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Abstract

Background: One method to improve durably animal welfare is to select, as reproducers, animals with the highest
ability to resist or tolerate infection. To do so, it is necessary to distinguish direct and indirect mechanisms of
resistance and tolerance because selection on these traits is believed to have different epidemiological and
evolutionary consequences.

Methods: We propose structural equation models with latent variables (1) to quantify the latent risk of infection
and to identify, among the many potential mediators of infection, the few ones that influence it significantly and
(2) to estimate direct and indirect levels of tolerance of animals infected naturally with pathogens. We applied the
method to two surveys of bovine mastitis in the Walloon region of Belgium, in which we recorded herd
management practices, mastitis frequency, and results of bacteriological analyses of milk samples.

Results and discussion: Structural equation models suggested that, among more than 35 surveyed herd
characteristics, only nine (age, addition of urea in the rations, treatment of subclinical mastitis, presence of dirty
liner, cows with hyperkeratotic teats, machine stripping, pre- and post-milking teat disinfection, and housing of
milking cows in cubicles) were directly and significantly related to a latent measure of bovine mastitis, and that
treatment of subclinical mastitis was involved in the pathway between post-milking teat disinfection and latent
mastitis. These models also allowed the separation of direct and indirect effects of bacterial infection on milk
productivity. Results suggested that infected cows were tolerant but not resistant to mastitis pathogens.

Conclusions: We revealed the advantages of structural equation models, compared to classical models, for
dissecting measurements of resistance and tolerance to infectious diseases, here bovine mastitis. Using our method,
we identified nine major risk factors that were directly associated with an increased risk of mastitis and suggested
that cows were tolerant but not resistant to mastitis. Selection should aim at improved resistance to infection by
mastitis pathogens, although further investigations are needed due to the limitations of the data used in this study.
Background
Public concern about farm animal welfare has steadily
grown during recent years and scientists have searched
methods to improve the ability of animals to defend
themselves against pathogens.
One method is to select as reproducers, animals with

the highest ability to fight infection. Indeed, it is well
established that this ability varies substantially among
and within breeds and is at least partly under genetic
control [1]. The ability to fight infection may be
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reproduction in any medium, provided the or
characterized by two mechanisms: resistance, i.e., the
ability to limit the parasite burden, and tolerance, i.e.,
the ability to limit the damage caused by a given parasite
burden [2]. Operationally, resistance is typically mea-
sured by the number of parasites per host or per unit of
host tissue [2,3] while tolerance is defined as the slope
of a regression of host performance against infection in-
tensity [2,3].
Mechanisms of resistance and tolerance can be further

differentiated into direct and indirect mechanisms. Re-
sistance traits are ‘direct’ when they reduce pathogen
transmission by contact (resistance to infection) and ‘in-
direct’ when they reduce pathogen growth rate once in-
fection has occurred, through the establishment of an
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immune response (resistance to disease). Tolerance
traits are direct when they aim at reducing damage
inflicted by the pathogen and indirect when the damage
is caused by the immune response [4]. The distinction
between these traits is important when determining se-
lection objectives because they are predicted to have dif-
ferent evolutionary effects on pathogens and hosts [3,4]
and they have been found to be negatively genetically
correlated in plants and mice [2]. One way to test
whether mechanisms are direct or indirect is to use
structural equation models (SEM). These are multiple-
equation regression models in which the response
variable in one regression equation can appear as an ex-
planatory variable in another equation. Variables can in-
fluence one-another reciprocally, either directly, or
indirectly. A direct effect occurs if an explanatory vari-
able influences the response variable directly, i.e., with
no variables in the pathway between explanatory and re-
sponse variables, and an indirect effect occurs when the
influence of the explanatory variable on the response
variable is mediated by one or more intervening vari-
ables. The sum of direct and indirect effects is the total
effect [5].
The SEM can also be used to estimate the risk of in-

fection, which is necessary to compare levels of direct
resistance of animals placed in natural conditions. In-
deed, the number of parasites in resistant animals living
in an infected environment may be identical (or even
higher) to the number detected in susceptible animals
located in a clean environment. Therefore, for a fair
evaluation, it is necessary to compare animals with the
same opportunity or risk of encountering the pathogen.
Unfortunately, estimating this risk of infection is not
possible in field studies, since detailed and expensive
epidemiological and laboratory data are needed, such as
structures of contact between hosts and time data on
when infection enters the population. An alternative is
to characterize the risk of infection in each herd based
on management practices known to influence it signifi-
cantly and to classify herds into categories, from ‘high-
risk’ to ‘low-risk’, based on these management practices.
Herd management practices known to influence the risk
of infection are numerous. For example, in bovine mas-
titis, Dufour et al. [6] identified more than one hundred
such management practices. Besides being too numerous
to be all surveyed on a routine basis, these practices are
interrelated. One way to reduce the complexity of such
situations is to use SEM with latent variables. A latent
variable is a variable that cannot be measured but is in-
ferred from one or more observed variables [5]. Manage-
ment practices related to the risk of infection can then
be aggregated in a few numbers of latent variables and
alternative hypotheses about the relationships between
latent variables and risk of infection can be tested.
The objective of this paper was to apply SEM to bo-
vine mastitis. Specifically, we used SEM to (1) identify
management practices that are directly related to the
risk of infection in dairy herds of the Walloon region of
Belgium and (2) estimate direct and indirect levels of
tolerance of cows located in these herds.

Methods
Risk of infection
Data were from a random stratified sample of 345 dairy
farms surveyed between January 2006 and October 2007
in the Walloon region of Belgium (project OSaM
‘Observatoire de la Santé Mammaire’). Farm characteris-
tics and measures of herd prevalence were recorded for
each farm. A complete description of animals and mea-
surements can be found in Detilleux et al. [7]. Briefly,
measures of mastitis prevalence (n = 6) included herd
average of individual somatic cell count (SCC), herd
somatic cell score (SCS), number and percentage of
cows with SCC above 400 000 cells, and of cows milked
aside because of high SCC. Farm characteristics (n = 35)
consisted of herd demographics, productive and repro-
ductive indicators, feeding procedures, types of housing,
strategies of mastitis prevention and treatment, and
milking methods.
We considered 28 latent variables in the first equation

of the SEM, often called the ‘measurement’ part of the
SEM. Each latent variable covered observed variables that
were significantly associated with each other (one-to-one
association; p ≤ 0.10). The first latent variable (η1, called
‘MAM’) included all six measures of mastitis frequency.
The second latent variable (η2, called ‘AGE’) covered herd
parity, age, and percentage of heifers in the herd. The third
latent variable (η3, called ‘PROD’) included milk produc-
tion, protein and fat percentages, and total milk quota.
The fourth latent variable (η4, called ‘NUM’) covered the
number of lactating and dry cows, and the fifth included
time to prepare the udder, delay in installing the machine
and the practice of hand washing after milking (η5 or
‘MLK’). The remaining 23 latent variables corresponded to
the remaining 23 observed variables because no one-to
-one associations were found among them. In the second
equation of the SEM, the ‘structural’ part of the SEM, we
modeled the links among the 28 latent variables (η). The
premises for constructing this part of the SEM were that
all latent variables could affect MAM and be themselves
affected by latent variables other than MAM and by the
variable itself.
In matrix notation, the SEM is:

y ¼ Ληþ υ;

η ¼ Bηþ ζ;

where y is the (41 X 1) vector of observed variables, η is
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the corresponding (28 X 1) vector for latent variables,
and υ and ζ are the corresponding vectors of error
terms. It is assumed E(υ) = 0, var(υ) =Θ, E(ζ) = 0, and
var(ζ) =Ψ. Elements (λ) of Λ are partial regression coef-
ficients relating latent variables to the observed vari-
ables, while elements (β) of B connected latent variables
among them (direct and indirect effects). All computa-
tions were done with the LISRELW program 2.8 [7],
using the maximum likelihood–mean adjusted method
[8]. Following [9], we considered as final, the model that
had the superior fit. This model was the model for
which the root mean square error of approximation
(RMSEA) ≤ 0.05, the Goodness of Fit Index (GFI) ≥ 0.9,
the Normed Fit Index (NFI) ≥ 0.9, and for which partial
regression coefficients (β) were not different from null
(p < 0.05).

Direct and indirect tolerances
Data were from cows belonging to four farms surveyed
by the project OSAM. During April 2012, two surveyors
collected milk samples from 346 cows, immediately be-
fore evening milking. They cleaned teat ends with alco-
hol swabs and allowed them to dry. They discarded the
first few streams and collected milk samples in sterile
plastic tubes. Samples were immediately cooled, trans-
ported in cool bags to the Bacteriology laboratory of the
Veterinary Faculty in Liège, and stored overnight at 4°C.
In the absence of macroscopic alteration of the milk,
one mL from each quarter of a cow were pooled and
100 μL were inoculated onto Columbia base agar
(Merck-VWR, Belgium) plates supplemented with 5%
bovine blood that were incubated overnight at 37°C.
Milk samples with less than 100 CFU/mL of one/two

or of several different colony types were marked as
‘negative’ or ‘contaminated’, respectively. Samples with
over 100 CFU/mL were marked as ‘positive’ if a max-
imum of two types of colonies were detected. Samples
with over 100 CFU/mL and more than two colony types
were also marked as ‘positive’ (but contaminated) if one
colony type had counted for over 100 CFU/mL. Milk
Table 1 Growth characteristics of the major and minor mamm

Properties** 1 2 3 4 5

Staphylococci + Cocci + - +

Streptococci + Cocci - - +

Enterococci + Cocci - - +

Enterobacteria - Short rods + - +

Pseudomonads - Short rods + + +

Corynebacteria + Short rods +, - - +

Bacilli + Long rods + - +
*Presence of strict anaerobes and mycoplasmas was not assessed; **properties are 1
production, 5 = growth on Columbia blood agar, 6 = haemolysis on Columbia blood
9 = growth on Chapman agar, 10 = growth on Edwards medium, 11 = esculin hydro
fermenting species of Escherichia, Klebsiella, Enterobacter genders; *****due to the pr
samples with macroscopic alterations and from each
quarter of the ‘positive’ cows were individually inocu-
lated onto the same blood agar plates and incubated
overnight. Growth results were analyzed as described
above. Counts from duplicate plates were averaged and
CFU/mL were recorded as total bacterial infective dose
for each quarter. Colonies from positive samples were
identified to the following groups according to Gram
staining, production of catalase and/or oxidase, produc-
tion of haemolysis on blood agar plates and growth on
selective agar plates (Table 1): Gassner (Merck-VWR,
Belgium) for lactose fermentation by enterobacteria, Chap-
man (Merck-VWR, Belgium) for staphylococci growth and
modified Edwards Medium (Oxoid, Belgium) with 5%
bovine blood for esculin hydrolysis by streptococci/entero-
cocci [10].
For statistical analyses, only the genus of major or

minor mammary gland bacteria (Table 1) was taken into
account. We computed udder-composite CFU as the
sum of CFU of all bacterial species and all quarters, and
restricted our study on direct and indirect tolerances to
cows with udder-composite CFU > 0. We extracted data
on udder-composite SCC (SCC = n cells/103 per mL)
and milk yield (= kg*10) from the regional milk-
recording database from the date closest to the date
when milk samples were collected. We computed bulk
tank SCC by weighting individual SCC of all cows
present in the herd by their milk production. We log-
transformed SCC and CFU (base 2) so their distributions
were closer to normality. Next, we constructed latent
variables (denoted SCC*, CFU*, and milk*) for log(SCC),
log(CFU) and milk yield to translate the fact that ob-
served values were not error-free. We postulated four
different SEM to analyze the possible interrelations be-
tween SCC*, CFU* and milk*, considering milk* as the
end-point. Possible causal relations between SCC* and
CFU* that were investigated were: (a) CFU* and SCC*
are unrelated (null model), (b) CFU* influences SCC*
(bacterial infection elicits an immune response), and (c)
SCC* influences CFU* (immune response impacts
ary gland pathogens*

6 7 8 9 10 11

β, - - NR*** + - NR

α, β, - - NR - + +, -

α - NR - + +

α, β, - + +****, - - - NR

β*****, - + - - - NR

β, - - NR - - NR

β, - - NR +, - - NR

= Gram staining, 2 =morphology, 3 = catalase production, 4 = peroxidase
agar, 7 = growth on Gassner agar, 8 = lactose fermentation on Gassner agar,
lysis on Edwards agar; ***NR = not relevant; ****also named coliforms: lactose-
oduction of pigments the haemolysis zone can appear green to blue-green.
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bacterial infection). Each model included also the poten-
tial effects of bulk tank SCC, month in milk (fourth de-
gree polynomial) and parity. In matrix notation, the
SEM is:

y ¼ Ληþ υ;

η ¼ Bηþ Γξþ ζ;

where y is the vector of observed CFU, SCC and milk
yield; η is the corresponding vector for latent variables
(CFU*, SCC*, MILK*); ξ is the vector for the effects of
bulk tank SCC, parity and month in milk; υ and ζ are
the corresponding vectors of error terms, with E(υ) = 0,
var(υ) = I, E(ζ) = 0, and var(ζ) =Ψ. Elements of υ and ζ
were assumed independent. We performed statistical
analyses with SAS9.1 using the CALIS procedure [11].
Parameters and effects (direct, indirect and total) were
estimated by maximizing the likelihood of the data.
Standard errors for effects were obtained by boos-
trapping the sample cows (1000 samples). Fit criteria
included RMSEA, GFI and NFI [12].
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Figure 1 Final structural model describing the direct (straight line) an
health (MAM) and risk factors.
Results
Risk of infection
Goodness-of-fit statistics (RMSEA < 0.01, NFI = 0.95,
and GFI = 1.0) indicated that the final SEM closely fitted
data. Standardized estimates of elements of Λ (measure-
ment model) were close to or above 0.5 and significantly
different from 0 at the 0.01 level, suggesting that the ob-
served measurements were valid indicators of their cor-
responding latent variables [7]. Standardized estimates of
elements of B (structural model) retained in the final
SEM are given in Figure 1. Only nine herd characteris-
tics (AGE, addition of urea in the rations, presence of
dirty liners, cows with hyperkeratotic teats, machine
stripping, pre- and post-milking teat disinfection, and
housing of milking cows in cubicles) were directly and
significantly related to MAM. The three most influential
variables increasing MAM were the presence of dirty
liners, followed by the addition of dietary urea, and the
practice of pre-milking teat disinfection. In contrast,
post-milking teat disinfection (the only variable with a
coefficient below −0.10) was negatively associated with
MAM, with a direct standardized link of −0.12 (SE =
0.02). Post-dipping was also indirectly and positively
PROD
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associated with MAM through its effect on the interven-
ing variable ‘Treatment of subclinical cases of mastitis’.
Latent variables PROD and NUMB were indirectly ra-
ther than directly associated with MAM, through their
effects on some of the practices directly associated with
MAM.

Direct and indirect tolerances
Averages over all infected cows (28%) of CFU, SCC and
milk yield were 1108 268 (SE = 98 940) CFU/mL, 631
674 (SE = 62 566) SCC/mL and 28.85 (SE = 0.55) kg/day.
For the remaining uninfected cows (63%), averages were
310 045 (SE = 28 073) SCC/mL and 26.78 (SE = 0.31) kg
milk. Samples from the remaining 9% of cows were con-
taminated. Non-haemolytic staphylococci and α haemo-
lytic streptococci were the pathogens most frequently
isolated (Table 2).
Global fit indices were high for all three SEM, with

RMSEA < 0.01, and GFI and NFI > 0.95. More than 95%
of the variance in observed CFU, SCC and MILK was
explained by the variance in their corresponding latent
variable CFU*, SCC* and MILK* (measurement model).
Unstandardized estimates of direct effects (elements of
B) are given in Table 3 for all SEM: direct effects on
MILK* were negative for both CFU* and SCC* but sig-
nificantly (p < 0.05) different from 0 only for SCC*. The
indirect effect of CFU* on MILK*, mediated through its
effect on SCC*, was −0.50 (SE = 0.37) but was also not
Table 2 Isolation rates of pathogenic bacteria from positive m

Staphylococci Entero-cocci

Number of cows bH** NonH αH Esc + **

6 X

28 X

6 X

26

1 X X

1 X

3 X X

5 X

8 X

1 X

1 X X X

3 X X

4 X X

1 X

1 X

1 X X X

N positive samples 13 44 28
*see M&M for decisional criteria (presence of strict anaerobes and mycoplasmas wa
Lac = fermentation of lactose on Gassner agar.
significantly different from 0. The total effect was esti-
mated at −3.43 (SE = 2.12).

Discussion
We presented SEM (1) to identify herd characteristics
directly related to the risk of infection by mastitis patho-
gens and (2) to evaluate direct and indirect levels of tol-
erance of cows from these herds. The SEM approach
has several advantages compared to classical methods,
such as analysis of variance or regression. Advantages
include greater abilities (1) to model complex patterns of
relationships or differences between variables, (2) to gen-
erate latent variables and reduce measurement error, (3)
to provide fit indices for the overall model in addition to
individual coefficients, (4) to give a transparent repre-
sentation of the assumptions built into the model, and
(5) to develop mediating variables in addition to vari-
ables restricted to an additive model [13]. As such, SEM
are useful tools to dissect resistance and tolerance to in-
fectious diseases, and to define accurately the pheno-
types corresponding to selection objectives.
In the first part of our study, SEM treated six observed

measures of mastitis as imperfect indicators of mastitis
status at the herd level (MAM). Therefore, it provided a
more accurate assessment of mastitis status than each
observed variable taken separately. These six variables
were the only ones available in our study but other ones
could also be considered, such as the number of cows
ilk samples*

Streptococci Entero-bacteria Bacilli

αH Esc- βH Lac + ** Lac- βH

X

X

X

X

X

X

X

X X

X X

X X

48 1 2 2 1

s not assessed); **H = haemolytic; Esc = hydrolysis of esculin on Edwards agar;



Table 3 Maximum likelihood estimates (and their standard errors) of the direct effects of CFU* and SCC* on MILK* in
the three structural equation models (a, b, c)

Models
(a) (b) (c)

unrelated SCC*, CFU* SCC* influence CFU* CFU* influence SCC*

CFU* SCC* CFU* SCC* CFU* SCC*

CFU* n.a. n.a. n.a. 0.12 (0.11) n.a. n.a.

SCC* n.a. n.a. n.a. n.a. 0.05 (0.06) n.a.

MILK* −3.08 (1.72) −9.82** (2.61) −2.91 (1.74) −9.78** (2.62) −2.93 (0.74) −9.78** (2.62)
n.a. = non applicable; CFU*, SCC* and MILK* = latent variables for log-transformed CFU, log-transformed SCC, and milk yield, respectively; **p < 0.05.
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clinically ill or the herd average California Mastitis Test.
Next, we used SEM to evaluate associations between
herd characteristics and MAM. We found that nine out
of 35 practices were directly and significantly related to
MAM, and that four had standardized effects on MAM
greater than 0.10. Other management practices had less
importance because they either affected indirectly MAM
or had direct standardized effects lower than 0.10.
Therefore, one may suggest that ‘high-risk’ herds are
herds (in our Walloon region) in which cows are pre-
but not post-dipped, urea is added in the rations and
liners are dirty. For selection purposes, the search for
animals that are inherently resistant to infection should
be restricted to this type of ‘high-risk’ herds because
only in these herds can we be confident that uninfected
cows are resistant to direct infection with mastitis path-
ogens. In other herds, uninfected cows may indeed be
resistant but they can also be susceptible and not in con-
tact with mastitis pathogens.
In the second part of the study, we observed a high

variability in the number of CFU in infected cows (SE =
98 940 CFU/mL) suggesting that cows may differ in
their levels of indirect resistance to mastitis pathogens.
We also observed that losses in MILK* through direct
and indirect association with CFU* were not significantly
different from 0, suggesting that cows were both directly
and indirectly tolerant (Table 3). Mastitis could thus
spread within the herds because tolerance prolongs the
survival of infected hosts, and thus of their pathogens,
and this increases the risk of infection for both tolerant
and non-tolerant hosts [14]. However, it should be noted
that sample size and design of this study were not opti-
mal to detect loss of milk related to presence of bacteria.
In theory, bacteria belonging to Streptococcus and
Staphylococcus genera may directly damage tissues by
producing several virulence factors and survive within
mammary epithelial cells for extended periods of time
without losing viability. These bacteria may also cause
indirect harm because some of their cell wall-associated
and secreted proteins are inflammatory [15].
If infected cows are indeed tolerant and with different

levels of indirect resistance, one might wish to include
indirect resistance in breeding objectives. This means
that one should select cows in which phagocytes are mo-
bilized efficiently from the blood to the udder. Unfortu-
nately, such mobilization (and collateral increase in
SCC) was accompanied by a loss estimated at around
9.8 units of MILK* per unit of SCC* (Table 3). There-
fore, selection for increased indirect resistance to mas-
titis (by increasing the number of SCC* per CFU*)
would lead to cows that are not tolerant when infected.
This suggests that selection should aim at better resist-
ance to infection by mastitis pathogens but further in-
vestigations are needed given the limitations of the
design of the current study.
Reversely to being advantageous, SEM also have some

limits. They are only confirmatory in the sense that the-
ory and design of the study drive the development of the
model, as opposed to using data mining to develop a
model [16]. Here, designs of both studies were cross-
sectional and observational in nature (all variables were
measured simultaneously), so no causal inference could
be made. Fit indices (RMSEA, GFI, NFI) were similar for
the three SEM proposed in the second study and no
causal direction between CFU*, SCC* and MILK* could
be revealed. Therefore, SEM with other plausible config-
uration might match the data just as well as the SEM
proposed here. Also, sample sizes need to be large
enough to provide stable estimates of the parameters: a
simplest rule of thumb states that sample sizes of 200
should provide sufficient statistical power [17]. This is
lower than the sample size of our study but, given the
limitations of its design, further investigations are neces-
sary to validate our results and to better define direct
and indirect effects (e.g., non-linear relationships) of tol-
erance and resistance (e.g., use of a temporal design; cor-
rection for moderators; large sample size; use of genetic
lines or herds characterized for the risk of infection) to
different bacterial species.

Conclusions
This study described structural equation models with la-
tent variables: (1) to assess the risk for an animal of be-
ing exposed to mastitis pathogens and (2) to evaluate
direct and indirect levels of tolerance to mastitis. Using
this method, we identified nine major risk factors
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directly associated with an increased risk of mastitis and
suggested that cows were tolerant but not resistant to
mastitis. The methodology can easily be generalized to
other diseases and populations.
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