on average. Gains in
computing time are expected to be higher if the number
of selected animals exceeds 80 000. Memory requirements
for inversion of such a matrix would increase and the al-
gorithm would become numerically more stable, since the
LS procedure would become more important than the
PROD procedure. Moreover, computation of the inverse
by a recursive method may be very helpful in the case of
genomic prediction, where a new batch of younger se-
lected animals at each upcoming evaluation must be added
to the previous inverse matrix already computed.
The results on the number of pedigree generations re-

quired for the selected animals suggest that no more
than 14 generations should be extracted. If the working
precision is less than 15 digits, this can even be reduced.
A good balance between computing time for determin-
ation of the sparsity pattern and accuracy may be
achieved with 10 extracted generations.
Appendix
Appendix 1: Inversion of the numerator relationship
matrix using the inverse triangular factor
The numerator relationship matrix (A) can be factorized as

A ¼ TDT′: ð1:1Þ

Henderson [8] proposed a recursion rule to compute
the triangular factor T:
T ið Þ ¼ T i−1ð Þ 0
b ið Þ′ T i−1ð Þ 1

� �
ð1:2Þ

In equation (1.2), T(i-1) and T(i) are two matrices of re-
spective sizes (i-1) and i. They refer T computed after, re-
spectively, (i-1) and i recursions. Vector b(i) is a vector of
parental contributions: it summarizes the linear depend-
ency between parents and offspring. This vector is null ex-
cept on positions corresponding to parents of i where it is
equal to 0.5. Henderson [8] also showed that the inverse
triangular factor (T-1) only contains three different values:
0, 1and −0.5, since it is obtained by triangular matrix in-
version (equation 1.3). The elements of the diagonal are
equal to 1 and the lower off-diagonal elements are equal
to the vector −b′ið Þ corresponding to the ith animal; they

contain thus only 0 and −0.5 elements.

T−1
ið Þ ¼

T−1
i−1ð Þ 0

−b′ið Þ 1

" #
ð1:3Þ

Besides T, the diagonal matrix D is computed one
element at a time according to Henderson [8] and Quaas
[15]. At the ith recursion D(i) has the form:

D ið Þ ¼ D i−1ð Þ 0
0′ dii

� �
ð1:4Þ

Replacing equations (1.2) and (1.4) in (1.1) shows that
the recursion rule for computation of T is actually iden-
tical to that of the tabular method (equation 1.5.3, Emik
and Terril [16]; Henderson [8]), since it computes the
last below-diagonal row in A(i) as a linear combination
of rows in A(i-1).

A ið Þ ¼ T ið ÞD ið ÞT ið Þ′ ð1:5:1Þ

¼ T i−1ð ÞD i−1ð ÞT′
i−1ð Þ T i−1ð ÞD i−1ð ÞT′

i−1ð Þb ið Þ
b′ið ÞT i−1ð ÞD i−1ð ÞT′

i−1ð Þ b′ið ÞT i−1ð ÞD i−1ð ÞT′
i−1ð Þb ið Þ þ dii

" #

ð1:5:2Þ

¼ A i−1ð Þ A i−1ð Þb ið Þ
b′ið ÞA i−1ð Þ b′ið ÞA i−1ð Þb ið Þ þ dii

� �
ð1:5:3Þ

Replacing b′ið ÞA i−1ð Þb ið Þ þ dii in equation (1.5.3) by aii
(the equivalence can be easily shown) expresses the
tabular method as in van Arendonk et al. [9]:

A ið Þ ¼
A i−1ð Þ A i−1ð Þb ið Þ

b′ið ÞA i−1ð Þ aii

� �
ð1:6Þ

Applying the partitioned matrix theory to equation
(1.6), van Arendonk et al. [9] structured A-1 as a sum
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of n updates of a null matrix (recursion rule in equa-
tion 1.7) involving multiplication of a sparse vector
(−b(i)) by itself.

A−1
ið Þ ¼

A−1
i−1ð Þ 0

0′ 0

� �
þ 1
dii

−b ið Þ
1

� �
−b′ið Þ 1

h i
ð1:7Þ

The sparse vector -b(i) is actually the transpose of the
i-th below-diagonal row of T-1 (see equation 1.3). Such a
construction of A-1 requires thus to know the following:

(1) the positions and values of non-zero elements in b
(i), i.e. the structure of T-1;

(2) some elements of the original matrix, to compute
dii as aii−b′ið ÞA i−1ð Þb ið Þ.

After meeting these requirements (determination of
the structure of the inverse triangular factor and com-
putation of some elements of the original matrix), the
same framework was extended to the inversion of other
relationship matrices used in animal breeding (e.g.
gametic relationship matrix [17], dominance [18] and
epistasis [19] effects or covariance matrix of marked
QTL effects [20]).
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